Deakin Research Online

This is the published version:
Tuah, N. J., Kumar, M. and Venkatesh, S. 1999, A performance model of speculative
prefetching in distributed information systems, in IPPS/SPDP 1999 : Proceedings of the 13th

International Parallel Processing Symposium and 10th Symposium on Parallel and
Distributed Processing, IEEE, New York, N. Y., pp. 75-80.

Available from Deakin Research Online:

http://hdl.handle.net/10536/DRO/DU:30044543

Reproduced with the kind permissions of the copyright owner.

Personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any copyrighted component of this work
in other works must be obtained from the IEEE.

Copyright : 1999, IEEE

http://hdl.handle.net/10536/DRO/DU:30044543

A Performance Model of Speculative Prefetching in Distributed Information Systems

N. J. Tuah M. Kumar S. Venkatesh
School of Computing, Curtin University of Technology
GPO BOX U1987, WA 6845, Australia

(tuahanj,kumar,svetha)@cs.curtin.edu.au

Abstract accesses. In particular, it has a list of candidate items for the next
access. It also presupposes some knowledge about available and re:
Previous studies in speculative prefetching focus on building andquired resources. In particular, the time available for prefetching, the

evaluating access models for the purpose of access prediction. Thigetrieval time for each item, and cache size are known.

paper investigates a complementary area which has been largely ig-

nored, that of performance modelling. We usgrovement in ac- 1.1. Related work

cess timeas the performance metric, for which we derive a formula

in terms of resource parameters (time available and time required Many recent studies in speculative prefetching assume persistence

for prefetching) and speculative parameters (probabilities for next in trends of user request patterns. Tait [14] uses file access pattern

access). The performance maximisation problem is expressed as lpased on the features of UNIX-style operating system where every

stretch knapsack problerie develop an algorithm to maximise the program gives rise to a tree of forked processes that access some

improvement in access time by solving the stretch knapsack problenfiles. Vitter [16] uses data compression techniques to build an access

using theoretically proven apparatus to reduce the search space. Intree that can make optimal predictions if the accesses are generated

tegration between speculative prefetching and caching is also invespy a Markov process.

tigated, albeit under the assumption of equal item sizes. Speculative prefetching has been proposed for improving web ac-
cess [1, 5, 9]. Padmanabhan [9] suggests server-side prediction of
document access. The server builds a dependency graph where eacl

1. Introduction link is labelled with the probability of the follow-up access being
made. Inthe ETEL electronic newspaper project [1], the client builds

Caching and prefetching of data have been used to improve th& patterned frequency graph that contair)s a path fqr eagh sequence o

%ccesses. Jiang [5] combines server-side and client-side prediction

speed of information access. In caching, copies of remote data ar r web browsing. Jiana suggests an adaptive prefetching scheme
kept locally to reduce access time of repeatedly accessed data [11, ased on a erf%rmanc% mggel that consi%ers getwork uga o time
In prefetching, access to remote data is anticipated and the data , pertorn 9

and user’s waiting time.

fetched before it is required [6]. This is in contrastdemand fetch In [15], we investigate the performance of speculative prefetchin
where data is fetched only when it is actually requested. ' . 9 pertorm) b b 9
under a model in which prefetching is neither aborted nor preempted

Prefetching can either peculativeorinformed In this paper we . o i
investigate speculative prefetching. Previous studies in speculativéd ﬁizrg(?:d fetch butinstead gets equal priority in network bandwidth

prefetching (see Section 1.1 Related work) focus on building access Prefetching competes for memory resources with caching. We
models and evaluating the performance of such models in predicting . :) Lo

: i ound excellent work on the integration of informed prefetching and
future accesses. While these models are important, they do not Concfachin 2. 10], but we found no analogous published articles in
stitute a complete framework for building optimal prefetch strategies. eculgtivé ref,etchin 9 P
We believe that, in addition to an access model, a prefetcher requiregp The rest gf the papgf is organised as follows. Section 2 describes

resource model an rformance model. A resource model al; . . ')

a resource model and a pertormance ode £ resource pde akhe parameters in our model and defines the performance metric,
lows a prefetcher to predict the amount of available and required re-

