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Abstract

With the emergence of big data era, most of the current performance optimization strategies are mainly used in a

distributed computing framework with disks as the underlying storage. They may solve the problems in traditional

disk-based distribution, but they are hard to transplant and are not well suitable for performance optimization especially

for an in-memory computing framework on account of different underlying storage and computation architecture. In this

paper, we first give the definition of the resource allocation model, parallelism degree model, and allocation fitness model

on the basis of the theoretical analysis of Spark architecture. Second, based on the model presented, we propose

a strategy embedded in the evaluation model which is easy to perform. The optimization strategy selects the worker

with a lower load that satisfies requirements to assign the latter tasks, and the worker with a higher load may not be

assigned tasks. The experiments consisting of four variance jobs are conducted to verify the effectiveness of the

presented strategy.
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1 Introduction
In recent years, big data processing framework [1, 2],

especially for in-memory computing framework, en-

riches and develops constantly [3, 4]. The in-memory

computing has appeared in our view and attracted

wide attention in the industry after the SAP TechEd

global conference in 2010.

With the development of the in-memory computing

framework, some research results are committed to

the expansion and improvement of the system. A sim-

ple and efficient parallel pipelined programming model

based on BitTorrent was proposed by Napoli et al. [5].

Chowdhury et al. implemented the broadcast commu-

nication technology for the in-memory computing

framework. Lamari et al. [6] put forward the standard

architecture of relational analysis for big data. A study

by Cho et al. [7] proposed a parallel design scheme. An

algorithm using programs to analyze and locate com-

mon subexpressions was designed in a study by Kim et

al. [8]. A study by Seol et al. [9] proposed a fine granu-

larity retention management for deep submicron

DRAMs. et al. designed a unified memory manager

separating the memory storage function from comput-

ing framework. In a study by Tang et al. [10], a stand-

ard engine for distributed data stream computing was

designed. A high-performance SQL query system was

implemented in a study by Jo et al. [11]. A parallel

computing method for the applications with the differ-

ential data stream and prompt response was proposed

in a study by McSherry et al. [12]. Zeng et al. designed

a general model for interactive analysis. A study by

Corrigan-Gibbs et al. realized the privacy information

communication system of in-memory computing. A

study by Sengupta et al. [13] used SIMD-based data

parallelism to speed up sieving in integer-factoring

algorithms. Ifeanyi et al. [14] presented a compre-

hensive survey fault tolerance mechanisms for the

high-performance framework.

Some research results focus on the performance

optimization for distributed computing framework,

which may not suitable for the in-memory framework.

Ananthanarayanan et al. proposed the algorithm,
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making full use of the data access time and data local-

ity. By analyzing the impact of task parallelism on the

cache effectiveness, Ananthanarayanan et al. designed a

coordinated caching algorithm that adapted to

in-memory computing. By monitoring computation

overhead, Babu et al. found that the parallelism of the

reduce task has a great influence on the performance

of MapReduce system, and the task scheduling

algorithm is designed to adapt to resource status. In

order to predict the response time of worker node,

Zou et al. divided a task into different blocks, which

can improve the efficiency of tight synchronization ap-

plication. In a study by Sarma et al., the communica-

tion cost frontier model of worker node was proposed,

and the tradeoff between the task parallelism and

communication cost were achieved by adjusting the

boundary threshold. A study by Pu et al. presented

FairRide, a near-optimal, fair cache sharing to improve

the performance. Chowdhury et al. proposed an algo-

rithm to balance multi-resource fairness for correlated

and elastic demands.

However, most of the current performance

optimization strategies are mainly used in distributed

computing framework with disks as the underlying

storage, in which we pay the most attention to two

aspects: task scheduling and resource allocation.

Therefore, it is of practical significance to study the

optimization mechanism of IMC framework from the

perspective of underlying memory-based storage and

computation architecture.

Therefore, we consider the degree of parallelism and

allocation fitness which differs from the existing strat-

egy. First, taking the task scheduling into consideration,

the rationality of the parallelism degree of the shuffle

process for the in-memory framework is easier to ig-

nore that may directly affect the efficiency of job execu-

tion and the utilization rate of cluster resources. But

the degree of parallelism is usually determined based

on user experience, and it is hard to adapt to the exist-

ing state of the in-memory framework. Second, achiev-

ing the rationality of the hardware allocation, especially

memory allocation, as well as the acceleration of job

execution, is concerned by modifying the fitness of re-

source allocation.

