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prediction for large scale parallel machines. Emulators provide parameterized models of theseapplications, which make it possible to scale applications in a controlled way. We have also de-veloped a set of simulation models that are both su�ciently accurate and execute quickly, so arecapable of simulating parallel machine con�gurations of up to thousands of processors on a high-performance workstation. These simulators model the I/O and communication subsystems of theparallel machine at a su�ciently detailed level for accuracy in predicting application performance,while providing relatively coarse grain models of the execution of instructions within each processor.We describe a new technique, loosely coupled simulation, that embeds the processing structure ofthe application in the form of work ow graphs into the simulator while preserving the applicationworkload. This technique allows accurate, yet relatively inexpensive performance prediction forvery large scale parallel machines.The rest of the paper is organized as follows. Section 2 presents the class of applications for whichwe have developed application emulators. Section 3 describes in detail what an application emulatoris, and presents an application emulator for one of the applications as an example. In Section 4,we present the suite of simulation models we have developed and discuss the various tradeo�s thatcan be made between accuracy of prediction and speed of simulation. In particular, we discussthe issues involved in coupling application emulators to simulators, and describe loosely-coupledsimulation as an e�cient technique for interaction between an application emulator and a simulator.Section 5 presents an experimental evaluation of the simulation models. Related work is brieysummarized in Section 6, and we conclude in Section 7.2 Data Intensive Applications SuiteIn this section we briey describe the data intensive applications that have motivated this work.2.1 Remote sensing - Titan and Path�nderTitan [6] is a parallel shared-nothing database server designed to handle satellite data. The inputdata for Titan are sensor readings from the entire surface of the earth taken from the AVHRRsensor on the NOAA-7 series of satellites. The satellite orbits the earth in a polar orbit, and thesensor sweeps the surface of the earth gathering readings in di�erent bands of the electro-magneticspectrum. Each sensor reading is associated with a position (longitude and latitude) and the timethe reading was recorded for indexing purposes. In a typical operation for Titan, user issues a queryto specify the data of interest in space and time. Data intersecting the query are retrieved fromdisks and processed to generate the output. The output is a two-dimensional multi-band imagegenerated by various types of aggregation operations on the sensor readings, with the resolution ofits pixels selected by the query.Titan operates on data-blocks, which are formed by groups of spatially close sensor readings.When a query is received, a list of data-block requests for each processor is generated. Each listcontains read requests for the data-blocks that are stored on the local disks of the processor andthat intersect the query window. The operation of Titan on a parallel machine employs a peer-to-peer architecture. Input data-blocks are distributed across the local disks of all processors andeach processor is involved in retrieval and processing of data-blocks. The 2D output image is alsopartitioned among all processors, and each processor is responsible for processing data-blocks that2



fall into its local subregion of the image. Processors perform retrieval, processing and exchange ofdata-blocks in a completely asynchronous manner [6]. In this processing loop, a processor issues diskreads, sends and receives data-blocks to and from other processors, and performs the computationrequired to process the retrieved data-blocks. Non-blocking I/O and communication operationsare used to hide latency and overlap these operations with computation. The data-blocks are theatomic units of I/O and communication. That is, even if a data-block partially intersects withthe query window and/or the subregion of the output image assigned to a processor, the entiredata-block is retrieved from disk and is exchanged between processors.Path�nder [1] is very similar to Titan except that it always processes all the input data that isavailable for a particular time period, over the entire surface of the earth. In addition, the operationof Path�nder on a parallel machine employs a client/server architecture with separate I/O nodesand compute nodes.2.2 Virtual MicroscopeThe Virtual Microscope [8] is designed to emulate the behavior of a high-power light microscope.The input data for the Virtual Microscope are digitized images of full microscope slides underhigh power. Each slide consists of several focal planes. The output