
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 25, NO. 1, JANUARY 2007 1

A Performance Study of BitTorrent-like
Peer-to-Peer Systems

Lei Guo, Student Member, IEEE, Songqing Chen, Member, IEEE, Zhen Xiao, Senior Member, IEEE,

Enhua Tan, Student Member, IEEE, Xiaoning Ding, Student Member, IEEE,

and Xiaodong Zhang, Senior Member, IEEE

Abstract— This paper presents a performance study of
BitTorrent-like P2P systems by modeling, based on extensive
measurements and trace analysis. Existing studies on BitTorrent
systems are single-torrent based and usually assume the process
of request arrivals to a torrent is Poisson-like. However, in reality,
most BitTorrent peers participate in multiple torrents and file
popularity changes over time.

Our study of representative BitTorrent traffic provides insights
into the evolution of single-torrent systems and several new
findings regarding the limitations of BitTorrent systems: (1) Due
to the exponentially decreasing peer arrival rate in a torrent,
the service availability of the corresponding file becomes poor
quickly, and eventually it is hard to locate and download this file.
(2) Client performance in the BitTorrent-like system is unstable,
and fluctuates significantly with the changes of the number of
online peers. (3) Existing systems could provide unfair services
to peers, where a peer with a higher downloading speed tends
to download more and upload less. Motivated by the analysis
and modeling results, we have further proposed a graph based
model to study interactions among multiple torrents. Our model
quantitatively demonstrates that inter-torrent collaboration is
much more effective than stimulating seeds to serve longer for
addressing the service unavailability in BitTorrent systems. An
architecture for inter-torrent collaboration under an exchange
based instant incentive mechanism is also discussed and evaluated
by simulations.

Index Terms— Peer-to-Peer, Overlay Network, File Sharing,
BitTorrent

I. INTRODUCTION

B ITTORRENT [1] is a new generation of peer-to-peer

(P2P) file sharing system that has become very popular

recently. According to BigChampagne, there are nearly 7

million BitTorrent online users at the same time in August

2004, and nearly 10 million in August 2005 [2]. According

to a recent measurement by CacheLogic, BitTorrent traffic

represents 53% of all P2P traffic on the Internet in June

2004 [3]. Unlike traditional P2P systems such as Gnutella [4],

KaZaa [5], and eDonkey/eMule/Overnet [6], in which peers

sharing different files are organized together and exchange

Manuscript received December 15, 2005; revised July 15, 2005. This paper
was presented in part at the Internet Measurement Conference, Berkeley,
California, USA, October 19-21, 2005.

Lei Guo, Enhua Tan, Xioaning Ding, and Xiaodong Zhang are with the
Department of Computer Science and Engineering, The Ohio State University,
Columbus, OH 43210, USA. (e-mail: {lguo, etan, dingxn, zhang}@cse.ohio-
state.edu)

Sonsgqing Chen is with the Department of Computer Science, George
Mason University, Fairfax, VA 22030, USA. (e-mail: sqchen@cs.gmu.edu)

Zhen Xiao is with IBM T. J. Watson Research Center, 19 Skyline Drive,
Hawthorne, NY 10532, USA. (e-mail: xiao@research.att.com)

Digital Object Identifier 10.1109/JSAC.2007.070110.

their desired files with each other, BitTorrent organizes peers

sharing the same file into a P2P network and focuses on fast

and efficient replication to distribute the file. In BitTorrent, a

file is divided into small chunks, and a peer can download

multiple chunks of the file in parallel. Peers with different file

chunks are stimulated to exchange with each other through

a “tit-for-tat” incentive mechanism, which enables peers with

high uploading bandwidth to have corresponding high down-

loading bandwidth. In this way, BitTorrent prevents free riding

effectively, which is very common in early P2P systems [7].

In contrast, P2P systems for exchanging different files such

as KaZaa and eMule use participation levels or credit systems

to track the contribution of each peer, and encourage peers

to contribute by giving higher service priority to those peers

with more contribution. Recently, reputation systems and game

theoretic approaches for providing incentive in P2P networks

have also been proposed [8], [9]. However, these systems are

either too complex and unrealistic or easy to cheat and are

misused [10], [11]. Compared to these systems, the direct

“tit-for-tat” mechanism of BitTorrent is simple, effective, and

robust. In practice, BitTorrent systems scale fairly well during

flash crowd period and have been widely used for various

purposes, such as for distributing large software packages [12],

[13].

Research has been conducted to study the effectiveness of

BitTorrent systems [13]–[16]. The most recent work shows

the stability of BitTorrent systems through a fluid model,

and verifies the effectiveness of its incentive mechanism [15].

However, this fluid model assumes a Poisson model for the

downloading request arrival process, which has been shown to

be unrealistic in an eight-month measurement study [14]. Con-

sequently, the model can only characterize the performance

of the BitTorrent system under stable conditions. In reality, as

shown by our trace analysis, this stable period is very short.

Furthermore, all existing studies on BitTorrent systems focus

on the behaviors of single-torrent systems only, while our trace

analysis shows that most peers (> 85%) participate in multiple

torrents.

In this paper, we present a performance study of BitTorrent-

like P2P systems by modeling, based on extensive measure-

ments and trace analysis. We first study the evolution of a

single-torrent system. We found that although the existing

system is effective for addressing the “flash crowd” problem

upon the debut of a new file, it has the following limitations:

• Due to the exponentially decreasing peer arrival rate and

0733-8716$20.00 c© 2007 IEEE

2 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 25, NO. 1, JANUARY 2007

the limited up time of seeds in a torrent, the service avail-

ability of the corresponding file becomes poor quickly,

and eventually it is hard to locate and download this file.

• Client performance in the BitTorrent-like system is un-

stable, and fluctuates significantly with the changes of the

number of online peers.

• Existing systems could provide unfair services to peers.

In current BitTorrent systems, a peer with a higher

downloading speed tends to download more and upload

less.

Motivated by the results of the single-torrent system study,

we further propose a graph-based model to quantitatively ana-

lyze the multi-torrent system. In detail, we (1) characterize the

peer request pattern in multi-torrent environments; (2) study

the service potentials a torrent can provide to and get from

other torrents; (3) demonstrate that inter-torrent collaboration

is much more effective than stimulating seeds to stay longer

for addressing the service unavailability in BitTorrent systems.

Guided by the modeling results, we discuss and evaluate a

novel architecture to facilitate inter-torrent collaboration with

an exchange based instant incentive mechanism, addressing

the well-known problem of lacking incentives to seeds.
The remainder of this paper is organized as follows. Sec-

tion II presents related work. In Section III, we demonstrate

the limitations of existing BitTorrent-like systems through

measurements and trace analysis, and propose an evolution

model for single-torrent systems. We present our multi-torrent

model in Section IV. Section V discusses an architecture

for inter-torrent collaboration. Finally, we make concluding

remarks in Section VI.

II. OTHER RELATED WORK

The amount of P2P traffic and the population of P2P

users on the Internet keeps increasing. A lot of studies

have been performed on the measurements, modeling, and

algorithms of different P2P systems. Saroiu and Gummadi

et al. characterized the P2P file sharing traffic over the

Internet, including Napster, Gnutella, and KaZaa systems in

their measurement studies [17], [18]. Gummadi and Dunn

et al. analyzed the popularity distribution of P2P files over

the Internet and characterized the “download at most once”

property of P2P clients [19]. Measurements and traffic analysis

of BitTorrent systems have also been conducted recently. Izal

and Urvoy-Keller et al. analyzed a five-month workload of a

single BitTorrent system for software distribution that involved

thousands of peers, and assessed the performance of BitTorrent

at the flash crowd period [13] . In study [12], Bellissimo et al.

analyzed the BitTorrent traffic of thousands of torrents over a

two-month period, with respect to file characteristics and client

access characteristics. In study [14], Pouwelse et al. presented

the current infrastructure of BitTorrent file sharing systems,

including the Web servers/mirrors for directory service, meta-

data distribution, and P2P file sharing. The authors also found

that the arrival, abort, and departure processes of downloaders

do not follow a Poisson distribution in the eight-month trace

they collected, which was assumed in the previous modeling

study [15].
A queuing model for P2P file sharing systems was proposed

by Ge et al. in [20]. Yang and Veciana analyzed the service

capacity of BitTorrent-like systems, and found that multi-

part downloading helps P2P systems to improve performance

during flash crowd period [16]. Based on their study, Qiu

and Srikant further characterized the overall performance

of BitTorrent-like systems using a simple fluid model, and

analyzed the effectiveness of BitTorrent incentive mechanism

using game theory [15]. Massoulie and Vojnovic introduced

a probabilistic model of coupon replication systems, and

analyzed the performance under an environment where neither

altruistic user behaviors nor load balancing strategies (such as

rarest first in BitTorrent) are supported [21].