L namely access improvement, that we want to optimise. In Sec-
sources, A performance model allows a prefetcher to optimise th%ion 3 we derive a formula for access improvement when the cache
usage of resources and adapt well to changing resource conditions.. P

X . . . is empty. In Section 4, we present a solution, in the form of an algo-

In this paper, we develop prefetching algorithms using a perfor- S . .
rithm, for maximising access improvement. In Section 5, the cache
mance model. Our model presupposes some knowledge about future o : . : .
content is incorporated into the analysis. In Section 6, we highlight

*Under scholarship of Brunei government through Universiti Brunei Darussalam the main points of this research and suggest future work.

2. Model tively, when the cache is empty. Let the list of items to be prefetched,
F, be constructed as follows:

The opportunity for prefetching comes when an application is
waiting for the user input or carrying out some processing. For con- .
venience, we shall refer to the time of such opportunity asiie- F=K-{2) wherek C N, z € N\ K and Z” <Uo@
ing time We use the termetrieval timeto refer to the time to fully
retrieve an item. When a remote item is actually requested, the netThe items are prefetched in sequence so thatthe last item to be
work may appear to be more responsive if the requested item haprefetched. Note that this construction is general and requires only
been prefetched and is already partially or fully retrieved. We usethat F is not empty and all prefetches are initiated before the next
the termaccess timeo refer to the response time to an actual re- request is made. We specify the constructionfanore for notation
guest. The terminology we use for the time durations is illustrated inrather than restriction.
Figure 1. When no prefetch is performed, the access time equals the re-
. . . trieval time of the requested item. Hence, the expected access time
previous request application requests request for item

satisfied for itema « satisfied is

€KX

E((no prefetcb Z Pir;

«—— viewing time——<«—— access time—— N
N N N i€

* - ¥ time When F is prefetched, its retrieval time may exceed the viewing
‘ : time. We refer to the amount by which the retrieval timeoéxceeds
the viewing time as thstretch timeand denote it ag,(F). This is
defined as

— retrieval time—

prefetch itemy item « is available

Figure 1. Time durations #(F) = max {07 2” - ”} @)
1€

When a request is made while a prefetch of a different item is still AS shown in Figure 2, the access time whEtis prefetched can be:
in progress, and thus necessitating a demand fetch, we assume thBipretetchr,acic) = O L(pretetchr,amz) = £(F)s OF Teterchr,agr) =
the prefetch completes before the demand fetch. A wrong prefetchst(F) + 7. Hence, the expected access time is
may thus increase the access time.

We want to maximise the expected improvement in access time, E(Tipetercnr)) = Pest(F) + > Pi(ri + #(F))
referred to simply aaccess improvemenfccess improvement, de- iEN\F
noted byg, is defined ag”(Tno prefetch) — #(T(prefetcy) WhereT |,
is the access time given conditian

We shall confine our analysis to one-access look-ahead. Thus, the
prefetch strategy we formulate will be a greedy one in the sense that :
it tries to optimise the performance of the next single access without : v
considering the effect of its decision further into the future. :

Notation: We use() to enclose a list of items and use this :
FONT for list names.R - S is the concatenation 62 andS. |R| S
is the number of elements iR. The symbols for set operations — g ieK
€,C, C and\ — are used for list operations with their usual respec- ' '
tive meanings. Items that might be accessed are uniquely numbere@) If o € K, access time is Zef‘ If o = z, access time equals the time to
and they are referred to by their numbers. We use the following sym-complete the prefetch(c) If a ¢ F, access time equals the time to complete the
bols: n for the number of items)\ for (1,...,n) which is the list prefetch, plus the time to retrieve the item actually requested.
of all items, v for the viewing time,r; for the retrieval time of item
i, and P; for P(« = i), where« is a random variable denoting the
item to be accessed next.

prefetchF « requested

time

Figure 2. Access time

Hence, the access improvement when the cache is empt¥ @&d
prefetched is,

9¢°F) = E(T(ono prefetcl)) - E(T(oprefetch}‘))

We begin by assuming that the cache is empty. We shall use the = Z Piri — Z Pist(F) (3)
symbolsI™ andg® for access time and access improvement, respec- ieF iEN\K

3. Prefetch only

4. Stretch knapsack problem Let K be the list of wholly prefetched items not including i.e.
K = (i:z; =1,i # z). The linear SKP is

Assuming the cache is empty, the optimal list of items to prefetch
can be obtained by solving the following problem: Maximiseg® () (6)
Find F to maximiseg® (F) 4) where g°(z) = > ien Lirii — Yieng Lidt(x) and d(z) =

max {0, Y ien TiTi — v}.

