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Abstract— This paper addresses the problem of performance
monitoring for Economic Model Predictive Control (EMPC) in
the presence of plant parameter changes. In order to cope with
plant-model mismatch, we adopt a recently developed offset-free
EMPC algorithm which requires the gradient of the plant input-
output steady-state map. A subspace identification method is
used in order to estimate this plant gradient from transient
measurements. However, when the plant parameters change,
this method may fail unless re-identification is performed.
Hence, to start a new data collection for the identification an
event-triggered mechanism is proposed, based on a suitable
performance monitoring strategy. In this case this mechanism
investigates a possible, more profitable, steady-state equilibrium
and, if convenient, it re-identifies the plant gradient. The
proposed monitoring technique is then successfully tested over
an illustrative example of a chemical reactor.

I. INTRODUCTION

Monitoring of model predictive control (MPC) perfor-

mance has been debated for the last two decades and

essentially can be summarized to two basic problems: eval-

uation of the MPC objective function and model quality

validation [1]. The usual logic steps for control performance

monitoring are evaluating potential performances and related

statistics, followed by designing diagnosis methodologies to

avoid performance degradation [2]. Statistical analysis has

been used to model validation and error estimation, via

implementation of quality indexes. [3]. The prediction error

has also been used as the primary variable for performance

monitoring of MPC systems [4]. Pannocchia et al. [5] pro-

posed a prediction error analysis exploiting the structure of a

model augmented by an integrating disturbance. A subspace

identification method is then used to discriminate between

plant-model mismatch or erroneous disturbance estimation.

On the other hand, performance monitoring for economic

MPC (EMPC) [6] it is still an open field. The EMPC

performance assessment has been deeply studied in the last

decade. It has been shown that, for certain combinations

of system and cost functions, steady-state solution may be

less economically profitable than oscillating ones [6], [7].

As for MPC, also EMPC performance can suffers from bad

model quality causing plant-model mismatch. EMPC can

reliably reach steady-state optimal performance exploiting a

combination of the traditional offset-free tracking methodol-

ogy [8] and modifier-adaptation (MA) ideas [9], as recently

shown in [10], [11]. A strong drawback of this technique is
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requiring knowledge of the plant gradient, hence, a system

identification method to estimate its approximation has been

recently proposed [11], [12]. Results have shown how the

identified gradient, used into the proposed technique, com-

pensates satisfactorily the plant-model mismatch.

The purpose of this work is to formulate a performance

monitoring strategy able to overcome changes in process or

cost functions parameters. To this aim, we recall the concept

of event-triggered identification. An identification or estima-

tion procedure is activated by a specific event happened, and

this finds many applications in various fields (see e.g. [13],

[14]). Specifically, we aim at applying an event-triggered

method to test the quality of the estimated plant gradient.

In particular, the data collection for the identification proce-

dure shown in [11], [12] is executed only once. This does

not guarantee a “good quality” plant gradient in case of

plant parameter changes. Hence, a specific event-triggering

mechanism promoting a new data collection for the gradient

identification procedure can be a good monitoring technique.

The rest of this paper is organized as follows. A review

of the problem definition is presented in Section II. The

proposed method, with a detailed analysis and description

of the event-triggered monitoring technique is presented in

Section III. The methodology is tested over a case study

in Section IV, where numerical results are reported and

discussed. Finally, Section V summarizes the paper and gives

possible future developments of this work.

II. PLANT, COST AND EMPC ALGORITHM

A. Plant and cost specification

The discrete-time dynamical system considered in this

work has the following form:

x+p = Fθ (xp,u)
y = Hθ (xp)

(1)

in which xp ∈R
n, u ∈R

m, y ∈R
p are the plant state, control

input and output at a given time, respectively, x+p is the

successor state, and the subscript θ denotes a vector an

unknown process parameters, which may change over time.