In study [22], Sripanidkulchai et al. proposed an interest-

based content location approach for P2P systems. By self-

organizing into small groups, peers with the same interest can

collaborate more efficiently, which is similar to the BitTorrent

networks, where all peers share the same file. Sherwood et al.

proposed a P2P protocol for bulk data transfer, which aims

to improve client performance and to reduce server load, by

using enhanced algorithms over BitTorrent systems [23].

Different from all studies above, our modeling and trace

analysis focus on the evolution of single-torrent systems and

the inter-relation among multiple torrents over the Internet,

revealing the limitations of current BitTorrent systems. Fur-

thermore, we have proposed an innovative architecture to

facilitate inter-torrent collaboration, which represents the first

step towards making the BitTorrent-like system a reliable and

efficient content delivery vehicle.

III. MODELING AND CHARACTERIZATION OF

SINGLE-TORRENT SYSTEMS

In a BitTorrent system, the content provider creates a meta

file (with the .torrent suffix name) for the data file it wants

to share, and publishes the meta file on a Web site. Then the

content provider starts a BitTorrent client with a full copy

of the data file as the original seed. For each data file to be

shared, there is a tracker site, whose URL is encoded in the

meta file, to help peers find each other to exchange the file

chunks. A user starts a BitTorrent client as a downloader at the

beginning to download file chunks from other peers or seeds

in parallel. As soon as a peer has downloaded a chunk, it is

shared to the peer community so that other downloading peers

have a new source of this chunk. A peer that has downloaded

the file completely also becomes a seed that could in turn

provide downloading service to other peers. All peers in the

system, including both downloaders and seeds, self-organize

into a P2P network, known as a torrent or a swarm. The initial

seed can leave the torrent when there are other seeds available,

and content availability and system performance in the future

depend on the arrival and departure of downloaders and other

seeds.

Although the effectiveness of BitTorrent systems during

flash crowds, which normally happen soon upon the debut

of a new file, has been widely studied through trace analysis

and modeling [13]–[16], the overall client performance in the

lifetime of a torrent during which the file popularity changes

has not been studied. However, the change of file popularity is

particularly important for BitTorrent-like systems, where the

service availability relies purely on the voluntary participation

GUO et al.: MODELING POPULARITY EVOLUTION AND PERFORMANCE OF BITTORRENT-LIKE FILE SHARING SYSTEMS 3

0 10 20 30 40 50
10

0

10
1

10
2

10
3

10
4

10
5

time after torrent birth (day)

n
u

m
b

e
r

o
f

p
e

e
r

re
q

u
e

s
ts

raw data
linear fit

(a) Tracker trace

0 50 100 150 200 250
10

0

10
1

10
2

10
3

n
u

m
b

e
r

o
f

.t
o

rr
e

n
t

fi
le

 d
o

w
n

lo
a

d
in

g

time after torrent birth (day)

raw data
linear fit

(b) Server farm trace

0 100 200 300 400 500
10

0

10
1

10
2

10
3

10
4

n
u

m
b

e
r

o
f

.t
o

rr
e

n
t

fi
le

 d
o

w
n

lo
a

d
in

g

time after torrent birth (day)

raw data
linear fit

(c) Cable network trace

Fig. 1. The complementary CDF distribution of peer arrival time (time of a peer’s first request to a torrent or time when a meta file was downloaded) after
torrent birth for three BitTorrent traces (y-axis is in log scale).

of peers. This is in contrast to a client-server model where a

permanent site (i.e., a server) can provide persistent service.

In this section, we propose an evolution model to study the

effects of file popularity changes to the performance of a

single-torrent system.

A. Characterizing File Popularity Evolution

In this study, we analyze and model BitTorrent traffic based

on two kinds of traces, one is data file downloading statistics

of peers recorded by the tracker sites and the other is meta

file downloading activities of BitTorrent users collected on

the Internet. The BitTorrent data file downloading traces were

collected from two popular dedicated tracker sites (although

each torrent can have its own tracker site, there are many

dedicated tracker sites on the Internet providing persistent

service, each of which may host thousands of torrents),

sampled every half an hour for 48 days from 2003-10-23

to 2003-12-10. This trace was collected by University of

Massachusetts, Amherst [12] (abbreviated as the tracker trace

in the remainder of this paper). We identify different peers

and match multiple sessions of the same downloading with

the similar methods used in study [13]. The firewalled peers,

although cannot accept incoming connections and thus are

not provided by the tracker to allow other peers to connect

to, are still included in the tracker statistics. We extract the

peer request time, downloading/uploading bytes, the down-

loading/uploading bandwidth of all peers of each torrent, and

the information of each torrent such as torrent birth time and

the size of data file. Due to page limit, we only present the

analysis results of the larger tracker trace, which includes more

than 1,500 torrents (about 550 torrents were fully traced during

their lifecycles). The smaller trace has similar results.

The BitTorrent meta file downloading traces were collected

from a large commercial server farm hosted by a major ISP

and a large group of home users connected to the Inter-

net via a well-known cable company, using the Gigascope

appliance [24], from 2004-09-28 to 2004-10-07. The server

farm trace includes about 50 tracker sites hosting hundreds of

torrents, and the cable network trace includes about 3,000

BitTorrent users (by IP addresses) requesting thousands of

torrents on the Internet. Both traces include the first IP packets

of all HTTP downloading of the .torrent files, with the

timestamp when the packet is captured (the downloading time

of the .torrent file). This timestamp represents the peer

arrival time to the torrent. We also extract the timestamp

encoded in each .torrent file, which is the creation time

of the meta file and represents the torrent birth time.

Figure 1(a) shows the complementary CDF (CCDF) distri-

bution of the “relative” request arrival time for all fully-traced

torrents in the tracker trace. We consider all requests to all

torrents in the trace and normalize x and y coordinates as

follows. The x coordinate is a “relative time” t, which is equal

to the request arrival time to a torrent minus the birth time of

this torrent, i.e., the age of the torrent when a request arrives

at it. For a peer downloading the file in multiple sessions, only

the first request is considered. So t denotes the arrival time

of a peer to a torrent. The y coordinate at time t denotes the

total number of requests to all torrents in the trace minus the

cumulative number of requests to these torrents during time

duration t since the requested torrent is born. The y-axis in

the figure is not normalized to percentage (as normal CCDF

plots) to keep the unit of y coordinates. Similar to Figure 1(a),

Figures 1(b) and 1(c) show the CCDF distribution of the time

when a .torrent file was downloaded after torrent birth in

the server farm and in the cable network. Note that y-axis is

in log scale in the three figures.

All three curves can be fitted with straight lines. This con-

sistent trend strongly suggests that after a torrent is born, the

number of peer arrivals to the torrent decreases exponentially

with time. The curves are not straight lines because each data

set consists of many torrents, and the number of peer arrivals

for different torrents may decrease exponentially with different

attenuation parameters. To validate whether this claim holds

for each individual torrent, we use the least square method to

fit the logarithm of the complementary of the number of peer

arrivals to each torrent along the time in the tracker trace. We

define the relative deviation of this fitting at time t for a torrent

as
| log N0(t)−log N(t)|

log N0(t)
×100%, where t is the age of the torrent

when a peer arrives, N0(t) is the complementary value of the

number of requests at t, and N(t) is the fitting result. Figure 2

shows the distribution of average fitting deviation for each

fully-traced torrent that has at least 20 peers during its lifetime.

In this figure, each point in the x-axis denotes a torrent, sorted

in non-ascending order of torrent population during the entire

lifetime, and the corresponding value in y-axis denotes the

4 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 25, NO. 1, JANUARY 2007

0 100 200 300 400 500
0

5

10

15

20

25

30

35

torrents

re
la

tiv
e

de
vi

at
io

n
(%

)

Fig. 2. Fitting deviations of fully-traced torrents in the tracker trace.

average of relative fitting deviation of this torrent. We can

see that the fitting is more accurate for torrents with larger

populations, and the overall average relative deviation is only

about 6%. We do not fit the curve for each individual torrent

in the server farm and cable network trace, because the data

collection duration is short so that they do not cover the whole

lifespans of torrents. In the remainder of this paper, we only

use the tracker trace for modeling and analysis.

We define the popularity of a BitTorrent data file at a

time instant as the peer arrival rate of the corresponding

torrent at that time, which is the derivative of the peer

arrival time distribution of that torrent. Since the derivative

of an exponential function is also an exponential function,

we assume that the peer arrival rate of a torrent follows an

exponential decreasing rule with time t

λ(t) = λ0e
− t

τ , (1)

where λ0 is the initial arrival rate when the torrent starts,

and τ is the attenuation parameter of peer arrival rate (file

popularity). This equation characterizes the evolution of file

popularity in a single-torrent system over time. In Section III-

C, we will use a fluid model to evaluate the file popularity

evolution again.

B. Torrent Evolution and Service Availability

We define the torrent lifespan as the duration from the birth

of the torrent to the time after which there is no complete copy

of the file in the system, and thus new arriving peers cannot

complete downloading. To simplify our model, we assume that

the initial seed exits the system as soon as a downloader has

downloaded the file completely. In practice, the initial seed

may stay online in the system for a longer time, and some

seeds may return to the system to serve the content.