We refer to the problem in (4) as tistretch knapsack problem Suppose that the items, sorted according to (5), are consecutively
(SKP). SKP is like a binary knapsack problem (KP) [7] where the inserted into the stretch knapsack until the first iteinjs found
profit and the weight of itemi are P;r; and r; respectively, and which does not fit, i.e.,
the knapsack capacity is However, unlike KP, the total weights

of items inserted into the stretch knapsack may exceed its capacity, ~)) J
causing it to stretch by an amountofF). Z=mmeJ: Z i >
i=1
4.1. Anatomy of search space Theorem 2 The optimal solution of the linear SKPisdefined as:
The search space for KP consists of all the possible combinations 1 if1<i<z-1,
of the items. The search space for SKP is a superset of the search =4 (v— Zf;ll ri)/7z ifi=2
space for KP. The former includes not only different combinations of 0 ifz+1<i<n

the items, but also certain permutations of some of these combina- - - _ _
tions. In particular, if¢(F) > 0 andF* is a permutation ofF, then Proof: By Dantzig's Theorem [3]z is the solution to the linear pro-
itis possible thay® (F) # g°(F™). gramming relaxation of KP where the profit and the weight of ifem

are P;r; andr; respectively, and the knapsack capacity.iHence
Theorem 1 Let.F be a list of items the total retrieval times of which this is also the solution to (6) when(z) = 0. We are left with the
exceeds. Letz be the last element i. If F is an optimal solution ~ case of¢(x) > 0 to prove.
to the problem in (4), themin { Py : f € F} = P;. Suppose the optimal solutionig whereg (z*) > 0 and the last
item inserted into the knapsack4s. But if we decrease the value of

Proof: Supposedf € 7 such that?; > Py. We will show that z¥. by e while maintainings(z*) > 0, the value ofj° changes by

this cannot be so ifF is an optimal solution, and hence by contra- 54 amount ofl — Y,.¢ P — P,)r,-¢, which is greater or equal
1€ ? !

diction the theorem must be true. Litbe the list of all elt_ame?ts to zero. Thus we have obtained a better or an equally good solution.
in 7 excludingz. (In order words,7 = K - (z)). Form a list We can iterate to obtain an even better (or an equally good) solution.
which is the same a§ except that element is replaced witte. Let At the limit of #(z*) — 0, we can apply the Dantzig's Theorenm

Fr=K"-(f). From 3)9°(F) = Yiez Liri = Lienx Lid(F) Since SKP solution space is a subset of linear SKP solution space,

and g°(F*) = Yer Piri — Xiennic- Pist(F*). SinceF and atight upper bound og° is given by,

F* contain the same items, we get,_z Pir; =), . Pir; and

st(F) = &(F*). From our supposition that; > P; and the way o= G

K*is constructed, we g@ieK* P> Zie)@ P = Zie/\/\)@ P> Ugo = (CC) = Z Pir; + (’U - Z Ti)PE (7)
— =1 =1

Yieannic- i Henceg®(F) < g°(F*). [

Theorem 1 allows us to confine the search space to permutag g3 Ap algorithm for exact solution
tions where the items are sorted in descending order of probability.
Equally probable items are sub-sorted in increasing retrieval times.

Our algorithm for the exact solution of SKP is shown in Figure 3.
Henceforth, we shall assume

We shall refer to it simply as th8KP algorithm It is based on

Horowitz-Sahni algorithm for KP [4].
(PL' > Pi+1) or (PL = Pi+1 andm < ri+1) (5) g []

. Theorem 3 ¢°(F) = ¢°(K) + 6 whered§ = P,r, — (1 —
4.2. Relaxation and upper bound Siex P)#(F), andF, K and z are as defined in (1).