The plant output is measured at each time k ∈ Z and it is

denoted by yk. Functions Fθ : Rn ×R
m →R

n and Hθ : Rn →
R

p are supposed not precisely known but differentiable. The

economic optimal equilibrium of system (1) is defined by:

(x0
s ,u

0
s ,y

0
s ) = argmin

x,u,y
ℓe(y,u) s.t. (2a)

x = Fθ (x,u) (2b)

y = Hθ (x) (2c)



umin ≤ u ≤ umax, ymin ≤ y ≤ ymax (2d)

in which umin,umax ∈ R
m and ymin,ymax ∈ R

p are the bound

vectors. Since (1) is poorly represented, (x0
s ,u

0
s ,y

0
s ) is un-

known, albeit assumed unique and problem (2) feasible.

Assumption 1: The cost function ℓe(y,u) : Rp ×R
m → R

is assumed continuously differentiable.

B. Model and Offset-free augmented system

The process model used to design the EMPC algorithm is:

x+ = f (x,u)
y = h(x)

(3)

in which x, x+ ∈R
n denote the current and successor model

states. The (known) functions f :Rn×R
m →R

n and h :Rn →
R

p are assumed to be differentiable.

To cope with plant-model mismatch, an offset-free algo-

rithm is based on an augmented model [8]:

x+ = F(x,u,d)
d+ = d

y = H(x,d)
(4)

in which d ∈R
nd is the so-called disturbance. The functions

F :Rn×R
m×R

nd →R
n and H :Rn×R

nd →R
p are assumed

to be continuous and consistent with (3), i.e. F(x,u,0) =
f (x,u) and H(x,0) = h(x).

Assumption 2: The augmented system (4) is observable.

C. State and disturbance estimation

Given the system (4), an observer is defined to estimate

the augmented state ξ = [xT ,dT ]T . The selected estimator

is the Moving Horizon Estimator (MHE). At every sample

time k, an optimization problem based on NT past output

data {yk−NT+1, . . . ,yk} gives the new ξ estimate.

Let us define ξξξ = {ξ0, . . . ,ξNT
} as the augmented state

sequence and w = {w0, . . . ,wNT−1} , v = {v0, . . . ,vNT−1} for

the augmented process and measurement noise sequences

respectively, where w j = [wx T
j ,wd T

j ]T . The MHE problem

to solve, at the generic time k, is:

(ξξξ
∗
,w∗,v∗) = arg min

ξξξ ,w,v
Γk(γ)+

NT−1

∑
j=0

ℓMHE(w j,v j) (5a)

subject to:

γ = ξ0 − ξ̄k−NT+1 (5b)

x j+1 = F(x j,u j, d̂ j)+wx
j (5c)

d j+1 = d j +wd
j (5d)

y j+k−NT+1 = H(x j,d j)+ v j (5e)

ymin ≤ H(x j,d j)≤ ymax (5f)

in which ξ̄k−NT+1 represents the a priori estimate of ξ at

the beginning of the horizon and NT is the horizon length.

The filtered estimates of x(k) and d(k) in (4), x̂k and d̂k

are obtained from ξ ∗
NT−1. The term Γk(γ) approximates the

arrival cost of the full estimation problem before k−NT +1.

The cost function in (5a) is defined as follows:

ℓMHE(w j,v j) = ‖wx
j‖

2

Q−1
x

+‖wd
j‖

2

Q−1
d

+‖v j‖
2
R−1 (6)

in which Qx ∈ R
n×n, Qd ∈ R

nd×nd , R ∈ R
p×p represent the

process and measurement noise covariance matrices.

D. Target calculation with MA technique

The offset-free EMPC algorithm solves the target problem:

(x∗s,k,u
∗
s,k,y

∗
s,k) = argmin

x,u,y
ℓe(y,u) s.t. (7a)

x = F(x,u, d̂k) (7b)

y = H(x, d̂k)+(λ G
k−1)

T (u−u∗s,k−1) (7c)

umin ≤ u ≤ umax, ymin ≤ y ≤ ymax (7d)

in which u∗s,k−1 is the steady-state input target found at the

previous sampling time k−1, and λ G
k−1 is the modifier matrix

calculated at the previous iteration. We define G : Rm+nd →
R

p the model steady-state input-to-output map, i.e.:
{

xs = F(xs, d̂k,us)

ys = H(xs, d̂k)
⇒ ys = G(us, d̂k) (8)

A steady-state input-output map yp,s = Gp(us) can be simi-

larly defined for the actual plant (1). For the sake of clarity,

the dependance of Gp(·) to the time-varying parameter θ is

omitted albeit present. The filtering update for λ G
k−1 is:

λ G
k = (1−αs)λ

G
k−1 +αs

(

∇uGp(u
∗
s,k)−∇uG(u∗s,k, d̂k)

)

(9)

in which αs ∈ (0,1], the operator ∇u(·) is the gradient of the

considered function respect to the variable u and λ G
0 = 0.