2 Modeling and analysis
2.1 Resource allocation model

Definition 1 Resource allocation type. Denotes

Worker = {w1, w2,…,wm} as the set of workers, Resource= {

r1,r2,…,rn} as a collection of resource types including CPU,

memory, disk, and rw = (rw1,rw2,…,rwl) represents l avail-

able resource vector of worker wm, where rwi is the ith

available resource in the worker w, and the ith resource in

all workers could be normalized as:

Normalizeðrwi
→ð0; 1ÞÞ

� rtypeðcpu;memory; diskÞ ð1Þ

j = {j1,j2,…,jn} denotes as the set of running jobs at the

same time, Vrj = (vrj1,vrj2,…,vrjk) represents the resource

requirement vector of job j, since the resource require-

ment of each job is different, and the resource require-

ments of all jobs are represented as:

RV ¼ ðV r1 ;V r2 ; :::;V r jÞ

¼ ððvr11 ; vr12 ; :::; vr1k Þ; ðvr21 ; vr22 ; :::; vr2k Þ; :::;

ðvr j1 ; vr j2 ; :::; vr jk ÞÞÞ; vr jk ≥0

ð2Þ

Then, the resource requirements type for all jobs are

expressed as:

TypeRV ¼ ðtypeRV 1; typeRV 2; :::typeRV kÞ
¼ ðrtypeðmaxðvr11 ; vr12 ; :::; vr1k Þ;

rtypeðmaxðvr21 ; vr22 ; :::; vr2k Þ; :::;

rtypeðmaxðvr j1 ; vr j2 ; :::; vr jk ÞÞ

ð3Þ

The resource requirements are submitted to the sys-

tem before the execution of the job, and the jobs will be

assigned to workers with idle resources that can feed

their requirements. Assume workers = {w1,w2,…,wm} as

workers dealing with task j, vaj = (vaj1,vaj2iw2,…,vajk) as

the resource allocation vector of task i in worker w1. In

principle, workers should strictly allocate resources in

accordance with the resource requirements table, which

is represented as:

va jk
¼

vr jk

workerNum
; j∈ jobs ð4Þ

2.2 Parallelism degree model

In Spark, task parallelism degree is used to measure the

number of concurrent tasks, which can be specified by

the user, and it could not exceed the whole instance

number that equals to the product of the number of

worker and the number of CPU cores in each worker.

Definition 2 Parallelism degree. Denotes the number

of workers as workerNum, the number of CPU cores in

each worker node as coreNum; therefore, the tasks exe-

cuting concurrently is workerNum×coreNum supported

by the hardware environment. If the parallelism param-

eter specified by the user is puser, then parallelism de-

gree parallelismDegree is the minimum value of

workerNum × coreNumand puser:
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parallelismDegree ¼ minðpuser ;workerNum� coreNumÞ

ð5Þ

Definition 3 Idle time. It is defined to indicate idle

time due to uneven task allocation. According to Defin-

ition 5, when user parallelism is greater than the hard-

ware parallelism, that is puser= (workerNum × coreNum),

the number of pipelines within the stage is greater than

task parallelism. Then, the worker needs to allocate task

in multiple turns, and the number of turns can be

expressed as:

turnNum ¼ ceilingð
puser

workerNum� coreNum
Þ ð6Þ

where the result of ceiling function is the smallest inte-

ger that is greater than or equal to the value of the par-

ameter. By formula 6, we can obtain that when l is an

integral multiple of (workerNum × coreNum), all workers

should execute the task in each round of distribution. If

the remainder when puser divides (workerNum × core-

Num) is not 0, there is at least one idle node in the final

round, and the number of idle workers can be expressed

as:

idleNum ¼ ðworkerNum

� coreNumÞmodðpuser; ðworkerNum

� coerNumÞÞ

ð7Þ

where mod(puser, (workerNum × coreNum)) represents

reminder. Due to random allocation of tasks, the

probability that puser is the integer times of (worker-

Num × coreNum)is very small, then the allocation load

of tasks in the final round is likely to be uneven. As-

sume the set of h pipeline tasks in the final round as

Taskpipeslast ¼ fTaskpipei1 ;Taskpipei2 ;…;Taskpipeihg , where

h < ( workerNum× coreNum). Then, the idle time of

the bye node is:

T idlew ¼ maxðTpipei1 ;Tpipei2 ;…;TpipeihÞ ð8Þ

2.3 Allocation fitness model

Definition 4 Resource occupancy rate. Assume Tfixed as

a measurement interval, T jobi
as the actual execution

time of the job i. The occupancy rate of rth resources

OCir is defined as the proportion of the resources used

by the workers, which is expressed as:

OC jr ¼ ðvr j �
T job j

T fixed
Þ; r � R ð9Þ

Definition 5 Allocation fitness degree. Assume

workLoad as the total workload, CAs = {ca1,cpa2,…,-

can} represents the set of computing ability of each

worker in the workers= {w1,w2,…wn}. Thus, the mean

value of the task execution time in all workers can be

defined as:

meanValue ¼
workLoadX

w∈workers

cawi

ð10Þ

Without considering the waiting time, the execution

time of tasks in worker wi with the task allocation

amount allocationLoadwi can be expressed as:

T taskwi
¼

allocationLoadwi

cawi

;wi∈workers ð11Þ

Therefore, the variance of task execution time is repre-

sented as:

variancewi
¼ ðT finishwi

−meanValueÞ2 ð12Þ

The allocation fitness degree of worker wi can be for-

mulated as:

allocationFitnesswi
¼

1

variancewi

¼
1

ðvariancewi
−meanValueÞ2

ð13Þ

Lemma 1 For all workers involved in the calculation,

the greater the allocation fitness, the shorter the execution

time of the job and the higher the computational efficiency.

Proof From the point of view of task allocation, the

execution time of the job can be expressed as:

T job ¼ max T finish1 ;T finish2 ;…;T finishnð Þ ð14Þ

According to formula, the allocation fitness is inversely

proportional to the variance. If the fitness value is greater,

the variance is smaller, which means the completion time

of tasks in the work is closer to the mean. So, when recov-

ery entropy takes a maximum value, job execution time is

shortest and execution efficiency is the highest. Therefore,

we select the worker with the higher load to immigrate

the latter task to the worker with the lower load to reach a

higher degree of parallelism and allocation fitness.

3 The performance optimization strategy
3.1 Construct basic data

The improved architecture of Spark with optimization

strategy is shown in Fig. 1.
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To deploy the performance optimization strategy in

Spark, it is necessary to implement the scheduling method

in the spark.scheduler.TaskSchedulerImpl interface. The

DAG scheduler contains all the topology information of

current cluster operation, including all kinds of parameter

configuration information and mapping between thread

and the component ID; cluster object contains all status in-

formation of the current cluster, including the mapping in-

formation between each thread, node and executor of

topology, the use and information of idle workers, and slots.

The above information can be obtained through the API

object. The CPU occupancy information of each thread in

the topology can be obtained through the getThreadCpu-

Time (long id) method in ThreadMXBean class of Java

API, where id is the thread ID; network bandwidth occu-

pancy information of each thread can be obtained by meas-

uring each RDD size in the experiment as well as

monitoring the data transmitting rate of each thread in

Spark UI, then estimating by simple accumulation. Due to

the threads existing shared memory, the memory occu-

pancy of each thread can only be roughly estimated by the

-Xss parameter in the configuration file; in addition, the

hardware parameters and load information in operating

system could through the /proc. directory to access relevant

documents. When the code is written, it will package jar to

the Spark_HOME/lib directory and run after configuring

spark.scheduler in spark.yaml of the master node.

3.2 Performance optimization strategy

The key problem of the optimization strategy is the selec-

tion of the destination node. However, in order to meet

the requirements of the worker, it is necessary to exclude

the nodes that do not meet the resource constraint model.

Denote ms and md as the total amount of memory

resource in the source node and the alternative destination

node respectively. In the process of decision-making to as-

sign the latter task, it is necessary to continue to move out

of other tasks, until the source node resources occupied are

less than the threshold. Finally, select the optimal destin-

ation node to ensure the allocation fitness reaching the lar-

ger value. It should be noted that, when the memory, disk,

or network bandwidth resources overflow, the optimization

strategy is the same as this section, only to calculate the

corresponding type of resource.

Then, the detail steps for the process of optimization

strategy are shown in algorithm 1.

Step 1. Initialize the read data path and the number of

data partitions. Spark uses RDD’s text file operator to read

the data from HDFS to the memory of the Spark cluster.

Step 2. Obtain the default parallelism degree and

collect statistical information to calculate data resource

occupancy degree in the system.

Step 3. The degree of parallelism and allocation fitness

are updated based on the former function shown in

sections 2.2 and 2.3 in combination with the data

information acquired in step 2, and then, select the id

of workers with the higher load.