SKP is an integer programming problem. In the context of Proof: From (3), ¢°(F) = 3 ,cr Piri — Xieanx Li¢(F) and
prefetching, an item is either entirely prefetched or not at all. By ¢g°(K) = >, P;r; (sinces(K) = 0). The theorem follows. ®
allowing items to be partially prefetched, we obtain the linear pro- The SKP algorithm assumes that the items are sorted according
gramming relaxation of SKP (linear SKP). to 5. It performgorward movesandbacktracking movesA forward

Let z;, where0 < z; < 1, be the proportion of item that move consists of inserting as many consecutive items as possible to
is prefetched. We use without the subscript to refer to the en- raise the value of°, using the formula in Theorem 3 to calculate it
tire array z1,...,2,. Let z be the last item to be prefetched. incrementally. When anitem causgsto decrease, itis excluded and

the upper bound of the currently constructed solution is computed. IfSKP prefetchKP prefetch perfect prefetchand no prefetch The

the upper bound is lower than the value of the best solution so far, the&SKP prefetch and the KP prefetch use, respectively, the SKP solution
algorithm backtracks; otherwise it performs a deeper forward move.and the KP solution to select items for prefetch. The perfect prefetch
When the knapsack stretches to accommodate an item (or when ra@lways prefetches the correct item.

item remains), the current solution is complete with the remaining

items deemed excluded. A backtracking move consists of removing Figure 4 shows scatter plots @fagainstv for the SKP prefetch

the last inserted item from the solution. and the KP prefetch. The negative effect of using stretch time can
be seen in Figure 4a where some points appear d@bove30 even
though the maximum value foris only 30. On the other hand, the
more conservative approach of the KP prefetch may result in under
utilisation of the viewing time, as can be seen in Figure 4c. The dense
triangular area above the lifE = v can be explained by failure

to prefetch highly probable items whose retrieval times exceed
Figures 4b and 4d, for which future accesses are less predictable, are

input: n, P,r,v output: F

[
Il
—

(*initialise *)
(* best item selectors *)
0 (* g°(best solution *)
(* current item selectors *)
0 (* g°(current solutiop *)
= v (* current residual capacityy — >_" ;| r;;) *)
Ppy1 =0
Tyl = 00

(IR
= os
IS

2. Findz = min {k : ZL/ i > 'f)}
P NEelp e mE-D N
4= 10 e gaosend’
3. while j < nand? > 0 do
6 = Pjrj— Y1 Pymax{0,r; — 0}

(* compute upper bound *)

(* perform a forward step *)

almost identical.

if § < 0then 0 SKP prefetch, n = 10 SKP prefetch, n = 10
;=0 45 T T T T] T T T T]
ji=j+1 10 © B B
if j < nthen goto2 endif 3100 i i
else 30 by % o B 0 (X0 © o
5 i o ® S Dy Qo ¢ o
& 2 8 XS © o o & 2 %Q)%O% & @% @ Qog
) %) § © 3 <& LS S
7 0 AN 9 8 o O o %00 8 0.6 %o
Tj = 15 9 ®o o - 3 §><> 8% P OQ@Q <>§ -
."/' = j+1 10 % 0%0 % S 4 10 «%0 gg@og 00000580 000 <
i BT e O o [RetR el T s
endwhile 0 i 8 0 Boocid
. . 0 20 40 60 80 100 0 20 40 60 80 100
4. if g > gthen (* update the best solution *) v v
9 (@) (b)
= KP prefetch, n = 10 KP prefetch, n = 10
endif 5 . : . 50 . I : .