E. Optimal control problem with MA technique

Let xxx = {x0,x1, . . . ,xN} and uuu = {u0,u1, . . . ,uN−1} be,

respectively, the state and the input sequences. The Finite

Horizon Optimal Control Problem (FHOCP) to solve is:

(xxx∗k ,uuu
∗
k) = argmin

xxx,,,uuu

N−1

∑
i=0

ℓe(yi,ui) s.t. (10a)

x0 = x̂k, (10b)

xi+1 = F(xi,ui, d̂k) (10c)

yi = H(xi, d̂k)+(λ G
k−1)

T (ui −u∗s,k) (10d)

umin ≤ ui ≤ umax, ymin ≤ yi ≤ ymax (10e)

xN = x∗s,k (10f)

Assuming problem (10) feasible, the associated receding

horizon implementation is given by:

uk = u∗0,k (11)

F. Plant gradient estimation

Since the steady-state plant-map gradient ∇uGp(·) used

in (9) is generally unknown, a gradient approximation

∇uG̃p(·) is calculated via identification of a linear system.

The identification algorithm needs a collection of sufficiently

informative Nid data points. In such case, for k ∈ [kid ,kid +
Nid ], (11) is replaced with:

uk = u∗0,k +σk (12)

in which σk ∈ R
m is a random vector. Feasibility problems

are avoided by checking the excited input uk and projecting



it, when necessary, to the nearest feasible point. During

this window, an input sequence named Uid ∈ R
m×Nid and

an output sequence Yid ∈R
p×Nid are collected and then used

in the identification algorithm at time k = kid +Nid . Given

A, B and C the locally linearized state-space matrices, the

identified system gain is ∇uG̃p(·)
T = C(I − A)−1B. Both

input and output sequences are centered with respect to the

model steady-state triple evaluated with (7) corresponding to

the first data in the sequences. For k > kid +Nid the original

receding horizon law (11) is restored, Uid and Yid slide over,

and the identification is repeated every time that ‖Uid‖ ≥
τid where τid is a threshold value. This helps preventing

numerical instability for non-informative input sequences.

III. PROPOSED TECHNIQUE

Since the plant gradient approximation ∇uG̃p(·)
T may

differ from the true plant gradient, once an equilibrium value

is reached, we cannot know if this value is the process

optimum or not. In particular, we cannot evaluate how much

the reached equilibrium is far from the actual optimal triple

defined in (2). It is also desirable to understand if a new data

collection for the system identification algorithm is required,

because ∇uG̃p(·) is outdated. Therefore, a methodology able

to evaluate a neighborhood of the reached optimum and

establish a direction in which the cost function can possibly

be lower, is needed. In such case, the identification procedure

has to be repeated to obtain a new gradient approximation.

A. KKT analysis with plant gradient error

Let us first rewrite the plant stationary problem (2) as:

min
u

ℓe(Gp(u),u) s.t. (13a)

umin ≤ u ≤ umax (13b)

ymin ≤ Gp(u)≤ ymax (13c)

If u∗ is a (local) solution to (13), there exist vectors

π∗
1 ,π

∗
2 ,π

∗
3 ,π

∗
4 satisfying the following first-order necessary

optimality KKT conditions:

Γp(u
∗,π∗

1 ,π
∗
2 ,π

∗
3 ,π

∗
4 ) = 0 (14a)

u∗−umax ≤ 0 (14b)

umin −u∗ ≤ 0 (14c)

Gp(u
∗)− ymax ≤ 0 (14d)

ymin −Gp(u
∗)≤ 0 (14e)