of a query into the VirtualMicroscope is a multi-band 2D image of a region of a slide in a particular focal plane at the desiredmagni�cation level (less than or equal to the magni�cation of the input images). The server partof the software running on the parallel machine employs a peer-to-peer architecture. As in Titanand Path�nder, input data is partitioned into data-blocks and distributed across the disks on theparallel machine. In a typical operation, multiple clients can simultaneously send queries to theserver. When a query is received, each processor in the server retrieves the blocks that intersectwith the query from its disks, processes these blocks, and sends them to the client. There is nocommunication or coordination between server processors. Di�erent processors can even operateon di�erent queries at the same time.3 Application EmulatorsAn application emulator is a program that, when run, exhibits computational and data accesspatterns that closely resemble the patterns observed when executing a particular class of applica-tions. In practice, an emulator is a simpli�ed version of the real application, but contains all thenecessary communication, computation and I/O characteristics of the application required for theperformance prediction study. Using an emulator results in less accurate performance estimationsthan using full application, but it is more robust and enables fast performance predictions for rapidprototyping of new machines. An application emulator models the computation and data accesspatterns of the full application in a parameterized way. Adjusting the values of the parametersmakes it possible to generate various application scenarios within a single class of applications.In a simulation-based performance prediction framework, application emulator provides a speci-�cation of the behavior of the application to the simulator. Using an application emulator hasseveral advantages over using traces from actual program runs or running the full application onthe simulator. First, a trace is static and represents the behavior of the application for a singlerun on a particular con�guration of the machine. Since an application emulator is a program that3



can be run on the simulator, it can model the dynamic nature of an application and can be usedfor di�erent machine con�gurations. Second, running a real application may complicate the taskof the simulator unnecessarily. By abstracting away parts of the application that are not criticalto predicting performance, an application emulator can allow an e�cient simulation without get-ting bogged down in the unimportant details of the application. Third, execution of a completeapplication requires the availability of real input data. Since the application behavior is only em-ulated, an application emulator does not necessarily require real input data, but can also emulatethe characteristics of the actual data. This can enable performance studies of applications on largemachine con�gurations with large datasets. Fourth, the level of abstraction in the emulator can becontrolled by the user. An application emulator without a great amount of detail can be used forrapid prototyping of the performance of the application on a new machine con�guration; while ahighly detailed emulator can be used, for instance, to study di�erent parallelization strategies forthe application.In this work we target a framework that enables the studying of large scale applications andlarge scale machines (consisting of several thousands of processors). For this reason, applicationemulators developed in this work do not provide very detailed models of applications in order toconduct performance prediction studies in reasonable amount of time. However, they model thesalient characteristics of each application class in a parameterized and exible way, thus makingit possible to generate various application scenarios within the same class of applications and toemulate the behavior of application with larger datasets for large scale machines. We now describethe emulator for Titan in more detail.3.1 Case Study: An Application Emulator for TitanTitan has three major components that characterize the I/O, communication and processing pat-terns in this class of applications: input data set(s), output data set(s), and the processing loop.Input data: As we discussed in Section 2.1, Titan operates on data-blocks. Although each data-block contains the same number of input elements (sensor readings), the spatial extent of eachdata-block varies. This is because of the characteristics of the satellite orbit and the AVHRRsensor, which causes the extent of data-blocks containing sensor readings near the earth's poles tobe larger than that of data-blocks near the equator. In addition, there are more spatially overlappingdata-blocks near the poles than near equator. Thus, each Titan data-block and the distribution ofthe data-blocks through the input attribute space are