The inter-arrival time between two successive arriving peers

δt can be approximated as 1
λ(t) . If we denote the rate at which

seeds leave the system as γ, then the average service time of a

seed can be approximated as 1
γ . Since 1

γ is limited, according

to the exponential decrease of peer arrival rate, the inter-arrival

time of peers will grow exponentially, and finally there will be

only one seed at a time. Thus, when δt ≈ 1
λ(t) > 1

γ , a new peer

arrives at time t cannot complete downloading before the last

0 100 200 300 400 500 600
10

0

10
1

10
2

10
3

10
4

torrents

to
rr

en
t l

ife
sp

an
 (

ho
ur

)

trace
model

Fig. 3. The comparison of torrent lifespan: modeling and trace analysis
(y-axis is in log scale).

peer (seed) leaves, and the torrent is dead. Using Equation 1,

we get the torrent lifespan

Tlife = τ log(
λ0

γ
). (2)

Equation 2 shows the expectation of the real torrent lifespan.

To verify Equation 2, we compute the initial peer arrival rate

λ0 and the torrent attenuation parameter τ for fully traced

torrents in the tracker trace. From Equation 1, we have

log δt = − log λ0 +
t

τ
. (3)

Both δt and t for each peer arrival can be extracted from

the trace and we get log λ0 and 1
τ using linear regression.

We also compute the seed leaving rate γ as the the reciprocal

of the average seed service time, which is extracted from the

trace, too. Figure 3 shows the comparison of torrent lifespan

computed from the tracker trace (indicated by trace) and that

from the Equation 2 (indicated by model). In this figure,

each point in x-axis denotes a torrent, while each point in

y-axis denotes the measurement result or the modeling result

of torrent lifespan. The torrents in the x-axis are sorted in non-

ascending order of the modeling results of torrent lifespans.

As shown in the figure, our model fits the real torrent lifespan

very well. The average lifespan of torrents is about 8.89 days

based on the trace analysis and 8.34 days based on our model.

The lifespans of most torrents are between 30 - 300 hours, and

there are only a small number of torrents with extremely short

or extremely long lifespans.

The total population of a torrent during its lifespan (in the

number of peers) is

Nall =

∫ ∞

0

λ0e
− t

τ dt = λ0τ. (4)

Among them, some peers may not be able to complete

downloading due to lack of seeds, which we call failed peers,

denoted as follows:

Nfail =

∫ ∞

Tlife

λ0e
− t

τ dt = γτ. (5)

Thus, the downloading failure ratio of the torrent is

Rfail =
Nfail

Nall
=

γτ

λ0τ
=

γ

λ0
. (6)

GUO et al.: MODELING POPULARITY EVOLUTION AND PERFORMANCE OF BITTORRENT-LIKE FILE SHARING SYSTEMS 5

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

torrents

to
ta

l p
op

ul
at

io
n

of
 to

rr
en

t

trace
model

(a) Torrent population: modeling and trace anal-
ysis (in log-log scale)

0 100 200 300 400 500 600

10
−2

10
−1

10
0

torrents

do
w

nl
oa

di
ng

 fa
ilu

re
 r

at
io

trace
model

(b) Downloading failure ratio: modeling and trace
analysis (y-axis is in log scale)

0 100 200 300 400 500 600
10

−3

10
−2

10
−1

10
0

do
w

nl
oa

di
ng

 fa
ilu

re
 r

at
io

torrents
0 100 200 300 400 500 600

10
0

10
1

10
2

10
3

10
4

to
ta

l p
op

ul
at

io
n

of
 to

rr
en

t

download failure population

(c) The relation between torrent population and
downloading failure ratio (y-axis is in log scale)

Fig. 4. Torrent population and downloading failure ratio for all fully-traced torrents.

Figure 4(a) shows the comparison of the torrent population

computed from the tracker trace with that computed from

our model for each fully-traced torrent. In this figure, each

point in x-axis denotes a torrent, while each point in y-axis

denotes the measurement result or the modeling result of

the total population of this torrent during its entire lifespan.

The torrents in the x-axis are sorted in non-ascending order

of the modeling results of torrent populations. As evidenced

by the figure, the modeling result and trace analysis are

consistent. In addition, we can see that the distribution of

the torrent population is heavily skewed: although there are

several large torrents, most torrents are very small, and the

average population of torrents is only about 102 peers.

Figure 4(b) shows the downloading failure ratio based on

trace analysis and on our model (plotted in a manner similar

to that of Figure 4(a)). This fitting is not as good as that of

Figure 4(a); the real failure ratio of torrents is lower than what

our model predicts because there are some altruistic peers that

serve the torrent voluntarily. This also explains why the torrent

lifespan in the trace analysis (8.89 days) is slightly higher than

that in our model (8.34 days). Furthermore, there are some

torrents that have no failed peers in the trace because the seeds

leave after the downloaders finish, but cannot be shown in the

log scale plot. However, the average downloading failure ratio

based on the trace analysis is still about 10%, which is non-

trivial for a content distribution system.

Equation 5 implies that the number of failed peers in a

torrent is independent of the initial peer arrival rate (the initial

file popularity). Instead, the number of failed peers depends

on the attenuation exponent of peer arrival rate (the attenu-

ation speed of file popularity) and the seed departure rate.

Figure 4(c) shows downloading failure ratios of torrents and

their corresponding populations (plotted in the similar manner

as that of Figure 4(a) and 4(b)). As reflected in the figure

and indicated by Equation 6, the larger the torrent population,

the lower the downloading failure ratio. It is interesting to

note that the population of torrents, sorted in non-ascending

order of their corresponding downloading failure ratios, forms

several clear curves, each of which represents those torrents

with similar evolution patterns (the attenuation parameter τ).

On the right side of the figure, the failure ratio of the torrents

is zero due to the existence of some altruistic seeds, which

always stay until the last downloader completes.

TABLE I

NOTATIONS AND ASSUMPTIONS FOR THE FLUID MODEL.

x(t) number of downloaders in the system at time t

y(t) number of seeds in the system at time t

λ0 the initial value of peer arrival rate
τ the attenuation parameter of peer arrival rate
µ the uploading bandwidth
γ the rate at which seeds leave the system
θ the rate at which downloaders relinquish downloading

and exit the system
η the file sharing efficiency, meaning the probability

that a peer can exchange chunks with other peers

In the above analysis, we assume that peers always complete

their downloading unless they cannot. We do not consider

peers that abort downloading voluntarily when seeds are still

available in the torrent. A peer may abort downloading due

to (1) loss of interest to the data file; (2) slow downloading

speed or small downloading progress. Figure 5(a) shows

the distribution of the average downloading speed of peers

that voluntarily abort and peers that download the data file

completely. Figure 5(b) shows the distribution of downloading

progress (the percentage of the entire data file that has been

downloaded) when peers abort downloading voluntarily. The

figures indicate that the probability for a peer to abort down-

loading voluntarily is almost independent of its downloading

speed and the current downloading progress. This is consistent

with the study [19], which found that P2P users are patient

to wait days to weeks for the entire file downloading. Hence,

the voluntary abort behavior of file downloadings is mainly

due to the loss of user interest. Excluding peers that abort file

downloading is equivalent to assuming that these peers are

uninterested in the data file at the beginning, and thus does

not affect our analysis.

C. Client Performance Variations

Study [15] proposed a fluid model for BitTorrent-like sys-

tems with constant peer arrival rate. We use the idea of

the fluid model, but assume that peer arrival rate follows

Equation 1. Assume the downloading bandwidth of a peer is

greater than its uploading bandwidth, the basic ODE (ordinary

6 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 25, NO. 1, JANUARY 2007

10
−2

10
0

10
2

10
4

10
6

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

fr
ac

tio
n

of
 p

ee
rs

downloading speed (bytes/sec)

abort
complete

(a) The downloading speed distribution (complementary CDF,
in log-log scale)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

fr
ac

tio
n

of
 p

ee
rs

downloading progress (%)

(b) The downloading progress distribution (complementary
CDF)

Fig. 5. The peers abort downloading voluntarily.

0 50 100 150 200 250
0

20

40

60

80

time (hour)

of

 d
ow

nl
oa

de
rs

trace
model

0 50 100 150 200 250
0

20

40

60

80

time (hour)

of

 s
ee

ds

trace
model

(a) Torrent evolution

50 100 150 200
0

5

10

15
x 10

4

time (hour)

av
er

ag
e

do
w

nl
oa

di
ng

 s
pe

ed
 (

by
te

s/
se

c) model
trace

(b) Downloading speed

Fig. 6. Torrent evolution under the fluid model.

differential equation) set for the fluid model is


















dx(t)

dt
= λ0e

− t
τ − θx(t) − µ(ηx(t) + y(t)),

dy(t)

dt
= µ(ηx(t) + y(t)) − γy(t),

x(0) = 0, y(0) = 1,

(7)

where the meanings of the parameters in our fluid model are

listed in Table I. These notations are adopted from work [15],

[16].