π∗
1 ,π

∗
2 ,π

∗
3 ,π

∗
4 ≥ 0 (14f)

(u∗−umax) jπ
∗
1, j = 0 j = 1, . . . ,m (14g)

(umin −u∗) jπ
∗
2, j = 0 j = 1, . . . ,m (14h)

(Gp(u
∗)− ymax) jπ

∗
3, j = 0 j = 1, . . . , p (14i)

(ymin −Gp(u
∗)) jπ

∗
4, j = 0 j = 1, . . . , p. (14j)

in which

Γp(u
∗,π∗

1 ,π
∗
2 ,π

∗
3 ,π

∗
4 ) = ∇uℓe(u

∗,Gp(u
∗))+π∗

1 −π∗
2

+∇uGp(u
∗)π∗

3 −∇uGp(u
∗)π∗

4

and π1,π2 ∈ R
m and π3,π4 ∈ R

p are the multiplier vectors

for the input bound (13b), output bound (13c) constraints.

As a KKT matching consequence, at the optimum u∗ the

active constraints, and the corresponding Lagrange multi-

plier, are the same for plant and model [9]. When there

are m active constraints, then the first-order MA technique

described in Section II-D becomes unnecessary since there

are no degrees of freedom. On the other hand, when the

number of active constraints is less than m, the MA formu-

lation is still needed to attain the plant optimum value for

the “unconstrained variables”. For this reason, let us consider

the vector of all the inequality constraints stacked vertically:

c(u) =









u−umax

umin −u

Gp(u)− ymax

ymin −Gp(u)









(15)

Then, the set of active inequality constraints is defined as:

A (u) = { j ∈ Nin such that: c j(u) = 0
}

, (16)

in which Nin = {1, . . . ,2m+2p} and c j is the j-th inequality

constraint. It has to be noted that A (u) contains the com-

ponents of c representing the active inequality constraints.

For the sake of simplicity, let us consider the case where

A (u∗) ≡ /0, that is the KKT problem (14) can be reduced

only to the condition (14a) as follows:

Γp(u
∗,π∗

1 ,π
∗
2 ,π

∗
3 ,π

∗
4 ) = ∇uℓe(Gp(u),u) |u∗ = 0 (17)

that can be expanded into:

[

Duℓe(·,u)|u∗ +DGpℓe(Gp(·), ·) DuGp(u)
∣

∣

u∗

]T
= 0 (18)

where the symbol Dxz(y,x) denotes the derivative (i.e. trans-

pose of the gradient) of z(·) with respect to x. It has to be

noted that the term DuGp(u)
∣

∣

u∗
is supposed to be unknown,

but with the procedure described in Section II-F, an approx-

imated calculation of this derivative, is available. Let us, for

notation simplicity, define Kid
p = ∇uG̃p(·)

T . Hence, the true

plant derivate at a generic point, can be rewritten as follows:

DuGp(u) = Kid
p +δid (19)

in which δid ∈R
p×m is the error associated with the identified

gain matrix Kid
p . As detailed in Section II-F, the current

Kid
p,k value, is the last one calculated by the identification

algorithm the last time it run. Hence, Kid
p,k is for sure the

plant gradient approximation used by the model to calculate

(λ G
k−1)

T into (9) and, consequently, u∗s,k. Given that, we

can now inspect the neighborhood of the current steady-

state solution u∗s,k to find a possible lower value of the cost

function ℓe(·). That is, we look for a ∆u such that:

ℓ∗e = ℓe(Gp(u
∗
s,k +∆u),u∗s,k +∆u∗)< ℓe(Gp(u

∗
s,k),u

∗
s,k) (20)

∆u is correlated to the error δid through a relation ∆u =
ψ(δid). In order to establish this relation we define

Γ̄p(ū,δid) =
[

Duℓe(·,u)|ū +DGpℓe(Gp(·), ·)
(

Kid
p +δid

)]T

(21)



where ū = u∗s,k +∆u, and we note that Γ̄p(ū,δid) = 0 must

be fulfilled. To this aim, a first order Taylor expansion of

Γ̄p(ū,δid) is performed, leading to:

Γ̄p(u
∗
s,k,0)+ DuΓ̄p(·)