somewhat irregular. The irregular nature ofthe input data also determines the irregular communication and computation patterns of Titan. Inthe emulator, a data-block is represented by four parameters. A bounding rectangle represents thespatial extent of a data-block. The disk id, o�set into the disk, and block size are used to emulateI/O patterns. Synthetic data-blocks are generated using simple parameterized functions. In thisway, the number of data-blocks can be scaled for large scale machines quickly, while preserving theimportant characteristics of such satellite input data, as described above. Using simple functionsalso allows us to change the input characteristics in a controlled way. A user can control thepartitioning of input data into blocks, the number of data-blocks, and the distribution of the data-blocks through the input attribute space to generate di�erent application scenarios.Titan uses Moon'sminimax algorithm [12] to distribute data-blocks across the disks in the machine.This algorithm achieves good load balance in disk accesses for a wide class of queries. However, it4



takes a long time to decluster even a moderate number of blocks across a small number of disks [6].In the emulator, a simple round-robin assignment strategy has been employed to decluster theblocks across the available disks quickly. We are therefore trading o� accuracy in modeling theapplication for e�ciency in performing the emulation. Nevertheless, not much accuracy is lost,since we have observed that a round-robin assignment achieves good load balance (but not alwaysas good as the minimax algorithm, especially for queries with small spatial extent).Output data: Titan implements a workload partitioning strategy. The output, which is a 2Dimage bounded by the spatial extent of the query in longitude and latitude, is partitioned amongprocessors. Processors are (logically) organized into a 2D grid. This grid is superimposed on theoutput grid to create rectangular subregions of the output with equal areas. In the emulator, theoutput is represented by a 2D rectangle bounded by the spatial extent of the input query. Thenumber of processors in each dimension of the 2D processor grid is controlled by the user.Processing loop: The most important characteristic of the processing loop of Titan is that all diskreads, message sends and receives are non-blocking operations. Despite this seemingly very dynamicstructure, there do exist dependencies between operations. First, all message send operations on adata-block depend on the completion of the disk read for that data-block. A completed disk readoperation can initiate message send operations to other nodes if the retrieved data-block intersectswith their output regions. Moreover, if a data-block intersects with the local output image, then itis enqueued for processing locally. Initiation of receive operations in a processor does not dependdirectly on the reads or sends in that processor. However, completion of a receive operation dependson the corresponding send operation on the processor that has the data-block on its local disks.When a data-block is received, it is enqueued for processing. The emulator retains the dependenciesbetween operations when generating events for the simulator.The processing time of a data-block depends on the data values in the data-block. Our simulatorsmodel the I/O and communication subsystems of the parallel machine at a su�ciently detailedlevel, while providing relatively coarse grain models of the execution of instructions within eachprocessor. Therefore, the emulators only have to capture the I/O and communication patternsof the applications accurately, as well as completely capturing the dependency patterns betweenoperations, but do not have to model all the details of the computations performed. Each data-block in our applications is assumed to take the same amount of time to be processed, withoutregard to the data values it contains. This value is provided to the emulator by the user.Figures 1(a)-(d) compare the behavior of the Titan emulator with that of the full Titan application.Titan currently runs on 15 nodes of the IBM SP2 at the University of Maryland [6]. Its input dataconsists of 60 days (24 GBytes) of AVHRR data distributed across the 60 disks attached to thenodes (4 local disks per node). Experiments were carried out using queries covering four regionsof the earth: World, North America, South America, Africa [6], accessing either 10 or 60 days ofdata. We should note here that since we target performance prediction for large scale machines,we do not require that the application emulator precisely capture the data access and computationpatterns exhibited by the application, but want to capture the behavior of the application wheninput parameters are changed and when the input dataset size is scaled. Figures 1 (a) and (b)show the total number of I/O, communication and computation operations performed by the Titanemulator and by Titan for the di�erent queries. Figures 1 (c) and (d) show the execution times forthe emulator and Titan on the SP2. When the application emulator is executed on the real machine,it performs actual non-blocking read, send and receive operations. However, the processing for adata-block is emulated by a constant delay, which was modeled as the average processing time5
