
 Deakin Research Online

This is the published version:

Tuah, N. J., Kumar, M. and Venkatesh, S. 1999, A performance model of speculative
prefetching in distributed information systems, in IPPS/SPDP 1999 : Proceedings of the 13th
International Parallel Processing Symposium and 10th Symposium on Parallel and
Distributed Processing, IEEE, New York, N. Y., pp. 75-80.

Available from Deakin Research Online:

http://hdl.handle.net/10536/DRO/DU:30044543

Reproduced with the kind permissions of the copyright owner.

Personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any copyrighted component of this work
in other works must be obtained from the IEEE.

Copyright : 1999, IEEE

http://hdl.handle.net/10536/DRO/DU:30044543

A Performance Model of Speculative Prefetching in Distributed Information Systems

N. J. Tuah� M. Kumar S. Venkatesh
School of Computing, Curtin University of Technology

GPO BOX U1987, WA 6845, Australia
(tuahanj,kumar,svetha)@cs.curtin.edu.au

Abstract

Previous studies in speculative prefetching focus on building and
evaluating access models for the purpose of access prediction. This
paper investigates a complementary area which has been largely ig-
nored, that of performance modelling. We useimprovement in ac-
cess timeas the performance metric, for which we derive a formula
in terms of resource parameters (time available and time required
for prefetching) and speculative parameters (probabilities for next
access). The performance maximisation problem is expressed as a
stretch knapsack problem. We develop an algorithm to maximise the
improvement in access time by solving the stretch knapsack problem,
using theoretically proven apparatus to reduce the search space. In-
tegration between speculative prefetching and caching is also inves-
tigated, albeit under the assumption of equal item sizes.

1. Introduction

Caching and prefetching of data have been used to improve the
speed of information access. In caching, copies of remote data are
kept locally to reduce access time of repeatedly accessed data [11, 8].
In prefetching, access to remote data is anticipated and the data is
fetched before it is required [6]. This is in contrast todemand fetch
where data is fetched only when it is actually requested.

Prefetching can either bespeculativeor informed. In this paper we
investigate speculative prefetching. Previous studies in speculative
prefetching (see Section 1.1 Related work) focus on building access
models and evaluating the performance of such models in predicting
future accesses. While these models are important, they do not con-
stitute a complete framework for building optimal prefetch strategies.
We believe that, in addition to an access model, a prefetcher requires
a resource model and a performance model. A resource model al-
lows a prefetcher to predict the amount of available and required re-
sources. A performance model allows a prefetcher to optimise the
usage of resources and adapt well to changing resource conditions.

In this paper, we develop prefetching algorithms using a perfor-
mance model. Our model presupposes some knowledge about future

�Under scholarship of Brunei government through Universiti Brunei Darussalam

accesses. In particular, it has a list of candidate items for the next
access. It also presupposes some knowledge about available and re-
quired resources. In particular, the time available for prefetching, the
retrieval time for each item, and cache size are known.

1.1. Related work

Many recent studies in speculative prefetching assume persistence
in trends of user request patterns. Tait [14] uses file access pattern
based on the features of UNIX-style operating system where every
program gives rise to a tree of forked processes that access some
files. Vitter [16] uses data compression techniques to build an access
tree that can make optimal predictions if the accesses are generated
by a Markov process.

Speculative prefetching has been proposed for improving web ac-
cess [1, 5, 9]. Padmanabhan [9] suggests server-side prediction of
document access. The server builds a dependency graph where each
link is labelled with the probability of the follow-up access being
made. In the ETEL electronic newspaper project [1], the client builds
a patterned frequency graph that contains a path for each sequence of
accesses. Jiang [5] combines server-side and client-side prediction
for web browsing. Jiang suggests an adaptive prefetching scheme
based on a performance model that considers network usage time
and user’s waiting time.

In [15], we investigate the performance of speculative prefetching
under a model in which prefetching is neither aborted nor preempted
by demand fetch but instead gets equal priority in network bandwidth
utilisation.

Prefetching competes for memory resources with caching. We
found excellent work on the integration of informed prefetching and
caching [2, 10], but we found no analogous published articles in
speculative prefetching.