∣

∣

(u∗
s,k
,0)

∆u+ Dδ Γ̄p(·)
∣

∣

(u∗
s,k
,0)

δid = 0

From the KKT matching described in [10], the KKT prob-

lem (17) can be rewritten as:

Γ̄p(u
∗
s,k,0) =

[

Duℓe(·,u)|u∗
s,k
+DGpℓe(Gp(·), ·)K

id
p,k

]T

= 0

(22)

Hence, the relation ψ(δid) is calculated as follows:

DuΓ̄p(·)
∣

∣

(u∗
s,k
,0)

∆u =− Dδ Γ̄p(·)
∣

∣

(u∗
s,k
,0)

δid (23)

which defines ∆u=ψ(δid). A proper value for δid , and hence

a suitable value for ∆u∗, has to be calculated so that the active

constraints do not change, i.e. A (u∗s,k +∆u∗)≡ A (u∗s,k).
Remark 1: Testing the neighborhood of the current

steady-state equilibrium, identified by ℓe(Gp(u
∗
s,k),u

∗
s,k), to

find a better steady-state equilibrium, identified by ℓ∗e , any

generic point in this search ū must satisfy (14), i.e. the

relation ψ(δid) is defined only for steady-state solutions.

Remark 2: The restriction of inactive constraints,

A (u∗s,k)≡ /0, can be overcome with a more general analysis

of the KKT problem (14) when dim(A (u∗s,k)) ≤ m, where

dim is the dimension of active set, by restricting that the

active set does not change, i.e. A (u∗s,k +∆u∗)≡ A (u∗s,k).

B. Evaluating the sub-optimality of the current equilibrium

Recalling the convergence results obtained with the EMPC

algorithm from [12] and the offset-free technique results, the

steady-state values Gp(u
∗
s,k) are known since they correspond

to the augmented model ones. On the opposite hand, Gp(u)
cannot be evaluated in any generic point. For this reason

another first order Taylor expansion has to be defined:

Ḡp(u
∗
s,k,∆u) = Gp(u

∗
s,k)+Kid

p,k∆u (24)

To assess the sub-optimality of the current equilibrium, u∗s,k,

the minimum cost ℓ∗ is evaluated as a function of the plant

gradient error δid , via the following optimization problem:

ℓ∗e = min
δid ,∆u

ℓe(Ḡp(u
∗
s,k,∆u),u∗s,k +∆u) s.t. (25a)

∆u = ψ(δid) (25b)

umin + εu ≤ u∗s,k +∆u ≤ umax − εu (25c)

ymin + εy ≤ Ḡp(u
∗
s,k,∆u)≤ ymax − εy (25d)

−δmax ≤ δid ≤ δmax (25e)

in which εu and εy are threshold fixed values assuring that

bounds constraints are conservatively satisfied.

The bound δmax represents the maximum error done

evaluating Kid
p,k with the identification. For instance, δmax can

be calculated with the asymptotic method described by [15].

This method gives an upper bound on the difference between

true transfer function and the identified one. For the sake

of simplicity, instead, we can suppose that: δmax = a

∣

∣

∣
Kid

p,k

∣

∣

∣

where the symbol

∣

∣

∣
Kid

p,k

∣

∣

∣
stands for the element-wise absolute

uk at steady

state

Flag = TRUE

kid ≤ k ≤ kid +Nid

YES

EMPC

algorithm

Run (25) and obtain ℓ∗e
ρ = ℓe(Gp(u

∗
s,k),u

∗
s,k)− ℓ∗e

Flag = FALSE

YES

ρ > τmon

kid

=

k

YES

Gradient

Identification

Flag = TRUE

‖Uid‖ ≥ τid

Closed-loop

data collection

YES

NO

YES

NO

NO

NO

NO

Fig. 1. Scheme of the event-triggering mechanism (inside the red areas)
inserted into the offset-free EMPC algorithm.

value of Kid
p,k, that is each component of matrix δmax repre-

sents a relative error a on the corresponding Kid
p,k component

taken in its absolute value. Clearly, ℓ∗e ≤ ℓe(Gp(u
∗
s,k),u

∗
s,k),

since (δid ,∆u) = (0,0) is feasible. When calculated, the

expected value of the cost function, ℓ∗e , is compared with the

actual one. Defining the sub-optimality performance index

ρ ≥ 0 in the following way:

ρ = ℓ∗e − ℓe(Gp(u
∗
s,k),u

∗
s,k) (26)

two cases are distinguished: if ρ ≥ τmon, where τmon is

a threshold value, the data collection is repeated and the

closed-loop control law (12) is enabled, otherwise the current

steady-state value is near enough to the real optimum one.