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Emulation(c) (d)Figure 1: Comparison of Titan emulator with real Titan in terms of total number of operations for(a) 10-day and (b) 60-day data, and execution time for (c) 10-day and (d) 60-day data.for data-blocks accessed in several queries by Titan. For this reason, the execution times of theapplication emulator and the real application may not be close to each other for some queries, suchas for the World query. However, as is seen from the �gures, the application emulator exhibitssimilar behavior to that of the real application, and consistently matches the application acrossdi�erent queries as well as when the input dataset is scaled.4 Simulation ModelsOur main objective is to develop a simulation framework that is capable of simulating a parallelmachine consisting of thousands of processors. We speci�cally target a data intensive applicationworkload that can process multiple terabytes of data. We require e�cient simulators that canrun on moderately equipped, readily available hardware, such as a high-performance workstation.The relatively complicated processing structure of the target applications, which seek to overlapcomputation, communication, and I/O to attain high levels of performance, exacerbates the e�-ciency problem. A typical simulation of a large scale parallel machine needs to deal with hundreds6



of thousands of pending I/O operations as well as millions of outstanding messages between theprocessors. This section addresses these simulation e�ciency issues.4.1 Hardware ModelsIn order to achieve high levels of e�ciency, we employ coarse grain hardware models for the network,disk, I/O bus, and processor. We assume that each node is connected to its peers by dedicatedpoint-to-point links. The time to transfer a message of size L over a network link is modeled asT = � + L=� where � and � represent the wire latency and bandwidth, respectively. We neithermodel the network topology nor link congestion, but we do model end-point congestion that mightoccur when multiple nodes attempt to transfer messages to a single node. Our disk model consistsof four parts: 1) a �xed parameter for the disk controller overhead, 2) a disk bandwidth parameterthat speci�es the transfer speed to and from the disk media, 3) a disk seek-time parameter that ismodeled as a linear function of seek distance, and 4) the rotational position of the disk, which ismodeled by calculating how many times the disk would have revolved since the last request wasserved, at the disk's nominally rated speed. The I/O bus is modeled in the same way as the networklinks, consisting of a latency and a bandwidth component. When multiple devices contend for thebus, the e�ects of congestion are modeled. The processor is modeled at a coarse grain; the timeinterval that the processor was busy computing is the only parameter and it is speci�ed by theapplication emulator for each operation performed.Unfortunately, having only coarse grain hardware models is not su�cient to model the performanceof data intensive applications for very large con�gurations. Interaction between application emula-tors and the hardware simulator also plays an important role in the e�ciency of the simulation. Inthe next two sections we present two di�erent approaches, referred to here as tightly-coupled simu-lation and loosely-coupled simulation, for interaction between application emulators and hardwaresimulators. Both approaches are event-driven. They di�er in the granularity of interaction betweenthe simulator and the emulator and the way the interaction occurs.4.2 Tightly-coupled SimulationIn tightly-coupled simulation, the granularity of interaction between the simulator and the emu-lator is a single event (e.g., disk read, data-block send). Just as a full application program does,the emulator issues requests one by one to the simulator, emulating the actual behavior of the ap-plication with calls to the �lesystem for I/O and to the message passing library for interprocessorcommunication. Our simulator library provides an API for both blocking and non-blocking I/Oand communication operations, as well as calls to check the completion of these operations. If thecalls are asynchronous calls, such as a non-blocking send, the simulator returns a request id, andthe emulator uses that id to check the status of the request later. Each application (emulator)process running on a node of the simulated target machine is implemented by a thread, which isreferred to as emulator thread. Emulator threads are responsible for simulating the behavior ofthe applications with respect to the input data. In addition to emulator threads, the combinedsystem has a simulator thread that runs the main simulation engine. It is responsible for processingrequests received from emulator threads, keeping track of simulated time, and scheduling emulatorthreads to make sure that events happen in logical clock order.7