5. Findk = max {i < j : &; = 1} (* backtrack *) 1 0* b
if no suchk then goto6 endif] ;0]
Tk =0) b ?]
P, D000 o fo BB aER 0 %y oo
6 = Py — Y ;) Pimax {0,r, — 0} & N o 0 0% 0 % ¢ 00 : & ;(J) o Z o% <§ 08030000«»%& N <]
Gi=g-0 ; ° . 2 88 %8580 oo o B
7 Q% 4 & 08 o %o P -
ji=k+1 %4 % B oL .%o &

o 4 10 2 0Loe B FSogm, <
goto2 & S 4 @%) 038 8.8 0 ¢ T o0, |
; i o ‘ KRR ekl g o

6. F = (i:x;=1) (* final solution *) ; 0 :

10 60 80 100 0 20 10 60 80 100
v v
Figure 3. SKP algorithm (© (d)

The result of 500 iterations of the ‘prefetch only’ simulation is plotted for the SKP
prefetch and the KP prefetch. The simulation parametersate:10, v is uniformly
distributed from 1 to 100r is uniformly distributed from 1 to 30. For figures (a)
and (c),P is generated using the skewy method; for figure (b) and (d), the flat method
. L . . is used.

The SKP algorithm optimises the list of items to prefetch for the

next single access. Accesses further into the future are disregarded.
In particular, the stretch time may intrude into the next viewing time
and thus reducing the asset for the next prefetch.

To investigate the effect of the use of stretch time, we perform
‘prefetch only’ simulation. In the ‘prefetch only’ simulation the Figure 5 shows the average access time againit Figures 5a
cache is used only for prefetching items. Once a request is satisand 5c, for which the skewy method is used, the performances of
fied the cache is flushed out. The simulation consists of runningthe SKP prefetch is slightly better than that of the KP prefetch. The
50,000 iterations through the following steps: 1) generat@ r and exception is whem is small where the SKP prefetch performs worse
v randomly, 2) prefetch, 3) generate a random request, 4) calculatéhan no prefetch. In Figures 5b and 5d, for which the flat method
access time, 5) outputandT'. The values folP are generated using is used, the performances of the SKP prefetch and the KP prefetch
two different methodsskewymethod andlat method. The skewy are almost the same. Increasing the number of items from 10 to 25
method generates a situation where the next request is highly prehas the effect of increasing the average access time. The increase is
dictable. The flat method results in a less predictable situation. expected; in the extreme case when= co and there is no clearly

Four different prefetch methods are employed in the simulation:dominating items, any speculative prefetch will be in vain.

4.4, Effect of stretch time

Figure 4. Scatter plot for ‘prefetch only’

n=10
T T T T T T T T
no prefetch &
perfect prefetch +
SKP prefetch [
KD prefeich X
S
QWOMO&W oo&o%%oo o
25,

n =10

T T T T T T T 1T
no prefetch
perfect prefetch
SKP prefetch
KP prefetch

i 20 b

average T'
average T’

T
L 1++++444_U;H
0 5 10 15 20 25 30 3

@)

n =25

10 45 50 0 10 15 20 25

(b)

n =25

T T T T T T T T T
no prefetch o

perfect prefetch +

SKP prefetch []

KP prefetch X

T T T T T T T 1T
no prefeteh
perfect prefetch
SKP prefetch
KP prefetch

000, oS RS,

XO+<o 4

average T’

0 5 10 15 20 25 5 0 45 50

(d)

Each plot is obtained by running the ‘prefetch only’ simulation for 50000 iterations.
The simulation parameters are:= 10 and25, v ranges from 1 to 100 (though the
plotis clipped av = 50), r ranges from 1 to 30, anf is generated using the skewy
method for figures (a) and (c), and the flat method for figures (b) and (d).

Figure 5. Performance of prefetch

5. Prefetch and cache

9(F., D)

E(T(no prefetcb) - E(T(]-‘ ejectsD))

9°(F)= (O _Pri— > Pis(F))

i€D 1€C\D

(9)

5.2. Maximising g

The complexity of the search space for the problem in (8) is the
same as that of SKP. However, we have not been able to come up with
a bounding technique to subdue its combinatorial explosion. So we
will settle for a suboptimal solution. Furthermore, we shall assume
that item sizes are equal. Consequently, the number of prefetched
items must equal the number of ejected items,|i®.= |D|.

Equation (9) suggests the following method. First, using SKP
algorithm, find F to maximiseg®(F). Then findD to minimise
>iep Piri = Yiec\p Pid(F), which we will refer to asanti-g.