C. Summary: the event-triggering mechanism

Figure 1 depicts the event-triggering mechanism inside the

offset-free EMPC algorithm as defined in Section II.

Some notes have to be added to this figure. First of all,

there are conditions for the event-triggering mechanism to

be tested. The first one, represented by the boolean variable

Flag, is that a plant gradient has been identified and it has to

be tested (Flag =TRUE), that is the system identification has

to be run at least once before testing the gradient quality, i.e.

the first data collection and identification are imposed (see

Section II-F). When Flag = FALSE no gradient has to be

tested since no estimation is present or it has already been

tested. Its initial value is Flag = FALSE. Then, the system

has to be at steady-state, and, in order to avoid unnecessary

computational costs, this steady-state has to be different from

the one previously tested. When both conditions apply, the

optimization problem (25) is run and quantity ρ calculated.

In addition, the boolean variable Flag is set to its new values.

Finally, the black dashed line represents the data collection

window, hence, during this time period, neither the gradient

identification nor the monitoring test can be applied. If the

monitoring technique is not switched on, this path is followed

only once, i.e. variable Flag is never updated to “TRUE”.



TABLE I

DIFFERENT ACTUAL KINETIC CONSTANTS AND CORRESPONDING

CALCULATED ECONOMIC OPTIMUM.

Case Kinetic constants min−1 Economic optimum triple

k1 k2 u0
s x0

1,s x0
2,s

1 1 0.05 1.043 0.511 0.467
2 0.7 0.035 0.831 0.509 0.471
3 1.25 0.071 1.179 0.512 0.463

IV. CASE STUDY

A. Process and optimal economic performance

The application chosen is a Continuous Stirred Tank

Reactor (CSTR), where two consecutive reactions take place:

A
k1−→ B

k2−→C. The reactor is described by:

ẋ1 = u
V
(cA0 − x1)− k1x1

ẋ2 = u
V
(cB0 − x2)+ k1x1 − k2x2

(27)

in which x1 and x2 are the molar concentrations of A and B in

the reactor, cA0 and cB0 are the corresponding concentrations

in the feed, u is the feed flow rate regulated through a valve,

V is the constant reactor volume, k1 and k2 are the kinetic

constants. The reactor is assumed to be isothermal and the

state measurables. The parameters of the actual system are

taken from [12] and the process economics is expressed by:

ℓ̃(u,x2) = βAucA0 −βBux2. (28)

with βA,βB prices for the species A and B, respectively. A

variation of the reactor temperature is supposed to occur and

consequently the true actual kinetic constants are supposed

to vary along with the economic optimum computed. The

different values for kinetic constants and economic optimum

are reported in Table I. Obviously, every optimum point in

each case is supposed to be unknown since the controller is

designed with wrong parameters as explained below.

B. Model and controllers

The designed controllers are affected by the same plant-

model mismatch, that is k̄1 = 1.2 min−1 and k̄2 = 0 min−1,

meaning that side reaction is always not modeled. The same

nominal model cost function and sampling time of Ts =
1 min are used to compare the EMPC algorithms designed

according to Section II.

Remark 3: As described in [10] and shown in [11], [12],

the economic cost function (28) must be integrated to be

used in (10), since its point-wise evaluation would not

lead to a dissipative system [7], i.e. the closed-loop system

equilibrium would not be stable.