When the ODE set has two different real eigenvalues ψ1 6=
ψ2, the resolution can be expressed as:

{

x(t) = aeψ1t + beψ2t + d1e
− t

τ ,

y(t) = c1aeψ1t + c2be
ψ2t + d2e

− t
τ ,

(8)

where d1, d2, c1, c2, a, b are constant. The value of these

constants and the detailed resolution of the fluid model can

be found in Appendix A.

The average downloading speed of peers at time t is

u(t) = µ
ηx(t) + y(t)

x(t)
= µ(η +

y(t)

x(t)
). (9)

We use the tracker trace to validate the torrent evolution

model. Similar to the peer arrival rate, the modeling results fit

the trace better for torrents with larger populations. Figure 6(a)

shows the torrent evolution by both our fluid model and the

analysis results of a typical torrent in the trace. The figure

shows that the number of downloaders increases exponentially

in a short period of time after the torrent’s birth (the flash

crowd period), and then decreases exponentially, but at a

slower rate. The number of seeds also increases exponentially

at first, and then decreases exponentially at a slower rate. The

peak time of the number of seeds lags behind that of the

number of downloaders. As a result, u(t) increases until the

torrent is dead, and the resources of seeds cannot increase in

proportion to service demand. Furthermore, due to the random

arrival of downloaders and the random departure of seeds, av-

erage downloading performance fluctuates significantly when

the number of peers in the torrent is small, as shown in

Figure 6(b).

Figure 7(a) shows the performance variations of the torrent

under two kinds of granularities. The instant speed represents

the mean downloading speed of all peers in the torrent at

that time instant, sampled every half an hour. The average

speed represents the average value of the instant speed over

the typical downloading time (the average downloading time

of all peers). The figure shows that the client downloading

GUO et al.: MODELING POPULARITY EVOLUTION AND PERFORMANCE OF BITTORRENT-LIKE FILE SHARING SYSTEMS 7

0 50 100 150 200 250
0

5

10

15
x 10

4

time (hour)

do
w

nl
oa

di
ng

 s
pe

ed
 (

by
te

s/
se

c)

instant speed
average speed

(a) The downloading speed in the lifetime of
a typical torrent

0 50 100 150 200
0

20

40

60

80

100

torrents

nu
m

be
r

of
 p

ee
rs

0 50 100 150 200
10

0

10
1

10
2

10
3

10
4

10
5

do
w

nl
oa

di
ng

 s
pe

ed
 (

by
te

s/
se

c)

downloader #
seed #

download speed

(b) The downloading speed (in log scale) and the
number of downloaders/seeds for each torrent at a
time instant

0 10 20 30 40 50
0

2

4

6

8

10

time (day)

n
u

m
b

e
r

o
f

p
e

e
rs

x 10
3

0 10 20 30 40 50
10

1

10
2

10
3

10
4

10
5

10
6

d
o

w
n

lo
a

d
in

g
 s

p
e

e
d

 (
b

y
te

s
/s

e
c
)

downloader #
seed #

download speed

(c) The average downloading speed (in log scale)
and the total number of downloaders/seeds for all
torrents in the system

Fig. 7. Performance variations in BitTorrent systems.

0 0.2 0.4 0.6 0.8 1
10

−3

10
−2

10
−1

10
0

10
1

10
2

peers (in fraction)

p
e
e
r

c
o
n
tr

ib
u
ti
o
n
 r

a
ti
o

0 0.2 0.4 0.6 0.8 1
10

1

10
2

10
3

10
4

10
5

10
6

d
o
w

n
lo

a
d
in

g
 s

p
e
e
d
 (

b
y
te

s
/s

e
c
)

contribution ratio

downloading speed

(a) The peer downloading speed and contribution ratio

0 0.2 0.4 0.6 0.8 1
10

−3

10
−2

10
−1

10
0

10
1

10
2

peers (in fraction)

p
e

e
r

co
n

tr
ib

u
ti

o
n

 r
a

ti
o

0 0.2 0.4 0.6 0.8 1
10

0

10
1

10
2

10
3

n
u

m
b

e
r

o
f

to
rr

e
n

ts

contribution ratio

of torrents

(b) The the number of torrents that each peer involves and the
corresponding contribution ratio

Fig. 8. Fairness of seed service policy in BitTorrent systems (y-axis is in log scale).

speed at different time stages is highly diverse and can

affect client downloading time significantly. The reason is

that seeds play an important role in the client downloading

performance. However, the generation of seeds is the same

as the completeness of peer downloading, so the random

fluctuation of downloading speed cannot be smoothed in the

scale of typical downloading time when the number of peers

is small.

Figure 7(b) shows the number of peers and the average

downloading speed for each torrent in the trace at 12:00:01

on 2003-11-15. In this figure, each point in x-axis denotes

a torrent, while the left y-axis denotes the number of peers

(the number of downloaders and seeds are represented with

different colors and stacked together in the figure) in this

torrent, and the right y-axis denotes average downloading

speed of this torrent. The torrents in the x-axis are sorted in

non-ascending order of the number of peers (downloaders and

seeds) in each torrents. The results at other time instants are

similar. In general, peers in torrents with larger populations

have relatively higher and more stable downloading speed,

while the downloading speed in torrents with small popula-

tions disperses significantly. When the number of peers in the

torrent is small, the client downloading performance is easily

affected by the individual behavior of seeds.

Figure 7(c) shows the total number of peers in all torrents

(the number of downloaders and seeds are represented with

different colors and stacked together in the figure) and the

average downloading speed of all downloaders in the trace

at different time stages. The average downloading speed of

all torrents is shown to be much more stable than that of

one torrent. The reason is that the downloader/seed ratio is

much more stable due to the large population of the system.

This motivates us to balance the service load among different

torrents, so that each torrent can provide relatively stable

downloading performance to clients in its lifespan.

D. Service Fairness

In a BitTorrent system, the service policy of seeds favors

peers with high downloading speed, in order to improve the

seed production rate in the system, i.e., to have these high

speed downloaders complete downloading as soon as possible

and wish they will then serve other downloaders. In this

subsection, we investigate the effects of this policy on the

service fairness of BitTorrent.

We define the contribution ratio of a peer as the total

uploaded bytes over the total downloaded bytes of the peer.

Figure 8(a) shows the peer downloading speed and the corre-

sponding contribution ratio extracted from the trace. In this

figure, each point in the x-axis denotes a peer, while the

left y-axis denotes the contribution ratio of this peer, and

the right y-axis denotes the average downloading speed of

this peer. On the x-axis, peers are sorted in non-ascending

8 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 25, NO. 1, JANUARY 2007

0 200 400 600 800 1000 1200
0

200

400

600

800

1000

1200

torrent birth time (hour)

nu
m

be
r

of
 to

rr
en

ts

raw data
linear fit

(a) Torrent birth

0 200 400 600 800 1000 1200
0

0.5

1

1.5

2
x 10

5

request arrival time (hour)

nu
m

be
r

of
 r

eq
ue

st
s

raw data
linear fit

(b) Request arrivals of all peers over all torrents

0 200 400 600 800 1000 1200
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

peer birth time (hour)

nu
m

be
r

of
 p

ee
rs

raw data
asymptotic fit

(c) Peer birth

Fig. 9. The CDFs of torrent birth, peer request arrival, and peer birth over the trace collection time.

order of their contribution ratios. If the service of BitTorrent

system is fair, the peer contribution ratio and downloading

speed should be highly positively correlated. However, the

figure shows a rough trend that the peer contribution ratio

increases when the downloading speed decreases. That is,

the higher the downloading performance peers have, the less

uploading service they actually contribute. This indicates that

peers with high speed finish downloading quickly and then

quit the system soon, which defeats the design purpose of the

seed service policy.

Figure 8(b) shows the number of torrents that each peer

involves and its corresponding contribution ratio (plotted in

the similar manner as that of Figure 8(a)). The figure shows

no distinguishable correlation between the two, indicating that

the main reason for seeds to leave old torrents is not to start

new downloading tasks.

In summary, we observe that the BitTorrent’s biased seed

service policy in favor of high speed downloaders really

affects the fairness to peers in downloading, and an incentive

mechanism is needed to encourage seeds to contribute.

IV. MODELING MULTIPLE TORRENTS IN

BITTORRENT SYSTEMS

In the previous section, we have shown that client perfor-

mance fluctuates significantly in single-torrent systems, but

is very stable when aggregated over multiple torrents. Based

on this observation, in this section, we study the correlation

among multiple torrents through modeling and trace analysis,

aiming to look for solutions to enable inter-torrent collabora-

tion.