4.3 Loosely-coupled SimulationInteraction between the emulator and the simulator in tightly-coupled simulation closely resemblesthe interaction between an application and a real machine. However, this approach has severaldrawbacks which make it unsuitable for simulation of large scale machines. First, the number ofemulator threads increases with the number of processors. Handling a large number of threadsbecomes very costly for the simulator, as it has to schedule emulator threads to ensure correct log-ical ordering of events. Second, as hardware con�gurations get larger, message and I/O tables foroutstanding non-blocking operations grow very large, becoming very costly to manage and slowingdown the network model, which must check for end-point congestion. Moreover, each emulatorthread has to maintain local data structures to keep track of outstanding non-blocking operations,replicating the simulator's work and increasing memory requirements. As in a real machine, thestatus of non-blocking operations is determined by explicitly checking with the simulator; for mul-tiple terabyte datasets, the overheads for these checks become enormous and contribute both toprocessing time and to the number of context switches between emulator and simulator threads.To address these e�ciency issues, we introduce a technique called loosely-coupled simulation.Loosely coupled simulation is currently applicable to applications with a processing loop simi-lar to the one described in Section 2.1, although we are working on applying it to other types ofapplications. The key idea in loosely-coupled simulation is to embed the processing loop of the ap-plication and its dependency structure, modeled by work ow graphs, into the simulator. Thereforeonly two threads are required; a simulator thread and an emulator thread. As in tightly-coupledsimulation, the emulator thread is responsible for generating events and the simulator thread isresponsible for processing these events. However, unlike tightly-coupled simulation, the emulatorand the simulator interact in distinct phases, called epochs, rather than interacting at every event.4.3.1 Modeling the Application Processing Structure: Work Flow GraphsA work ow graph describes the dependencies between operations performed on a single data-block. A node in the graph represents an operation performed on the data-block. In our currentset of applications, there are four types of operations: read, send, receive, and compute. Thedirected graph edges represent the dependencies between these operations. For example, an edgefrom a read operation to a send operation indicates that a send operation on a data-block shouldstart after the read operation is completed. In the applications considered in this work, there areno dependencies between operations performed on di�erent data-blocks neither within the sameprocessor nor across di�erent processors. As a result, work ow graphs impose a partial order onevents, and in a sense describe the life cycle of a single data-block. Work ow graphs for Titan,Path�nder, and the Virtual Microscope are illustrated in Figure 2.The basic skeleton of a work ow graph is independent of speci�c instances of input data, outputdata and machine con�guration. This skeleton depends on the characteristics of the application.The skeleton is embedded in the simulator. However, we need to parameterize work ow graphsto reect the behavior of the application for a speci�c instance of input data, output data andmachine con�guration. For example, the number of send operations performed on a data-blockin Titan depends on the spatial extent of the data-block and the partitioning of the output datastructure across the processors. Parameterization of work ow graphs is done by the applicationemulators. 8
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cation emulator in each model. To evaluate the e�ciency and accuracy of these two approaches,we have developed two simulators, LC-SIM and TC-SIM, for loosely-coupled and tightly-coupledsimulation, respectively. Both simulators employ the same hardware models, di�ering only in theway that they interact with the emulator.5 Experimental Evaluation of Simulation ModelsIn this section, we present an experimental evaluation of our simulation models. We focus onsimulation speed and the accuracy of the models as the machine con�guration and datasets for theapplication scale. Our target platforms are distributed memory machines in which each node haslocal disks.To evaluate the accuracy of the simulation models, we used two IBM SP machines with di�erentcon�gurations. The �rst machine is a 16-node IBM SP2 at the University of Maryland (UMD).Each node of this machine has a peak performance of 266 MFlops, 128 MB of main memory andsix local disks, which are connected to the memory bus with two fast-wide SCSI buses (20 MB/s){ 3 disks on each bus. Nodes are interconnected through the High Performance Switch (HPS) with40 MB/s peak bandwidth per node. In these experiments, the data sets were distributed across 15nodes of the machine, on four disks per node. The second machine is a 128-node SP at the San DiegoSupercomputing Center (SDSC). Each node of this machine has a peak performance of 640 MFlops,256 Mbytes of main memory and one disk. All nodes are interconnected by a newer version of theHPS with 110 MB/s peak bandwidth per node. In the validation experiments described below, wehave compared the execution times of the application emulators estimated by the simulators withthe actual execution times of the application emulators running on these machines. Over all ourexperiments, the number of data-blocks for the Titan and Path�nder applications was varied from3.5K (4 days of satellite data) to 14115K, (2.6 Terabytes for 42 years of data). For the VirtualMicroscope, the number of blocks was scaled from 5K (2 slides, 1 focal plane each) to 128000Kblocks (5120 slides, 10 focal planes each) of size 384 terabytes. For Titan, we have used the \worldquery" that accesses all the blocks [6]. For the Virtual Microscope emulation, we generated a setof random queries. The number of simultaneous queries processed was scaled with the number ofnodes in the machine.Table 1 shows the validation results for TC-SIM and LC-SIM on the UMD SP. For Path�nder,we �xed the number of compute nodes per I/O node to three in all measurements. The values inparentheses indicate the percent error in estimated execution times and are calculated as ratio ofthe di�erence between real execution time and estimated execution time to real execution time. Asis seen from the table, the error of the predictions versus the actual execution times remains under9% for TC-SIM and under 13% for LC-SIM for all the applications. As expected TC-SIM is moreaccurate than LC-SIM, because the interaction between the emulator and simulator more closelyresembles the interaction between emulator and the real machine.Figures 3 (a)-(d) show the validation results for LC-SIM on the SDSC SP. For the Titan application,we ran two di�erent scenarios with the application emulators. For the �rst scenario, the input datasize is scaled with the machine size (Fig. 3(a)). In this case, the input data size was varied from14K data-blocks (16 days of satellite data) to 91K data-blocks (100 days). For the second scenario,the input data size is �xed at 14K data-blocks and the machine size is scaled (Fig. 3(b)). Forthe Path�nder application, we varied the ratio of I/O nodes to compute nodes on 64 processors10



Emulator Data set IBM SP2 TC-SIM LC-SIMTitan 9K blocks 113 105 (7%) 100 (12%)27K blocks 347 322 (7%) 306 (12%)Path�nder 9K blocks 166 153 (8%) 149 (10%)27K blocks 497 467 (6%) 452 (9%)Virtual 5K blocks (200 queries) 127 122 (4%) 119 (6%)Microscope 7.5K blocks (400 queries) 243 236 (3%) 234 (4%)Table 1: Accuracy of the simulation models. All timings are in seconds. IBM SP2 �gures representthe actual execution time of the emulators on 15 nodes of the UMD SP. The numbers in parenthesesdenote the percent error in estimating the actual runtime.(Fig. 3(c)). The number of data-blocks was �xed at 3.5K, which was the largest number of datablocks that could be stored on the machine con�guration with the smallest number of I/O nodes.For the Virtual Microscope application, we scaled the number of data-blocks from 10K to 64K, andscaled the number of queries from 160 to 1000 along with the machine size (Fig. 3(d)). As is seenfrom the �gures, the estimated execution times are very close to the actual execution times for allapplication scenarios and for all machine sizes. The percent error remains below 4% for all cases.Our validation results show that we do not lose much from accuracy from using the loosely-coupledsimulation model.The execution times for the simulators for up to 128 processors are presented in Table 2. We ranour simulations on Digital Alpha 2100 4/275 workstations with 256 MB of memory. For LC-SIM,the application emulator was run on one workstation, while the simulator was run on a di�erentworkstation. The data exchange between the two programs was carried out using the Unix socketinterface. As is seen in the table, TC-SIM executes for almost one hour to simulate even thesmallest machine con�guration. It runs for more than 32 hours for performance estimation ofTitan on 128 processors. This shows that TC-SIM is only feasible for simulating a fairly smallnumbers of processors. LC-SIM, on the other hand, can simulate all machine con�gurations, evenwith very large datasets, in very little time (less than two minutes).The