The rest of the paper is organised as follows. Section 2 describes
the parameters in our model and defines the performance metric,
namely access improvement, that we want to optimise. In Sec-
tion 3 we derive a formula for access improvement when the cache
is empty. In Section 4, we present a solution, in the form of an algo-
rithm, for maximising access improvement. In Section 5, the cache
content is incorporated into the analysis. In Section 6, we highlight
the main points of this research and suggest future work.

2. Model

The opportunity for prefetching comes when an application is
waiting for the user input or carrying out some processing. For con-
venience, we shall refer to the time of such opportunity as theview-
ing time. We use the termretrieval timeto refer to the time to fully
retrieve an item. When a remote item is actually requested, the net-
work may appear to be more responsive if the requested item has
been prefetched and is already partially or fully retrieved. We use
the termaccess timeto refer to the response time to an actual re-
quest. The terminology we use for the time durations is illustrated in
Figure 1.

time

previous request
satisfied

application requests
for item�

request for item
� satisfied

prefetch item� item� is available

viewing time access time

retrieval time

Figure 1. Time durations

When a request is made while a prefetch of a different item is still
in progress, and thus necessitating a demand fetch, we assume that
the prefetch completes before the demand fetch. A wrong prefetch
may thus increase the access time.

We want to maximise the expected improvement in access time,
referred to simply asaccess improvement. Access improvement, de-
noted byg, is defined asE(T(no prefetch)) � E(T(prefetch)) whereT(x)
is the access time given conditionx.

We shall confine our analysis to one-access look-ahead. Thus, the
prefetch strategy we formulate will be a greedy one in the sense that
it tries to optimise the performance of the next single access without
considering the effect of its decision further into the future.

Notation: We useh i to enclose a list of items and use this
FONT for list names.R � S is the concatenation ofR andS. jRj
is the number of elements inR. The symbols for set operations —
2;�;� andn — are used for list operations with their usual respec-
tive meanings. Items that might be accessed are uniquely numbered
and they are referred to by their numbers. We use the following sym-
bols: n for the number of items,N for h1; : : : ; ni which is the list
of all items,v for the viewing time,ri for the retrieval time of item
i, andPi for P (� = i), where� is a random variable denoting the
item to be accessed next.

3. Prefetch only

We begin by assuming that the cache is empty. We shall use the
symbolsT � andg� for access time and access improvement, respec-

tively, when the cache is empty. Let the list of items to be prefetched,
F , be constructed as follows:

F = K � hzi whereK � N ; z 2 N n K and
X
i2K

ri < v (1)

The items are prefetched in sequence so thatz is the last item to be
prefetched. Note that this construction is general and requires only
thatF is not empty and all prefetches are initiated before the next
request is made. We specify the construction forF more for notation
rather than restriction.

When no prefetch is performed, the access time equals the re-
trieval time of the requested item. Hence, the expected access time
is

E(T �(no prefetch)) =
X
i2N

Piri

WhenF is prefetched, its retrieval time may exceed the viewing
time. We refer to the amount by which the retrieval time ofF exceeds
the viewing time as thestretch timeand denote it asst(F). This is
defined as

st(F) = max

(
0;
X
i2F

ri � v

)
(2)

As shown in Figure 2, the access time whenF is prefetched can be:
T �(prefetchF ;�2K) = 0, T �(prefetchF ;�=z) = st(F), orT �(prefetchF ;�62F) =

st(F) + r�. Hence, the expected access time is

E(T �(prefetchF)) = Pzst(F) +
X

i2NnF

Pi(ri + st(F))

time

prefetchF � requested

v

X
i2K

ri rz

A
B

C

A If � 2 K, access time is zero. B If � = z, access time equals the time to

complete the prefetch. C If � 62 F , access time equals the time to complete the
prefetch, plus the time to retrieve the item actually requested.