Although different torrents are independent from each other

in the current BitTorrent systems, they are inherently related

by peers that request multiple data files. A peer may download

a data file, serve as a seed for that torrent for a while, and then

go offline to sleep for a period of time. The peer may return

sometime later and repeat the activities above. Thus, a peer’s

lifecycle consists of a sequence of downloading, seeding, and

sleeping activities. If a peer stops using BitTorrent for a long

time that is much longer than its typical sleeping time, we

consider the peer as dead.

In the current BitTorrent systems, a peer is encouraged to

exchange file chunks with other peers that are downloading the

same file instead of serving old data files it has downloaded.

Thus, in our model, we assume each peer joins (downloading

and seeding) each torrent at most once, and joins one torrent

at a time. Having these assumptions, we start to characterize

peers in multiple torrents.

A. Characterizing Peer Request Pattern

In the multi-torrent environment, both torrents and peers

are born and die continuously. Figure 9(a) shows the CDF

of torrent birth in the trace (indicated by raw data) and our

linear fit. The average torrent birth rate (denoted as λt in the

following context) is about 0.9454 torrent per hour. Figure 9(b)

shows the CDF of torrent request arrivals (for all peers over

all torrents) and our linear fit. We define the torrent request

rate as the number of downloading requests for all torrents

per unit time in the multi-torrent system, denoted as λq in the

following context. Although the peer arrival rate of a single-

torrent system decreases exponentially as shown in Figure 1,

the torrent request rate in the multi-torrent system is almost a

constant, about 133.39 requests per hour.

Since both the torrent birth rate and torrent request rate are

almost constant, it is natural to assume that the peer birth rate

(denoted as λp in the following context) is also a constant.

A peer is born when it appears in the system for the first

time. However, as shown in Figure 9(c), the peer birth rate

is high at the beginning of the trace collection duration, and

then converges to a constant rate asymptotically. The reason

is that peers appear in the trace for the first time may actually

have been born before the trace collection, and the number of

such peers decreases quickly after the trace collection starts.

Thus, we take the asymptotic birth rate as the real birth rate

of peers, which is about 19.37 peers per hour.

The constant peer birth rate and torrent request rate indicate

that each peer only joins a limited number of torrents. How-

ever, the request rate of a peer might still change over time.

We define the peer request rate as the number of requests a

peer submits for different torrents per unit time. Assume the

peer request rate can be expressed as

r(t) = r0e
− t

τr , (10)

where t is the time duration after the peer is born, r0 is the

initial request rate, and τr is the attenuation parameter of the

request rate. When τr → ∞, the peer has a constant request

rate; when τr < 0, the peer has an increasing request rate.

GUO et al.: MODELING POPULARITY EVOLUTION AND PERFORMANCE OF BITTORRENT-LIKE FILE SHARING SYSTEMS 9

0 0.2 0.4 0.6 0.8 1
10

0

10
2

10
4

10
6

10
8

peers (in fraction)

re
q
u
e
s
t
ra

te
 a

tt
e
n
u
a
ti
o
n
 p

a
ra

m
e
te

r
τ

r (
d

a
y
)

0 0.2 0.4 0.6 0.8 1
10

0

10
1

10
2

n
u
m
b

e
r

o
f
to

rr
e
n
ts

τ
r # of torrents

(a) The attenuation of peers’ requesting rates and
number of torrents peers request (y-axis is in log
scale)

10
−4

10
−3

10
−2

10
−1

10
0

10
0

10
1

10
2

peers (in fraction)

nu
m

be
r

of
 to

rr
en

ts

10
−4

10
−3

10
−2

10
−1

10
0
0

10

20

av
er

ag
e

in
te

r−
ar

riv
al

 ti
m

e
(d

ay
)

of torrents inter−arrival time

(b) The inter-arrival time of peers’ requests and
number of torrents they join (in log-log scale)

0 0.2 0.4 0.6 0.8 1
10

2

10
3

10
4

10
5

10
6

peers (in fraction)

d
o
w

n
lo

a
d
in

g
 s

p
e
e
d
 (

b
y
te

s
/s

e
c
)

0 0.2 0.4 0.6 0.8 1
10

0

10
1

10
2

n
u
m

b
e
r

o
f
to

rr
e
n
ts

downloading speed

of torrents

(c) The downloading speed and number of torrents
peers join (y-axis is in log scale)

Fig. 10. The request pattern of peers.

10
0

10
1

10
2

10
3

10
4

10
5

0

50

100

150

200

peers

nu
m

be
r

of
 to

rr
en

ts

(a) For all peers in the trace

10
0

10
1

10
2

10
3

10
4

0

10

20

30

40

50

peers

nu
m

be
r

of
 to

rr
en

ts

raw data
linear fit

(b) For peers born in the middle of trace collection time

Fig. 11. Torrent involvement of peers (x-axis is in log scale).

The inter-arrival time between two successive requests of a

peer δt is 1
r(t) (note this inter-arrival time is different from the

inter-arrival time of two successive arriving peers to a torrent

described in Section III-B). Thus, we have

log δt = − log r0 +
t

τr
. (11)

We extract δt and t from the trace for each peer requesting

multiple torrents, and use linear regression to compute log r0

and 1
τr

. Figure 10(a) shows the number of torrents that each

peer requests and the corresponding τr, for peers requesting

at least 3 torrents. In this figure, each point in the x-axis

denotes a peer, while the left y-axis denotes the τr value of

this peer, and the right y-axis denotes the number of torrents

in which this peer participates. In x-axis, peers are sorted in

non-ascending order of the number of torrents they join. As

shown in the figure, the value of parameter τr in Equation 10

is extremely large compared to the typical duration of file

downloading, with the mean value of about 77 years, which

implies that the average request rates of peers do not change

significantly over time. Further, τr is independent of the

number of torrents that peers join. Thus, we can assume that

the request processes of peers are Poisson-like with constant

average request rates.

Figure 10(b) shows the average inter-arrival time of torrent

requests for peers requesting multiple torrents (plotted in the

similar manner as that of Figure 10(a)). As shown in the figure,

it is intuitive to find that the upper bound of the number of

torrents each peer requests increases with the decrease of inter-

arrival time. However, for peers with similar request rates, the

number of torrents they request are very diverse, since they

stay in the system for different time durations. Figure 10(c)

further plots the downloading speed versus the number of

torrents that each peer joins (plotted in the similar manner as

that of Figure 10(a)). There is no strong correlation between

the two for peers with downloading speed > 1 KB per second.

This implies that for peers whose downloading speed is large

enough, the numbers of files they download is independent of

their downloading speed.

Thus, we assume that a peer joins a new torrent with

probability p. For N peers in the system, during their whole

lifecycles, there are Npm−1 peers that request at least m

torrents. Ranking peers in non-ascending order of the number

of torrents they join, the number of torrents that a peer ranked

i joins is

m = 1 +
log i − log N

log p
. (12)

In addition, a peer has the probability 1 − p to download

exactly 1 file, probability p(1−p) to download exactly 2 files,

and probability pk−1(1 − p) to download exactly k files. So

10 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 25, NO. 1, JANUARY 2007

0 50 100 150 200 250
10

−4

10
−3

10
−2

10
−1

10
0

seeding time (hour)

P
ro

ba
bi

lit
y

of
 T

sd
 >

 t

(a) The probability distribution of seeding time

0 200 400 600 800 1000 1200
10

−4

10
−3

10
−2

10
−1

10
0

sleeping time (hour)

P
ro

ba
bi

lit
y

of
 T

sl
 >

 t

(b) The probability distribution of sleeping time

Fig. 12. The seeding time and sleeping time of peers (y-axis is in log scale).

the mean number of torrents that a peer joins is:

m̄ =

∞
∑

k=1

kpk−1(1 − p) =
1

1 − p
. (13)

Figure 11(a) shows the distribution of the number of files

that each peer downloads in the trace. The curve in the figure

is a little convex, deviating from what Equation 12 predicts (a

straight line when x-axis is in log scale). The reason is that

the number of torrents joined by peers born before the trace

collection is under-estimated, since some of these requests

cannot be recorded in the trace. A similar situation exists for

peers that are still active after the end of trace collection.

Figure 11(b) shows the distribution of number of torrents

joined by each peer that was born in the middle of the trace

collection duration (indicated by raw data) and our linear fit.

The curve fits Equation 12 very well, and we estimate p ≈
0.8551 from the analysis. Thus, the average number of torrents

each peer joins is about 7.514.

To verify the probability model we use in the above analysis,

we estimate p in another way as follows. Assuming that the

peer birth rate is λp and the torrent request rate is λq , since

each peer joins 1
1−p torrents during its lifetime in average, we

have

λq =
1

1 − p
λp. (14)

Based on the peer request arrival rate and the peer birth

rate we derived before (see Figure 9(b) and 9(c)), we have

p = 1 − λp

λq
= 0.8548. This is very close to the value we got

from Equation 12, 0.8551, meaning that there are more than

85% peers joining multiple torrents.