The minimisation problem can simply be solved by sortihip as-
cending order ofP;(r; + £(F)) and taking the first{F| elements.
There may existf € F andd € D such that the contribution of

f to g°(F) is less than the contribution @fto antiy. In this case
(F\(f),D\ (d)) is a better solution thatiF, D). So we must in-
clude an arbitration step to prevent ejection of an item from the cache
by a less-worthy replacement.

In this section, we consider the cache not empty. Items to be For the purpose of arbitration, we assume th@F) is zero so that
prefetched must contest the items already in the cache. We first deitem f € F contributesP;r; to ¢°(F) and itemd € D contributes

rive a formula for access improvemept{,F, D), whereF is the list
of prefetched items, arB is the list of items ejected from the cache.
We then discuss how to solve the following problem:

Find (F, D) to maximisey(F, D) (8)

5.1. Access improvement

Let F be constructed as in (1) except that ndvzannot have any
elements in common with the cacltk,

When no prefetch is performed, the expected access time is given

by

E(T(no prefetcb) = Z Pir;
1eEN\C

When F is prefetched, an®d is ejected to give room, the ac-
cess time is as followsl r gjectsp,aeic-c\D) = 0; T(F ejectsp,a=2) =
s(F) andT 7 ejectsp,ag7-c\p) = S(F) + ro. Hence, the expected
access time is given by

>

1€C\(F-C\D)

Piri +

>

i€EN\(K-C\D)

E(T(]-' ejectsD)) = Pi&f(}-)

Hence, the access improvement is

Pyry to antig. Item f can only be prefetched if it can find a victidn
such thatP;ry = min;ec Pyr; andPyry > Pyrq. Demand-fetched
item, howevermusthave a victim and only requires the first condi-
tion. We call thisPr-arbitration. Our algorithm to maximise is
shown in Figure 6.

input: n, P,r,v,C output: F,D

Find £ C A\ € to maximiseg°(F)

F =)

Di=()

for eachf € F sorted in descending;r; do
Findd € C with smallestP;r,
if Psry < Pyrq then break endif

F = Fo(f)
D := D-(d)
=\ {d)

endfor

Figure 6. SKP algorithm with ~ Pr-arbitration

To choose from among potential victims that have the séme
value, we employ a sub-arbitration. For this purpose, we define for
each item a value callagklay-saving profiasfreg,; x r;, wherefreg,
is the frequency of accesses to itémThis formula is a simplified
form of the one used by WATCHMAN cache [12] and its web-related
spawn [13]. When sub-arbitration is required, we choose the item
with the lowest delay-saving profit. We call tHiS-arbitration Ad-
mittedly, while everything else is meticulously derived to solve prob-
lem (8), the sub-arbitration is included ad-hoc.

5.3. Performance The SKP algorithm with arbitration maximises access improve-
ment without regard to the increase in network usage. Even if the

We found no published prefetching technigues that can be usednost probable items are already in the cache, it will prefetch the

as a fair yardstick against our work. This is partly because of itslesser candidates if, by doing so, it can improve the expected access

assumption of equal item sizes and partly because our emphasis tgne even by an insignificant amount. A policy is needed to weigh

different from previous work by other people (see Section 1.1). Thethe opposing goals of maximising access improvement and minimis-

experiment in this section, therefore, only serves to gain insight espeing network usage.

cially on the effect of sub-arbitration, which is an ad-hoc inclusion. Our model presupposes some knowledge about future accesses.
We use Monte Carlo simulation to see how SKP with arbitra- Access modelling has received much attention (see Section 1.1 Re-

tion performs. We simulate five different prefetch-cache policies: lated work). One of the models proposed in the literature (e.g.

1) No+Pr: no prefetch is performed anfr-arbitration is used [1, 16]) might serve the purpose of providing this knowledge. Our

to select cache victims, 2P+ Pr: KP solution is used withPr- model also presupposes some knowledge about available and re-

arbitration, 3)SKP+Pr: SKP solution is used witlPr-arbitration, quired resources. There is much work to be done in this area.

4) SKP+Pr+LFU: Same as previous one, with sub-arbitration using

LFU (least frequently used), SKP+Pr+DS: Same as previous one, References

except DS-arbitration is used instead of LFU.