Hence, the dynamics (27) is discretized using an implicit

Euler method and the state disturbance model is used, i.e.

the considered augmented system (4) is F(x,u) = f (x,u)+d

and H(x) = x, while the integrated cost function is:

ℓ(u,x2) = (βAucA0 −βBux+2 )Ts. (29)

The estimator type distinguishes two formulations [16]:

EMPC1 adopts the filtering updating for the arrival cost,

whereas EMPC2 uses the smoothing arrival cost updating

The estimator tuning for both the EMPC configurations is
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Fig. 2. Closed-loop results for the two selected controllers: input (top) and
states (middle and bottom).

the following: Qx = 10−4I, Qd = I, R = 10−4I, P0 = I.

The identification algorithm adopted is the N4SID method

using an open-source package1. The identification parameters

are: Nid = 80, model order n = 2, future and past horizons

SS f = SSp = 10 and the threshold is τid = 0.1.

C. Monitoring parameters

As described in Section III, the relation ∆u = ψ(δid) is

needed to solve the optimization problem (25). Considering

the cost function (29) the various terms in (22) are:

• Duℓe(·,u) = (βAcA0 −βBx2)Ts

• DGpℓe(Gp(·), ·) =
[

0 −βBuTs

]

From (23) we obtain: ∆u = ψ(δid) = −
u∗s,k

[

0 1
]

δid

2
[

0 1
]

Kid
p,k

. The

parameters εu and εy are set to be equal to 5% of umax and

ymax respectively, whereas the uncertainty on plant gradient

is a = 1%. Finally, the threshold value for deciding if the

expected cost (ℓ∗e) is sufficiently lower than the actual one

(ℓe(Gp(u
∗
s,k),u

∗
s,k)) is: τmon = 0.02|ℓe(Gp(u

∗
s,k),u

∗
s,k)|.

D. Results

The closed-loop behavior obtained with the above de-

scribed controllers is depicted in Figure 2. It can be no-

ticed how both algorithms accomplish the goal to reach the

economic optimum even under plant-model mismatch and

under process parameter changes. The monitoring techniques

can be clearly seen in action two times for EMPC2 and

one for EMPC1. Controller EMPC2 seems to give the

best performance in terms of oscillations and being the

one nearest to the economic optimum values. The second

1SIPPY (Systems Identification Package for PYthon) is available at
GITHUB https://github.com/CPCLAB-UNIPI/SIPPY
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Fig. 3. Closed-loop results for the EMPC2 with and without monitoring
techniques: input (top) and states (middle and bottom).

monitoring action is applied for EMPC1 at k = 1210 while

the first one is at k = 429 for EMPC2, but only at k = 487 for

EMPC1. This is because of the filtering nature of EMPC1,

that makes the controller more prone to oscillate rather than

EMPC2. Anyway, Figure 2 allows us to understand how the

monitoring methodology works. When the system goes into

oscillation due to the process parameter change, as soon as

two consecutive input values are equals and the correspond-

ing steady-state triple is into the feasible region, the data

collection starts again. That is because ρ ≥ τmon holds true,

i.e. ℓ∗e − ℓe(Gp(u
∗
s,k),u

∗
s,k)≥ 0.02|ℓe(Gp(u

∗
s,k),u

∗
s,k)|.

Let us now define EMPC2w/oMon as the controller

EMPC2 without the monitoring technique, i.e. the plant

gradient identification will be updated only if the data

window is sufficiently unsteady. The closed-loop behaviors

for EMPC2w/oMon are reported in Figure 3. After the fist

data collection and identification, as how it should be, both

cases have a comparable behavior. Once the first parameter

change occurs (Case 2 of Table I), both of them begin to

oscillate between the input bounds, but only EMPC2 has

been able to recover thanks to the monitoring technique. The

oscillation is due to an outdated plant gradient not able to

approximate the real one with sufficient accuracy anymore.

The monitoring technique is able to diagnose the problem

and, hence, to start a new data collection to re-identify

the gradient. The EMPC2w/oMon, instead, when entering

Case 2, continues using the gradient calculated at Case 1

with some updates generated by identification with weakly

informative data, oscillating between two bounds.