Having characterized the torrent request pattern of peers,

finally we consider the distribution of the seeding time and

the sleeping time of peers. According to our fluid model,
1
γ represents the average seeding time. Figure 12(a) and

12(b) show the probability distribution functions of the peer

seeding time and the peer sleeping time in the system. Note

that the y-axis is in log scale. Both the peer seeding time

and sleeping time roughly follow the exponential distribution

with probability density function fsd(t) = 1
τsd

e
− t

τsd , and

fsl(t) = 1
τsl

e
− t

τsl , respectively. Based on the trace analysis,

we estimate τsd = 1
γ = 8.42 hours, and τsl = 58.32 hours.

B. Characterizing Inter-torrent Relations

In this subsection we study how different torrents are

connected through peers that download multiple files, based

on our previously verified assumptions.

For simplification, we consider a homogeneous multi-

torrent environment where all torrents and peers have the same

λ0, τ , µ, η, γ, and average sleeping time. Consider all torrents

that have been born in the system by the time instant t0. We

number the torrents and name their birth time as follows: the

most recently born torrent by t0 is torrent 1, with a birth time

t1; the torrent born just before torrent 1 is torrent 2, with a

birth time t2; ... ; and so on and so forth. Thus, for any two

torrents i and j, if torrent i was born just before torrent j, we

have i = j + 1 and ti < tj .

Assume the probability that a peer selects torrent i at time

t as its k-th torrent is P k
i (t), t ≤ t0 and 1 ≤ i < ∞. We have

P k
i (t) = 0 if t < ti. We denote P 1

i (t) as Pi(t) for simplicity,

and assume that Pi(t) satisfies

Pi(t) =
e−

t−ti
τ

∑∞
j=1 e−

t−tj
τ

, (15)

where tj = t − j
λt

, 1 ≤ j < ∞. Thus, we have

Pi(t) = e
−

i
λtτ

∑

∞

j=1
e
−

j
λtτ

= (e
1

λtτ − 1)e−
i

λtτ

= (e
1

λtτ − 1)e−
t−ti

τ .

(16)

When a peer requests its k-th data file, the data files that it

has requested will not be selected. Assuming

P k
i (t) = αkPi(t), (17)

the peer arrival rate of torrent i can be expressed as

λi(t) = αλqPi(t)

=
α

1 − p
λp(e

1
λtτ − 1)e−

t−ti
τ ,

(18)

where α =
∑∞

k=1 αkpk−1(1 − p). When λt ≫ r, we have

αk ≈ 1 and α ≈ 1. Comparing Equation 1 with 18, we have

λ0 = α
1−pλp(e

1
λtτ − 1).

Considering that a peer in a torrent may have downloaded

files from other torrents, we can model the relationship among

GUO et al.: MODELING POPULARITY EVOLUTION AND PERFORMANCE OF BITTORRENT-LIKE FILE SHARING SYSTEMS 11

0 50 100 150 200
10

0

10
1

10
2

10
3

torrents

w
e

ig
h

te
d

 o
u

t−
d

e
g

re
e

0 50 100 150 200
10

0

10
1

10
2

10
3

to
rr

e
n

t
s
iz

e

out−degree (trace)
out−degree (model)

torrent size

(a) Weighted out-degree

0 50 100 150 200 250
10

0

10
1

10
2

10
3

torrents

w
e

ig
h

te
d

 i
n

−
d

e
g

re
e

0 50 100 150 200 250
10

0

10
1

10
2

10
3

to
rr

e
n

t
s
iz

e

in−degree (trace)
in−degree (model)

torrent size

(b) Weighted in-degree

Fig. 13. The inter-torrent relation (y-axis is in log scale).

different torrents in the P2P system as a directed graph. Each

node in the graph represents a torrent. A directed edge from

torrent i to torrent j denotes that some peers in torrent i have

downloaded the file from torrent j, and thus have the potential

to provide service to peers in torrent j, even though they are

not in torrent j currently. The weight of the directed edge Wi,j

represents the number of such peers. For simplicity, we define

Wi,i = 0.

The graph changes dynamically over time. Now let us

consider the graph at time t0. During time [t, t + dt], tj ≤
t < t0, there are λj(t)dt peers who join torrent j. Let k(t) =
⌊r(t0−t)⌋. During time [t, t0], these peers can download up to

k(t) − 1 torrents completely in addition to torrent j and may

request (or be requesting) the next torrent at time t0. Assuming

αk ≈ 1, for a peer who is active at time t, the probability that

it is still active at time t0, but does not request torrent i during

[t, t0] is

Qi(t) = p ×
k(t)−1
∏

l=1

p × (1 − Pi(t +
l

r
)). (19)

When i 6= j, we have

Wi,j =

∫ t0

tj

Qi(t) × Pi(t +
k(t)

r
) × λj(t)dt. (20)

Therefore, the weighted out-degree of torrent i represents

the total potential capability its peers can provide to peers in

other torrents, denoted as SPi, where

SPi =
∞
∑

j=1

Wi,j . (21)

Correspondingly, the weighted in-degree of torrent i repre-

sents the total potentials its peers can get from peers in other

torrents, denoted as SGj , where

SGj =

∞
∑

i=1

Wi,j . (22)

Figure 13(a) and 13(b) show the weighted out-degree and

weighted in-degree at a time instant based on trace analysis

and our probability model, respectively. In the figures, each

point in the x-axis denotes a torrent, sorted in non-ascending

order of weighted out-degree or weighted in-degree. The right

y-axis in the figures denotes torrent size, the number of peers

in the torrent at this time instant. In general, torrents with

more peers tend to have a larger out-degree and in-degree,

though the trend is very rough. The weighted out-degree and

in-degree distribution according to our trace analysis follows

power law rules roughly. It deviates from our model somewhat

because of the heterogeneity of torrents in the real system.

C. Reducing Downloading Failure Ratio by Inter-torrent Col-

laboration

In the multi-torrent environment, old peers that had down-

loaded the file from a torrent may come back to download

other data files, and the lifespan of this torrent can be extended

if these old peers are willing to provide service. Assume the

request arrival rate of this torrent is λ(t) and λ(t) = 0 when

t < 0. If we consider both new requesting peers and old

returning peers, the peer arrival rate of the torrent is

λ′(t) =
∑k(t)

l=0 plλ(t − l
r) =

∑k(t)
l=0 plλ0e

−
t− l

r
τ

= λ0e
− t

τ
qk(t)+1−1

q−1 ,
(23)

where k(t) = ⌊rt⌋ and q = pe
1

rτ (q > 1 according to our

trace analysis).

When λ′(t) < γ, the torrent is truly dead. The lifespan

of a torrent without inter-torrent collaboration is Tlife =
τ log(λ0

γ). Denoting the lifespan of the torrent with inter-

torrent collaboration as T ′
life, then λ′(T ′

life) = γ, we have

log γ = log λ0 −
T ′

life

τ + log(qk(T ′

life)+1 − 1) − log(q − 1)

≈ log λ0 −
T ′

life

τ + (k(T ′
life) + 1) log q − log(q − 1)

= log λ0 −
T ′

life

τ + k(T ′
life) log q + log q

q−1 .

It leads to log(λ0

γ
q

q−1) ≈ (1
τ − r log q)T ′

life. Thus

T ′
life ≈ τ log(

λ0
γ

q
q−1)

1−τr log q =
τ log(

λ0
γ

q
q−1)

τr log 1
p

>
Tlife

τr log 1
p

= βTlife.
(24)

According to the trace analysis and our modeling, β =

12 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 25, NO. 1, JANUARY 2007

1
τr log 1

p

≈ 6. So we have

R′
fail =

∫ ∞

T ′

life
λ0e

− t
τ dt

∫ ∞

0
λ0e

− t
τ dt

= e−
T ′

life
τ < R

β
fail ≈ R6

fail.

(25)

In the single-torrent model, since we cannot change the peer

request pattern, the only way to decrease the downloading

failure ratio is to decrease the seed leaving rate (i.e., to increase

the seed service time). According to Equation 2 and 6, if the

seed leaving rate is decreased from γ to γ∗, we have

T ∗
life = τ log(

λ0

γ∗
) = Tlife + τ log

γ

γ∗
, (26)

and

R∗
fail =

γ∗

λ0
= Rfail

γ∗

γ
. (27)

Comparing Equation 24 and 25 with Equation 26 and 27, we

can see that inter-torrent collaboration is much more effective

than stimulating seeds to serve longer in order to reduce

the downloading failure ratio. Decreasing seed leaving rate

can only extend torrent life span by a constant, while inter-

torrent collaboration can increase torrent life span multiple

times. As a result, for reducing the downloading failure ratio,

decreasing seed leaving rate has polynomial effect, while inter-

torrent collaboration has exponential effect. For example, if the

current downloading failure rate is 0.1, and seeds can be stim-

ulated to stay 10 times longer (i.e., γ will decrease 10 times),

then the downloading failure rate will decrease 10 times to

0.01. However, by inter-torrent collaboration, the downloading

failure ratio can be as low as 0.16 = 10−6. The reason is that

extending seed staying time only increases the service time for

peers that arrive close to the seed generation time. With the

passage of time, the peer arrival rate decreases exponentially,

and finally the seed serving time will not be long enough for

newly arriving peers. On the other hand, by exploiting inter-

torrent collaboration, peers that have downloaded the file may

return multiple times during a much longer period, and the

downloading failure ratio can be significantly reduced to near

zero.