Figure 2. Access time

Hence, the access improvement when the cache is empty andF is
prefetched is,

g�(F) = E(T �(no prefetch))� E(T �(prefetchF))

=
X
i2F

Piri �
X

i2NnK

Pist(F) (3)

4. Stretch knapsack problem

Assuming the cache is empty, the optimal list of items to prefetch
can be obtained by solving the following problem:

FindF to maximiseg�(F) (4)

We refer to the problem in (4) as thestretch knapsack problem
(SKP). SKP is like a binary knapsack problem (KP) [7] where the
profit and the weight of itemi are Piri and ri respectively, and
the knapsack capacity isv. However, unlike KP, the total weights
of items inserted into the stretch knapsack may exceed its capacity,
causing it to stretch by an amount ofst(F).

4.1. Anatomy of search space

The search space for KP consists of all the possible combinations
of the items. The search space for SKP is a superset of the search
space for KP. The former includes not only different combinations of
the items, but also certain permutations of some of these combina-
tions. In particular, ifst(F) > 0 andF� is a permutation ofF , then
it is possible thatg�(F) 6= g�(F�).

Theorem 1 Let �F be a list of items the total retrieval times of which
exceedsv. Let �z be the last element in�F . If �F is an optimal solution
to the problem in (4), thenmin

�
Pf : f 2 �F

	
= P�z.

Proof: Suppose9f 2 �F such thatP�z > Pf . We will show that
this cannot be so if�F is an optimal solution, and hence by contra-
diction the theorem must be true. Let�K be the list of all elements
in �F excluding�z. (In order words,�F = �K � h�zi). Form a listK�

which is the same as�K except that elementf is replaced with�z. Let
F� = K� � hfi. From (3),g�(�F) =

P
i2 �F Piri �

P
i2Nn �K Pist(�F)

and g�(F�) =
P

i2F� Piri �
P

i2NnK� Pist(F�). Since �F and
F� contain the same items, we get

P
i2 �F Piri =

P
i2F� Piri and

st(�F) = st(F�). From our supposition thatP�z > Pf and the way
K� is constructed, we get

P
i2K� Pi >

P
i2 �K Pi =)

P
i2Nn �K Pi >P

i2NnK� Pi. Henceg�(�F) < g�(F�).
Theorem 1 allows us to confine the search space to permuta-

tions where the items are sorted in descending order of probability.
Equally probable items are sub-sorted in increasing retrieval times.
Henceforth, we shall assume

(Pi > Pi+1) or (Pi = Pi+1 andri � ri+1) (5)

4.2. Relaxation and upper bound

SKP is an integer programming problem. In the context of
prefetching, an item is either entirely prefetched or not at all. By
allowing items to be partially prefetched, we obtain the linear pro-
gramming relaxation of SKP (linear SKP).

Let xi, where0 � xi � 1, be the proportion of itemi that
is prefetched. We usex without the subscript to refer to the en-
tire array x1; : : : ; xn. Let z be the last item to be prefetched.

Let ~K be the list of wholly prefetched items not includingz; i.e.
~K = hi : xi = 1; i 6= zi. The linear SKP is

Maximise~g�(x) (6)

where ~g�(x) =
P

i2N Pirixi �
P

i2Nn ~K Pi
~st(x) and ~st(x) =

max
�
0;
P

i2N rixi � v
	

.
Suppose that the items, sorted according to (5), are consecutively

inserted into the stretch knapsack until the first item,~z, is found
which does not fit, i.e.,

~z = min

(
j :

jX
i=1

ri > v

)

Theorem 2 The optimal solution of the linear SKP is�x defined as:

�xi =

8<
:

1 if 1 � i � ~z � 1;

(v �
P~z�1

i=1 ri)=r~z if i = ~z
0 if ~z + 1 � i � n

Proof: By Dantzig’s Theorem [3],�x is the solution to the linear pro-
gramming relaxation of KP where the profit and the weight of itemi
arePiri andri respectively, and the knapsack capacity isv. Hence
this is also the solution to (6) when~st(x) = 0. We are left with the
case of~st(x) > 0 to prove.

Suppose the optimal solution isx� where~st(x�) > 0 and the last
item inserted into the knapsack isz�. But if we decrease the value of
x�z� by " while maintaining~st(x�) > 0, the value of~g� changes by
an amount of(1 �

P
i2 ~K Pi � Pz�)rz�", which is greater or equal

to zero. Thus we have obtained a better or an equally good solution.
We can iterate to obtain an even better (or an equally good) solution.
At the limit of ~st(x�)! 0, we can apply the Dantzig’s Theorem.