V. CONCLUSIONS

In this work a performance monitoring technique for an

economic model predictive control (EMPC) algorithm has

been proposed. This technique relies upon a previously

defined EMPC implementation, that in presence of plant-

model mismatch is able to asymptotically achieve the opti-

mal performance [12]. When deemed appropriate, an event-

triggered data collection followed by an identification is

induced by the proposed monitoring algorithm to update

the plant gradient approximation. This approximation is then

applied to offset-free EMPC algorithm detailed in [12]. The

monitoring technique has been described, detailing the event-

triggering mechanism based on a KKT alteration analysis.

We applied the monitoring methodology to a CSTR example,

testing various state and disturbance estimation methods.

Results show how the proposed methodology can overcome

plant-model mismatch and plant parameter changes, converg-

ing to the best economic equilibrium. Results also show

that the Moving Horizon Estimation (MHE) method with

smoothing update is particularly efficient versus the filtering

update MHE counterpart.

REFERENCES

[1] B. Huang and R. Kadali, Dynamic modeling, predictive control and

performance monitoring: a data-driven subspace approach. Springer,
2008.

[2] T. J. Harris, C. Seppala, and L. Desborough, “A review of performance
monitoring and assessment techniques for univariate and multivariate
control systems,” Journal of Process Control, vol. 9, no. 1, pp. 1–17,
1999.

[3] Z. Sun, S. J. Qin, A. Singhal, and L. Megan, “Performance moni-
toring of model-predictive controllers via model residual assessment,”
Journal of Process Control, vol. 23, no. 4, pp. 473–482, 2013.

[4] C. A. Harrison and S. J. Qin, “Discriminating between disturbance
and process model mismatch in model predictive control,” Journal of

Process Control, vol. 19, no. 10, pp. 1610–1616, 2009.
[5] G. Pannocchia, A. De Luca, and M. Bottai, “Prediction error based

performance monitoring, degradation diagnosis and remedies in offset-
free MPC: Theory and applications,” Asian Journal of Control, vol. 16,
no. 4, pp. 995–1005, 2014.

[6] J. B. Rawlings, D. Angeli, and C. N. Bates, “Fundamentals of
economic model predictive control,” in 51st IEEE Conference on

Decision and Control (CDC), 2012, pp. 3851–3861.
[7] D. Angeli, R. Amrit, and J. B. Rawlings, “On average performance and

stability of economic model predictive control,” IEEE Transactions on

Automatic Control, vol. 57, no. 7, pp. 1615–1626, 2012.
[8] G. Pannocchia and J. B. Rawlings, “Disturbance models for offset-free

model-predictive control,” AIChE Journal, vol. 49, no. 2, pp. 426–437,
2003.

[9] A. G. Marchetti, B. Chachuat, and D. Bonvin, “Modifier-adaptation
methodology for real-time optimization,” Industrial & Engineering

Chemistry Research, vol. 48, no. 13, pp. 6022–6033, 2009.
[10] M. Vaccari and G. Pannocchia, “A modifier-adaptation strategy to-

wards offset-free economic MPC,” Processes, vol. 5, no. 1, p. 2, 2016.
[11] G. Pannocchia, “An economic MPC formulation with offset-free

asymptotic performance,” in 10th IFAC Symposium on Advanced

Control of Chemical Processes (ADCHEM), 2018, pp. 387–392.
[12] M. Vaccari and G. Pannocchia, “Implementation of an economic MPC

with robustly optimal steady-state behavior,” in 6th IFAC Conference

on Nonlinear Model Predictive Control (NMPC), 2018, pp. 94–99.
[13] A. J. Isaksson, A. Horch, and G. Dumont, “Event-triggered deadtime

estimation from closed-loop data,” in American Control Conference,

2001. Proceedings of the 2001, vol. 4. IEEE, 2001, pp. 3280–3285.
[14] S. Carter, M. Moeglein, J. D. DeLoach Jr, W. T. Riley, D. H. Agre,

and L. Sheynblat, “Event-triggered data collection,” June 20 2006, uS
Patent 7,065,351.

[15] Y. Zhu, Multivariable system identification for process control. El-
sevier, 2001.

[16] C. V. Rao, J. B. Rawlings, and J. H. Lee, “Constrained linear state
estimation– a moving horizon approach,” Automatica, vol. 37, no. 10,
pp. 1619–1628, 2001.