V. A DISCUSSION OF

MULTI-TORRENT COLLABORATION SYSTEMS

A. Tracker Site Overlay

We propose an architecture where tracker sites of different

torrents self-organize into an overlay network to coordinate the

collaboration among their peers. Each tracker site maintains

a Neighbor-Out Table and a Neighbor-In Table to record the

relationship with its neighboring torrents. The Neighbor-Out

Table records the torrents that its peers can provide service

to. The Neighbor-In Table records the torrents whose peers

can provide service to this torrent. When a peer q joins a new

torrent A, it uploads to its tracker site the information about

from which torrents it had downloaded files previously. Then

A’s tracker site forwards this information to the tracker sites of

those torrents where q had downloaded files from. By doing so,

the torrents that are created independently by different content

providers are connected together to form an overlay network,

as shown in Figure 14(a). The tracker overlay is actually an

implementation of the inter-torrent relation graph presented in

Section IV-B1. Figure 14(b) shows that the connectivity degree

(unweighted) of the tracker overlay is heavily skewed and

similar to P2P overlays like Gnutella networks. Thus, many

existing search algorithms can be used in the tracker overlay.

The tracker overlay provides a mechanism for inter-torrent

collaboration. In the current architecture of BitTorrent systems,

peers in different torrents cannot collaborate because they

cannot find and communicate with each other. By using tracker

overlay, peers in different torrents can exchange files that

they have downloaded and balance their resource sharing. Our

simulation shows that the tracker overlay can cover more than

99% torrents in the system.

In the tracker overlay architecture, the extra service load

on the existing tracker sites is small. Assume a torrent has n

peers at its peak time. Since the average number of torrents

each peer involves is 1
1−p , the neighbor table size is O(n

1−p).
Furthermore, the tracker overlay is fully decentralized and has

no single point of failure. Tracker overlay has better fault-

tolerance and scalability than a central server solution.

Tracker overlay also provides a built-in mechanism to

search content among multiple torrents. Currently, BitTorrent

users rely on Web-based search engines to look for the content

they want to download.

B. Multi-torrent Collaboration

BitTorrent assumes each peer is selfish, and a peer ex-

changes file chunks with those peers that provide it the best

service. The incentive mechanism of BitTorrent systems is

instant, because each peer must get corresponding benefit

immediately for the service it provides. In contrast, KaZaa and

eMule use a participation level or ID stored in the system to

trace and identify the contribution of users. Peers with a higher

level or higher ID will have a higher priority to be served.

Thus, the contribution of a peer under this mechanism will be

rewarded in a long term instead of instantly. Although KaZaa

and eMule systems are multi-file based and thus the popularity

changes of a file have little affect on the service availability of

its downloading, their long-term incentive mechanisms are not

as effective as the “tit-for-tat” mechanism in BitTorrent. The

downloading speed of eDonkey/eMule/Overnet is much slower

than that of BitTorrent because peers in the P2P network

usually share and download a large number of files, making

the bandwidth available to each transfer much smaller than

that in BitTorrent [25]. Furthermore, fraud prevention is also

a big problem. For example, the participation level system in

KaZaa has been cracked and thus one can set its participation

level arbitrarily [10]. Compared with systems based on the

long-term user reputation, the instant incentive mechanisms

like “tit-for-tat” are simple, effective, and robust. Instead of

going back to the long term incentive model of KaZaa and

eDonkey systems, in this subsection, we propose an exchange

based mechanism for instant collaboration among multiple

torrents through the tracker site overlay, which still follows

the “tit-for-tat” idea.

1Recently, BitTorrent begins to support trackerless torrents with DHT [25].
The inter-torrent relation graph can be maintained by this DHT in a similar
way as that in the tracker overlay.

GUO et al.: MODELING POPULARITY EVOLUTION AND PERFORMANCE OF BITTORRENT-LIKE FILE SHARING SYSTEMS 13

B

A

C

E

D

G

F

(a) An example of tracker site overlay

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

tracker

co
nn

ec
tiv

ity
 d

eg
re

e

(b) Node connectivity of tracker site overlay (in log-log scale)

Fig. 14. Tracker site overlay.

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

torrents

do
w

nl
oa

di
ng

 fa
ilu

re
 r

at
io

w/o inter−collaboration
w/ inter−collaboration

(a) The downloading failure ratio (x-axis is in log
scale)

0 50 100 150 200 250
0

2

4

6

8

10

12

14
x 10

4

torrents

av
er

ag
e

do
w

nl
oa

di
ng

 s
pe

ed
 (

by
te

s/
se

c) w/o inter−collaboration
w/ inter−collaboration

(b) The average download speed

0 0.2 0.4 0.6 0.8 1
10

−3

10
−2

10
−1

10
0

10
1

10
2

fraction of peers

pe
er

 c
on

tr
ib

ut
io

n
ra

tio

w/o inter−collaboration
w/ inter−collaboration

(c) The ratio of uploaded bytes to downloaded
bytes (y-axis is in log scale)

Fig. 15. The performance analysis of our system.

Our proposed inter-torrent collaboration strategy is as fol-

lows. First, if there exists a directed cycle among a number

of torrents, such as torrents A,B and torrents B, C, D, E in

Figure 14(a), then peers in these torrents can exchange file

chunks through the coordination of the tracker site overlay.

More specifically, a peer that needs service from peers in

other torrents on the cycle does not have to serve these peers

directly, because its contribution can be transfered to these

peers along the cycle with the help of corresponding trackers.

Since the contribution of each peer must be rewarded instantly,

any fraudulent behavior will be identified and punished at

once. Second, when no such cycles exist for a peer q who

wants to get service from peers in other torrents, the peer

can construct such a cycle as follows. Peer q may join these

torrents temporarily and download some chunks of the files,

even if it does not want these files itself. Through the coordi-

nation of corresponding tracker sites, the peer can provide

uploading service for these chunks only, and attribute its

service contribution to the peers it wants to get service from, so

that these peers can get benefit from the peers that q serves and

offer q the service it needs. Thus, a directed neighboring cycle

is constructed. We call this technique bandwidth trading. The

basic idea is that the bandwidth can only be shared through

content downloading/uploading. Since a file chunk can be

served to multiple peers in the system, bandwidth trading is

efficient and the overhead is trivial.

In such multi-torrent collaboration systems, a peer that

has downloaded multiple files can get better service when

downloading a new file (no matter it is popular or not) by

serving the old files it has downloaded to the peer community,

thus addressing the well-known problem of lacking incentives

to seeds. Research [11] and [26] present a similar idea of using

file exchange as an incentive for P2P content sharing. Different

from these studies, our system aims to share bandwidth as well

as content across multiple P2P networks.

C. Performance Evaluation

We evaluate our system design through simulations with the

tracker trace used in previous sections. In the simulations, we

assume seeds use a fair service policy that does not prefer any

peer in any torrent as long as it can serve. Figure 15(a) shows

the downloading failure ratio in the current BitTorrent systems

(without inter-torrent collaboration) and that in our proposed

system (with inter-torrent collaboration), respectively. We only

consider torrents born in the initial period of the trace collec-

tion time in order to study the performance in their whole

lifetime. In this figure, each point in the x-axis denotes a

torrent, sorted in non-ascending order of the corresponding

downloading failure ratio in the tracker trace (without inter-

torrent collaboration). As shown in Figure 15(a), under inter-

14 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 25, NO. 1, JANUARY 2007

torrent collaboration, the downloading failure ratios in most

torrents are actually zero or close to zero. Figure 15(b) shows

the average downloading speeds of peers in different torrents

at a certain time (12:00:01 on 2003-11-15). Each point in the

x-axis denotes a torrent, sorted in non-ascending order of the

average downloading speed of torrents at this time instant.

The system with inter-torrent collaboration clearly provides a

much better and more stable downloading service to clients.

Figure 15(c) shows the peer contribution ratio (defined in

Section III) in two systems. In our proposed system, the peer

contribution ratio is better balanced. These preliminary results

demonstrate that our proposed system design, though without

complicated credit systems, can enhance the current BitTorrent

system significantly.