Since SKP solution space is a subset of linear SKP solution space,
a tight upper bound ong� is given by,

Ug� = ~g�(�x) =
~z�1X
i=1

Piri + (v �
~z�1X
i=1

ri)P~z (7)

4.3. An algorithm for exact solution

Our algorithm for the exact solution of SKP is shown in Figure 3.
We shall refer to it simply as theSKP algorithm. It is based on
Horowitz-Sahni algorithm for KP [4].

Theorem 3 g�(F) = g�(K) + � where � = Pzrz � (1 �P
i2K Pi)st(F), andF ,K andz are as defined in (1).

Proof: From (3), g�(F) =
P

i2F Piri �
P

i2NnK Pist(F) and
g�(K) =

P
i2K Piri (sincest(K) = 0). The theorem follows.

The SKP algorithm assumes that the items are sorted according
to 5. It performsforward movesandbacktracking moves. A forward
move consists of inserting as many consecutive items as possible to
raise the value ofg�, using the formula in Theorem 3 to calculate it
incrementally. When an item causesg� to decrease, it is excluded and

the upper bound of the currently constructed solution is computed. If
the upper bound is lower than the value of the best solution so far, the
algorithm backtracks; otherwise it performs a deeper forward move.
When the knapsack stretches to accommodate an item (or when no
item remains), the current solution is complete with the remaining
items deemed excluded. A backtracking move consists of removing
the last inserted item from the solution.

input: n; P; r; v output: F

1. j := 1 (* initialise *)
x := 0; : : : ; 0 (* best item selectors *)
g := 0 (* g�(best solution) *)
x̂ := 0; : : : ; 0 (* current item selectors *)
ĝ := 0 (* g�(current solution) *)
v̂ := v (* current residual capacity(v �

Pn

i=1 rix̂i) *)
Pn+1 := 0
rn+1 := 1

2. Find~z = min
n
k :
Pk

i=j ri > v̂
o

(* compute upper bound *)

U :=
P~z�1

i=j Piri + (v̂ �
P~z�1

i=j ri)P~z

if g � ĝ + U then goto5 endif

3. while j � n andv̂ > 0 do (* perform a forward step *)
� := Pjrj �

Pn

i=j Pimax f0; rj � v̂g
if � � 0 then

x̂j := 0
j := j + 1
if j < n then goto2 endif

else
v̂ := v̂ � rj
ĝ := ĝ + �
x̂j := 1
j := j + 1

endif
endwhile

4. if ĝ > g then (* update the best solution *)
g := ĝ
x := x̂

endif

5. Findk = max fi < j : x̂i = 1g (* backtrack *)
if no suchk then goto6 endif
x̂k := 0
v̂ := v̂ + rk
� := Pkrk �

Pn

i=k Pimax f0; rk � v̂g
ĝ := ĝ � �
j := k + 1
goto2

6. F := hi : xi = 1i (* final solution *)

Figure 3. SKP algorithm

4.4. E�ect of stretch time

The SKP algorithm optimises the list of items to prefetch for the
next single access. Accesses further into the future are disregarded.
In particular, the stretch time may intrude into the next viewing time
and thus reducing the asset for the next prefetch.

To investigate the effect of the use of stretch time, we perform
‘prefetch only’ simulation. In the ‘prefetch only’ simulation the
cache is used only for prefetching items. Once a request is satis-
fied the cache is flushed out. The simulation consists of running
50,000 iterations through the following steps: 1) generaten; P; r and
v randomly, 2) prefetch, 3) generate a random request, 4) calculate
access time, 5) outputv andT . The values forP are generated using
two different methods:skewymethod andflat method. The skewy
method generates a situation where the next request is highly pre-
dictable. The flat method results in a less predictable situation.

Four different prefetch methods are employed in the simulation:

SKP prefetch, KP prefetch, perfect prefetchand no prefetch. The
SKP prefetch and the KP prefetch use, respectively, the SKP solution
and the KP solution to select items for prefetch. The perfect prefetch
always prefetches the correct item.