Step 4. Save the corresponding parameters to the

database and update the information when the status of

the resource changes. After selecting the source node

and destination node, exchange their tasks and refresh

the remaining CPU, memory, and network bandwidth

resource of the source node and the destination node.

Step 5. The TaskScheduler then selects the set of

workers with the lower load to assign a task to get

a larger degree of parallelism and the allocation fitness.
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Fig. 1 The improved architecture of Spark
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4 Result and discussion
4.1 Experimental platform

We established a computing cluster by using 1 server

and 8 work nodes; the server is set as Master Hadoop

and NameNode Spark, and the others are set as

Hadoop Slavers and Spark DataNodes. The details of

the configuration are shown in Table 1. The task

execution time is acquired from the Spark console, and

nomon monitors the memory usage.

4.2 Execution time evaluation

In order to verify the algorithm in several different types

of operations under the concurrent environment perform-

ance, we use the Spark official work examples to form a

working set, including the type of four algorithms; dataset

type 1, 2, 3, 4 denotes WordCount, TeraSort, K-Means,

and PageRank as jobs. Figure 2 is a comparison of the exe-

cution time for different strategies.

Figure 2 shows that in the case of performance

optimization, the recovery acceleration of the K-Means

and PageRank of the proposed strategy is better than that

of without the optimization strategy, which is a compari-

son of the operations of wide dependency in K-Means and

PageRank, WordCount and TeraSort. The corresponding

acceleration rate are 17.9%, 17.6%, 15.1%, and 30%

Table 1 Configuration parameters

Parameters Values

CPU Intel CORE i7/2.2GHZ

RAM 4GB

NIC 1000Mbit/s

Hard Disk 200GB/SATA3.0(6Gbps)

OS ubuntu 12.04

Spark Apache Spark 2.1.0

Hadoop Apache Hadoop 2.6

Scala Scala-2.10.4

JDK OpenJDK 1.8.0 25
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4
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Fig. 3 The memory utilization of WordCount
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respectively. The improper parallelism degree and task al-

location may induce a large amount of out of memory and

increased disk I/O, which will decrease the execution effi-

ciency and lead to higher overhead in execution time.

Thus, compared to the existing scheduling mechanism,

the scheduling with performance optimization strategy

can more effectively reduce the latency, and the imple-

mentation process will not have a greater impact on the

performance of the cluster.

4.3 Memory utilization evaluation

Figures 3, 4, 5, and 6 are monitored under the

optimization strategy proposed in this paper. Memory

utilization of four different job changes during the execu-

tion of worker 3.

Memory utilization is related to the type of job and the

distribution of input data. For the same algorithm, the

greater the amount of data processed is, the greater the

amount of memory occupied. As shown in Figs. 3, 4, 5,

and 6, WordCount and TeraSort have a relatively stable

memory footprint with the increase of execution time,

while K-means and PageRank have different memory oc-

cupancy rates as the processing task phases are different.

4.4 Disk I/O evaluation

Similarly, the disk I/O has different characteristics as the

type of job varies. Figures 7, 8, 9, and 10 are monitored

under the optimization strategy proposed in this paper.

The memory utilization of four different job changes

during the execution of worker 3.

As far as the disk I/O rate is concerned for the task

processing the data from the local disk, the correspond-

ing local data reads on a worker will be generated, and a

certain disk I/O is consumed. If the network data is

processed, additional network I/O is also produced
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because the worker needs to read data from the remote

disk, and memory outrage may produce more frequent

disk I/O. As it is known in Figs. 7, 8, 9, and 10, disk I/O

of WordCount is more obvious, and the other three jobs

are lower. At the beginning of execution for K-Means

and TeraSort, disk I/O is significantly increased because

the task is assigned to worker 3, and it needs to read

some data from the disk at this time.

5 Conclusions
In this paper, our contributions can be summarized as

follows. First, we analyze a theoretical relationship of de-

gree of parallelism and allocation fitness. Second, we

propose an evaluation model that is pluggable for task

assignment. Third, on the basis of the evaluation model,

the strategy can take resource characteristics into con-

sideration and assign tasks to the worker with a lower

load to increase execution efficiency. Numerical analysis

and experimental results verified the effectiveness of the

presented strategy.

Our future work is mainly concentrated on analyzing

the general principles of the requirements for different

types of operating resources for in-memory computing

framework and design the optimization strategy adapting

to the load and type of jobs.
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