execution times for LC-SIM when simulating very large scale machines are displayed in Table 3.We were able to do performance predictions for very large machines (8K processors, 32K disks)running applications with very large datasets (up to 384 terabytes) in less than 22 hours. Theseresults show that performance prediction for large scale machines can be done in a reasonableamount of time on workstations using LC-SIM.6 Related WorkPerformance prediction of applications on parallel machines is a widely studied area. Previous workin this area mainly focused on performance prediction of compute intensive scienti�c applications,but has taken several approaches. In [4, 7, 15], applications are modeled by a set of equations asa function of size of the input and number of processors. In [16, 17], applications are modeledas directed graphs (i.e. task graphs). The graph representation models the data and control owin the application. The performance estimation is done by traversing the graph. Although theseapproaches are fast, so are feasible for large machine con�gurations and datasets, it is very di�cult11
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(c) (d)Figure 3: Accuracy of LC-SIM when simulating the application emulators running on the SDSCIBM SP machine. All results are in seconds. (a) Titan application, scaled input size. (b) Titanapplication, �xed input size. (c) Path�nder, �xed input size, varying the ratio of IO nodes tocompute nodes. The x-axis labels show the number of I/O nodes versus number of compute nodes.(d) Virtual microscope, scaled input data size and number of queries.to model the dynamic and data dependent nature of applications (such as the ones we want tomodel) by equations or graphs. In addition, the graph modeling the application may grow verylarge for large scale machines. Traces obtained from application runs are used in [9, 11]. Themain drawback of using traces is that a trace only represents the behavior of the application ona particular con�guration of the machine, and cannot be used when the machine con�guration ischanged. An alternative approach to using traces or analytical models is to use simulators thatrun application programs. A variety of such simulators are available [3, 10, 13, 14]. In general,application source or binary codes must be augmented or the application is required to use thesimulator API so that events can be passed to the simulator so that simulated time can progress.In order to increase the e�ciency of simulation, most simulators use the direct-execution technique,in which the application code is executed on the host machine on which the simulator runs, and onlythe operations that cannot be run on the host machine, plus other events of interest, are capturedby the simulator and simulated. Moreover, the simulators can employ less detailed architectural12



TC-SIM LC-SIMEmulator Data set P Estimated Execution Estimated ExecutionApplication Time of Application Time ofTime Simulation Time Simulation27K blocks 32 211 3426 182 6Titan 55K blocks 64 285 13154 217 14110K blocks 128 604 116224 420 2855K blocks 32 551 11595 496 22Path�nder 110K blocks 64 718 30446 579 57220K blocks 128 1020 97992 881 126500K blocks 32 135 7155 118 4Virtual 1000K blocks 64 145 14097 126 8Microscope 2000K blocks 128 158 37534 138 17Table 2: Execution times of TC-SIM and LC-SIM. Estimated application times and simulatorexecution times are in seconds.P Titan Path�nder Virtual MicroscopeEstimated Execution Estimated Execution Estimated ExecutionApplication Time of Application Time of Application Time ofTime Simulation Time Simulation Time Simulation256 1147 172 1579 270 136 36512 2276 520 2342 685 137 781024 4525 1454 4621 1762 144 1892048 9031 4897 9177 5032 136 4984096 18028 16388 18274 24562 142 14818192 36035 77641 36437 65137 148 4873Table 3: Execution times for loosely coupled simulation. Both estimated and execution times arein seconds.models for less accurate but fast simulation, or use parallel machines to run the simulators [3, 13].Our work di�ers from previous work in several ways. In our work we speci�cally target largescale data-intensive applications on large scale machines. The application emulators presented inthis paper lie in between pure analytical models and full applications. They provide a simpler, butparameterized, model of the application by abstracting away the details not related to a performanceprediction study. Since an application emulator is a program, it preserves the dynamic nature ofthe application, and can be simulated using any simulator that can run the full application. Theloosely-coupled simulation model reduces the number of interactions between the simulator andthe application emulator by embedding the application processing structure into the simulator.As our experimental results show, our optimizations enable simulation of large scale machines onworkstations. 13
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