Figure 4 shows scatter plots ofT againstv for the SKP prefetch
and the KP prefetch. The negative effect of using stretch time can
be seen in Figure 4a where some points appear aboveT = 30 even
though the maximum value forr is only 30. On the other hand, the
more conservative approach of the KP prefetch may result in under
utilisation of the viewing time, as can be seen in Figure 4c. The dense
triangular area above the lineT = v can be explained by failure
to prefetch highly probable items whose retrieval times exceedv.
Figures 4b and 4d, for which future accesses are less predictable, are
almost identical.

SKP prefetch, n = 10

v

T

100806040200

50

45

40

35

30

25

20

15

10

5

0

SKP prefetch, n = 10

v

T

100806040200

50

45

40

35

30

25

20

15

10

5

0

(a) (b)
KP prefetch, n = 10

v

T

100806040200

50

45

40

35

30

25

20

15

10

5

0

KP prefetch, n = 10

v

T

100806040200

50

45

40

35

30

25

20

15

10

5

0

(c) (d)

The result of 500 iterations of the ‘prefetch only’ simulation is plotted for the SKP
prefetch and the KP prefetch. The simulation parameters are:n = 10, v is uniformly
distributed from 1 to 100,r is uniformly distributed from 1 to 30. For figures (a)
and (c),P is generated using the skewy method; for figure (b) and (d), the flat method
is used.

Figure 4. Scatter plot for ‘prefetch only’

Figure 5 shows the average access time againstv. In Figures 5a
and 5c, for which the skewy method is used, the performances of
the SKP prefetch is slightly better than that of the KP prefetch. The
exception is whenv is small where the SKP prefetch performs worse
than no prefetch. In Figures 5b and 5d, for which the flat method
is used, the performances of the SKP prefetch and the KP prefetch
are almost the same. Increasing the number of items from 10 to 25
has the effect of increasing the average access time. The increase is
expected; in the extreme case whenn = 1 and there is no clearly
dominating items, any speculative prefetch will be in vain.

KP prefetch
SKP prefetch

perfect prefetch
no prefetch

n = 10

v

a
v
er
a
g
e
T

50454035302520151050

25

20

15

10

5

0

KP prefetch
SKP prefetch

perfect prefetch
no prefetch

n = 10

v

a
v
er
a
g
e
T

50454035302520151050

25

20

15

10

5

0

(a) (b)

KP prefetch
SKP prefetch

perfect prefetch
no prefetch

n = 25

v

a
v
er
a
g
e
T

50454035302520151050

25

20

15

10

5

0

KP prefetch
SKP prefetch

perfect prefetch
no prefetch

n = 25

v

a
v
er
a
g
e
T

50454035302520151050

25

20

15

10

5

0

(c) (d)

Each plot is obtained by running the ‘prefetch only’ simulation for 50000 iterations.
The simulation parameters are:n = 10 and25, v ranges from 1 to 100 (though the
plot is clipped atv = 50), r ranges from 1 to 30, andP is generated using the skewy
method for figures (a) and (c), and the flat method for figures (b) and (d).

Figure 5. Performance of prefetch

5. Prefetch and cache

In this section, we consider the cache not empty. Items to be
prefetched must contest the items already in the cache. We first de-
rive a formula for access improvement,g(F ;D), whereF is the list
of prefetched items, andD is the list of items ejected from the cache.
We then discuss how to solve the following problem:

Find hF ;Di to maximiseg(F ;D) (8)

5.1. Access improvement

LetF be constructed as in (1) except that nowF cannot have any
elements in common with the cache,C.

When no prefetch is performed, the expected access time is given
by

E(T(no prefetch)) =
X

i2NnC

Piri

WhenF is prefetched, andD is ejected to give room, the ac-
cess time is as follows:T(F ejectsD;�2K�CnD) = 0; T(F ejectsD;�=z) =
st(F) andT(F ejectsD;�62F�CnD) = st(F) + r�. Hence, the expected
access time is given by

E(T(F ejectsD)) =
X

i2Cn(F�CnD)

Piri +
X

i2Nn(K�CnD)

Pist(F)

Hence, the access improvement is

g(F ;D) = E(T(no prefetch))� E(T(F ejectsD))

= g�(F)� (
X
i2D

Piri �
X

i2CnD

Pist(F)) (9)

5.2. Maximising g

The complexity of the search space for the problem in (8) is the
same as that of SKP. However, we have not been able to come up with
a bounding technique to subdue its combinatorial explosion. So we
will settle for a suboptimal solution. Furthermore, we shall assume
that item sizes are equal. Consequently, the number of prefetched
items must equal the number of ejected items, i.e.jFj = jDj.