Figure 7 shows the result of the simulation. The figure qonf'rms [1] M. Banétre, V. Issarny, F. Leleu, and B. Charpiot. Providing quality of
that SKP prefetch performs better than KP prefetch. Adding sub- service over the web: A newspaper-based approacBthiint WWW
arbitration clearly improves the result. We are not surprised that Conf Apr. 1997.

SKP+Pr+DS gives the best resulf?r-arbitration protects immedi- [2] P. Cao. Application-Controlled File Caching and Prefetching?hD
ate candidates and DS-arbitration keeps in cache the items thatwould thesis, Department of Computer Science, Princeton University, Jan.
otherwise consume too much network time. 1996.
; ; ; ; [3] G. B. Dantzig. Discrete variable extremum problem@perations
Nowbr — 7 Research5:266-277, 1957.

e SKp4m it] [4] E. Horowitz and S. Sahni. Computing partitions with applications to
v SKP+Pr4DS == 7 the knapsack problendournal of ACM 21:277-292, 1974.
°] [5] z. Jiang and L. Kleinrock. An adaptive network prefetch scheme.
] IEEE Journal on Selected Areas in Communicatjdré(3):358-368,
e] Apr. 1998.

T e T [6] H.Leiand D. Duchamp. An analytical approach to file prefetching. In
o " T e, Proc USENIX Annual Technical Cqrifan. 1997.

) . cache size o)) [7] S. Martello and P. Toth Knapsack Problems: Algorithms and Com-
Each curve is plotted by joining 100 points. Each point is obtained by generating puter ImplementatianWiley, 1990

50000 requests and taking the average access time. The requests are generated usi N .
a 100-state Markov source. When going to statthe Markov source generates a n[%] M. N. Nelson, B. B. Welch, and J. K. Ousterhout. Caching in the sprite

access time per request

request for itemi and, after the request is served, it waits for the duratian oivhere network file systemACM Trans on Computer Systerggl), 1988.
1 < v; < 100, before changing to another state. The state transition matrix is [9] V. N. Padmanabhan and J. C. Mogul. Using predictive prefetching to
constructed such that there are 10 to 20 possible transitions from any state. Retrieval improve world wide web latencyACM SIGCOMM Computer Com-
times for items are between 1 to 30. We vary cache size from 1 to 100. munication Revieypages 22—36, July 1996.
) [10] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky, and J. Ze-
Figure 7. Performance of prefetch-cache lenka. Informed prefetching and caching. Rroc 15th ACM Sympo-

sium on Operating System Principlggges 79-95, Dec. 1995.
[11] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon. Design

luSi d furth K and implementation of the sun network file systemPoc Summer
6. Conclusions and further wor 1985 USENIX Confages 119-130, June 1985.

[12] P. Scheuermann, J. Shim, and R. Vingralek. WATCHMAN: A data
We have presented in this paper a performance model for spec- warehouse intelligent cache manager22md VLDB Conf1996.
ulative prefetching, incorporating resources (retrieval time, viewing [13] P. Scheuermann, J. Shim, and R. Vingralek. A case for delay-conscious
time and cache) and access prediction (probabilities for next access). _ caching of web documents. 8th Int WWW ConfApr. 1997.
A prefetching algorithm is developed to maximise access improve-[] g E' 1;a|tf.A File Sgséte.m for M%b':e Cgmput}ng’hp thegsg'Z’ Graduate
ment. The algorithm uses theoretically proven apparatus to reduc?ls] chool of Arts and Sciences, Columbia University, 1993.

. N. J. Tuah, M. Kumar, and S. Venkatesh. Investigation of a prefetch
its search space. We integrate the prefetching algorithm with cache model for low bandwidth networks. In S. K. Das, editbst ACM Int

replacement using a two-stage arbitration. However, we assume uni- \yorkshop on Wireless Mobile Multimedjzages 38-47, Oct. 1998.

form size for all items. We are currently addressing this limitation. [16] J. S. Vitter and P. Krishnan. Optimal prefetching via data compres-
The SKP algorithm considers only one access ahead. Obviously, sion. INIEEE 32nd Annual Symposiums on Foundation of Computer

looking ahead deeper will improve the performance. However, the Sciencepages 121-130, 1991.

complexity of the problem can be daunting.