Equation (9) suggests the following method. First, using SKP
algorithm, findF to maximiseg�(F). Then findD to minimiseP

i2D Piri �
P

i2CnD Pist(F), which we will refer to asanti-g.
The minimisation problem can simply be solved by sortingC in as-
cending order ofPi(ri + st(F)) and taking the firstjFj elements.
There may existf 2 F andd 2 D such that the contribution of
f to g�(F) is less than the contribution ofd to anti-g. In this case
hF n hfi ;D n hdii is a better solution thanhF ;Di. So we must in-
clude an arbitration step to prevent ejection of an item from the cache
by a less-worthy replacement.

For the purpose of arbitration, we assume thatst(F) is zero so that
item f 2 F contributesPfrf to g�(F) and itemd 2 D contributes
Pdrd to anti-g. Itemf can only be prefetched if it can find a victimd
such thatPdrd = mini2C Piri andPfrf > Pdrd. Demand-fetched
item, however,musthave a victim and only requires the first condi-
tion. We call thisPr-arbitration. Our algorithm to maximiseg is
shown in Figure 6.

input: n; P; r; v; C output: F ;D
Find F̂ � N n C to maximiseg�(F̂)
F := hi
D := hi
for eachf 2 F̂ sorted in descendingPfrf do

Findd 2 C with smallestPdrd
if Pfrf < Pdrd then break endif
F := F � hfi
D := D � hdi
C := C n hdi

endfor

Figure 6. SKP algorithm with Pr-arbitration

To choose from among potential victims that have the samePr
value, we employ a sub-arbitration. For this purpose, we define for
each item a value calleddelay-saving profitasfreq i�ri, wherefreq i
is the frequency of accesses to itemi. This formula is a simplified
form of the one used by WATCHMAN cache [12] and its web-related
spawn [13]. When sub-arbitration is required, we choose the item
with the lowest delay-saving profit. We call thisDS-arbitration. Ad-
mittedly, while everything else is meticulously derived to solve prob-
lem (8), the sub-arbitration is included ad-hoc.

5.3. Performance

We found no published prefetching techniques that can be used
as a fair yardstick against our work. This is partly because of its
assumption of equal item sizes and partly because our emphasis is
different from previous work by other people (see Section 1.1). The
experiment in this section, therefore, only serves to gain insight espe-
cially on the effect of sub-arbitration, which is an ad-hoc inclusion.

We use Monte Carlo simulation to see how SKP with arbitra-
tion performs. We simulate five different prefetch-cache policies:
1) No+Pr: no prefetch is performed andPr-arbitration is used
to select cache victims, 2)KP+Pr: KP solution is used withPr-
arbitration, 3)SKP+Pr: SKP solution is used withPr-arbitration,
4) SKP+Pr+LFU : Same as previous one, with sub-arbitration using
LFU (least frequently used), 5)SKP+Pr+DS: Same as previous one,
except DS-arbitration is used instead of LFU.

Figure 7 shows the result of the simulation. The figure confirms
that SKP prefetch performs better than KP prefetch. Adding sub-
arbitration clearly improves the result. We are not surprised that
SKP+Pr+DS gives the best result.Pr-arbitration protects immedi-
ate candidates and DS-arbitration keeps in cache the items that would
otherwise consume too much network time.

SKP+Pr+DS

SKP+Pr+LFU

SKP+Pr

KP+Pr

No+Pr

cache size

a
cc
es
s
ti
m
e
p
er
re
q
u
es
t

100806040200

14

12

10

8

6

4

2

0

Each curve is plotted by joining 100 points. Each point is obtained by generating
50000 requests and taking the average access time. The requests are generated using
a 100-state Markov source. When going to statei, the Markov source generates a
request for itemi and, after the request is served, it waits for the duration ofvi, where
1 � vi � 100, before changing to another state. The state transition matrix is
constructed such that there are 10 to 20 possible transitions from any state. Retrieval
times for items are between 1 to 30. We vary cache size from 1 to 100.

Figure 7. Performance of prefetch-cache

6. Conclusions and further work

We have presented in this paper a performance model for spec-
ulative prefetching, incorporating resources (retrieval time, viewing
time and cache) and access prediction (probabilities for next access).
A prefetching algorithm is developed to maximise access improve-
ment. The algorithm uses theoretically proven apparatus to reduce
its search space. We integrate the prefetching algorithm with cache
replacement using a two-stage arbitration. However, we assume uni-
form size for all items. We are currently addressing this limitation.

The SKP algorithm considers only one access ahead. Obviously,
looking ahead deeper will improve the performance. However, the
complexity of the problem can be daunting.

The SKP algorithm with arbitration maximises access improve-
ment without regard to the increase in network usage. Even if the
most probable items are already in the cache, it will prefetch the
lesser candidates if, by doing so, it can improve the expected access
time even by an insignificant amount. A policy is needed to weigh
the opposing goals of maximising access improvement and minimis-
ing network usage.

Our model presupposes some knowledge about future accesses.
Access modelling has received much attention (see Section 1.1 Re-
lated work). One of the models proposed in the literature (e.g.
[1, 16]) might serve the purpose of providing this knowledge. Our
model also presupposes some knowledge about available and re-
quired resources. There is much work to be done in this area.

References

[1] M. Banâtre, V. Issarny, F. Leleu, and B. Charpiot. Providing quality of
service over the web: A newspaper-based approach. In6th Int WWW
Conf, Apr. 1997.

[2] P. Cao. Application-Controlled File Caching and Prefetching. PhD
thesis, Department of Computer Science, Princeton University, Jan.
1996.

[3] G. B. Dantzig. Discrete variable extremum problems.Operations
Research, 5:266–277, 1957.

[4] E. Horowitz and S. Sahni. Computing partitions with applications to
the knapsack problem.Journal of ACM, 21:277–292, 1974.

[5] Z. Jiang and L. Kleinrock. An adaptive network prefetch scheme.
IEEE Journal on Selected Areas in Communications, 16(3):358–368,
Apr. 1998.

[6] H. Lei and D. Duchamp. An analytical approach to file prefetching. In
Proc USENIX Annual Technical Conf, Jan. 1997.

[7] S. Martello and P. Toth.Knapsack Problems: Algorithms and Com-
puter Implementation. Wiley, 1990.

[8] M. N. Nelson, B. B. Welch, and J. K. Ousterhout. Caching in the sprite
network file system.ACM Trans on Computer Systems, 6(1), 1988.

[9] V. N. Padmanabhan and J. C. Mogul. Using predictive prefetching to
improve world wide web latency.ACM SIGCOMM Computer Com-
munication Review, pages 22–36, July 1996.

[10] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky, and J. Ze-
lenka. Informed prefetching and caching. InProc 15th ACM Sympo-
sium on Operating System Principles, pages 79–95, Dec. 1995.

[11] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon. Design
and implementation of the sun network file system. InProc Summer
1985 USENIX Conf, pages 119–130, June 1985.

[12] P. Scheuermann, J. Shim, and R. Vingralek. WATCHMAN: A data
warehouse intelligent cache manager. In22nd VLDB Conf, 1996.

[13] P. Scheuermann, J. Shim, and R. Vingralek. A case for delay-conscious
caching of web documents. In6th Int WWW Conf, Apr. 1997.

[14] C. D. Tait.A File System for Mobile Computing. PhD thesis, Graduate
School of Arts and Sciences, Columbia University, 1993.

[15] N. J. Tuah, M. Kumar, and S. Venkatesh. Investigation of a prefetch
model for low bandwidth networks. In S. K. Das, editor,1st ACM Int
Workshop on Wireless Mobile Multimedia, pages 38–47, Oct. 1998.

[16] J. S. Vitter and P. Krishnan. Optimal prefetching via data compres-
sion. In IEEE 32nd Annual Symposiums on Foundation of Computer
Science, pages 121–130, 1991.