VI. CONCLUSION

BitTorrent-like systems have become increasingly popular

for content distribution and file sharing, and have contributed

to a large amount of traffic on the Internet. In this paper,

we have performed extensive trace analysis and modeling

to study the behaviors of such systems. We found that the

existing BitTorrent system provides poor service availability,

fluctuating downloading performance, and unfair services to

peers. Our model has revealed that these problems are due

to the exponentially decreasing peer arrival rate and provides

strong motivation for inter-torrent collaborations instead of

simply giving seeds incentives to serve longer. We propose

the design of a new architecture where the tracker sites of

different torrents are organized into an overlay to facilitate

inter-torrent collaboration. Out preliminary simulations have

shown promising results.

APPENDIX

A. The Resolution of the Fluid Model

Equation 7 is a non-homogenous ODE equation system. A

particular solution for 7 is

{

x = d1e
−t/τ ,

y = d2e
−t/τ ,

(28)

where






d1 = −λ0
µ2η

µ−γ+1/τ
−(θ+µη− 1

τ)
,

d2 = λ0

µ−
(θ+µη−1/τ)(µ−γ+1/τ)

µη

.
(29)

The eigen equation is

ψ2 + (µη + θ + γ − µ)ψ + µηγ + θ(γ − µ) = 0. (30)

When the corresponding homogenous equation system has

two different real eigenvalues ψ1 6= ψ2, the resolution can be

expressed as
{

x = aeψ1t + beψ2t + d1e
−t/τ ,

y = c1aeψ1t + c2be
ψ2t + d2e

−t/τ ,
(31)

where


















c1 = −ψ1+θ+µη
µ ,

c2 = −ψ2+θ+µη
µ ,

a = −c2d1+d2−1
c2−c1

,

b = −c1d1+d2−1
c1−c2

.

(32)

When the corresponding homogenous equation system has

two equal real eigenvalues ψ1 = ψ2, the resolution can be

expressed as
{

x = (a + bt)eψ1t + d1e
−t/τ ,

y = (ac1 + bc2 + bc1t)e
ψ1t + d2e

−t/τ ,
(33)

where














c1 = −ψ1+θ+µη
µ ,

c2 = − 1
µ ,

a = −d1,

b = 1−d2

c2
.

(34)

When the corresponding homogenous equation system has

a pair of conjugate complex eigenvalues α±βi, the resolution

can be expressed as
{

x = eαt(c1 cos βt + c2 sin βt) + d1e
−t/τ ,

y = −seαt(c1 cos(βt + φ) + c2 sin(βt + φ)) + d2e
−t/τ ,

(35)

where


















s = 1

µ
√

(α+θ+µη)2+β2
,

φ = tan−1(β
α+θ+µη),

c1 = −d1,

c2 = −1/s−d2+d1 cos φ
sin φ .

(36)

ACKNOWLEDGMENTS

This work is partially supported by the National Science

Foundation under grants CNS-0098055, CNS-0405909, and

CNS-0509054/0509061. Some preliminary results of this work

have been presented in [27]. We would like to thank Mikel

Lzal for providing BitTorrent traces to us. We appreciate

Oliver Spatscheck, Keith W. Ross, and William L. Bynum

for their constructive comments.

REFERENCES

[1] B. Cohen, “Incentives build robustness in BitTorrent,” in Proc. of

Workshop on Economics of Peer-to-Peer Systems, May 2003.
[2] http://www.bigchampagne.com/.
[3] A. Parker, “The true picture of peer-to-peer file sharing,”

http://www.cachelogic.com, 2004.
[4] http://www.gnutelliums.com/.
[5] http://www.kazaa.com/.
[6] http://www.edonkey2000.com/.
[7] E. Adar and B.Huberman, “Free riding on Gnutella,” Xerox PARC, Tech.

Rep., Aug. 2000.
[8] S. Kamvar, M. Schlosser, and H. Garcia-Molina, “The EigenTrust

algorithm for reputation management in P2P networks,” in Proc. of ACM

WWW, May 2003.
[9] R. Ma, S. Lee, J. Lui, and D. Yau, “A game theoretic approach to provide

incentive and service differentiation in P2P networks,” in Proc. of ACM

SIGMETRICS, June 2004.
[10] “Hack kazaa participation level - the easy answer,”

http://www.davesplanet.net/kazaa/.
[11] K. G. Anagnostakis and M. B. Greenwald, “Exchange-based incentive

mechanisms for peer-to-peer file sharing,” in Proc. of IEEE ICDCS,
Mar. 2004.

[12] A. Bellissimo, B. N. Levine, and P. Shenoy, “Exploring the use of
BitTorrent as the basis for a large trace repository,” University of
Massachusetts Amherst, Tech. Rep. 04-41, June 2004.

[13] M. Izal, G. Urvoy-Keller, E. Biersack, P. Felber, A. A. Hamra, and
L. Garc’es-Erice, “Dissecting BitTorrent: Five months in a torrent’s
lifetime,” in Proc. of Passive & Active Measurement Workshop, Apr.
2004.

[14] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips, “The BitTorrent
P2P file-sharing system: Measurements and analysis,” in Proc. of

International Workshop on Peer-to-Peer Systems, Feb. 2005.

GUO et al.: MODELING POPULARITY EVOLUTION AND PERFORMANCE OF BITTORRENT-LIKE FILE SHARING SYSTEMS 15

[15] D. Qiu and R. Srikant, “Modeling and performance analysis of
BitTorrent-like peer-to-peer networks,” in Proc. of ACM SIGCOMM,
Aug. 2004.

[16] X. Yang and G. Veciana, “Service capacity of peer to peer networks,”
in Proc. of IEEE INFOCOM, Mar. 2004.

[17] S. Saroiu, K. Gummadi, R. Dunn, S. Gribble, and H. Levy, “An analysis
of Internet content delivery systems,” in Proc. of USENIX OSDI, Dec.
2002.

[18] S. Saroiu, K. Gummadi, and S. Gribble, “A measurement study of peer-
to-peer file sharing systems,” in Proc. of ACM/SPIE MMCN, Jan. 2002.

[19] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M. Levy, and
J. Zahorjan, “Measurement, modeling, and analysis of a peer-to-peer
file-sharing workload,” in Proc. of ACM SOSP, Oct. 2003.

[20] Z. Ge, D. R. Figueiredo, S. Jaiswal, J. Kurose, and D. Towsley,
“Modeling peer-peer file sharing systems,” in Proc. of IEEE INFOCOM,
Mar. 2003.

[21] L. Massoulie and M. Vojnovic, “Coupon replication systems,” in Proc.

of ACM SIGMETRICS, June 2005.
[22] K. Sripanidkulchai, B. Maggs, and H. Zhang, “Efficient content location

using interest-based locality in peer-to-peer systems,” in Proc. of IEEE

INFOCOM, Mar. 2003.
[23] R. Sherwood, R. Braud, and B. Bhattacharjee, “Slurpie: A cooperative

bulk data transfer protocol,” in Proc. of IEEE INFOCOM, Mar. 2004.
[24] C. Cranor, T. Johnson, and O. Spatscheck, “Gigascope: A stream

database for network applications,” in Proc. of ACM SIGMOD, June
2003.

[25] http://en.wikipedia.org/wiki/BitTorrent.
[26] L. P. Cox and B. D. Noble, “Samsara: Honor among thieves in P2P

storage,” in Proc. of ACM SOSP, Oct. 2003.
[27] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang, “Measure-

ments, analysis, and modeling of BitTorrent-like systems,” in Proc. of

Internet Measurement Conference, Oct. 2005.

Lei Guo received the B.S. degree in space physics
and M.S. degree in computer science from the
University of Science and Technology of China in
1996 and 2002, respectively. He received the S.
Park Graduate Research Award at the College of
William and Mary in 2005. He is currently a Ph.D.
Candidate in the Department of Computer Science
and Engineering at the Ohio State University. His
research interests are in the areas of distributed
systems, peer-to-peer systems, multimedia systems,
and Internet measurement and modeling. He is a

student member of IEEE.

Songqing Chen is an assistant professor in the
Department of Computer Science at George Ma-
son University, Fairfax, VA. His research interests
embrace various subjects in operating systems, dis-
tributed systems, and high performance computing.
Chen received his Ph.D. in Computer Science from
the College of William and Mary. He is a member
of IEEE.

Zhen Xiao received his Ph.D. from Cornell Uni-
versity in January 2001. After that he worked as a
senior technical staff member at AT&T Labs for five
years where he received the ”Research Excellence
Award”. He is now a Research Staff Member at IBM
T.J. Watson Research Center. His research interests
include SIP, multimedia, IPTV, Grid computing,
Web technologies and content delivery, security and
dependability, and reliable multicast. He is a senior
member of IEEE.

Enhua Tan received his B.E. degree in Computer
Science and Technology from University of Science
and Technology of China in 2001, and received his
M.E. degree in Computer Architecture from Institute
of Computing Technology, Chinese Academy of
Sciences in 2004. He is a currently a Ph.D. student
of computer science and engineering at the Ohio
State University. He is a student member of IEEE.

Xiaoning Ding received the B.S. degree and M.S.
degree in computer science from Northwestern Poly-
technical University of China in 1996 and 1998,
respectively. He is currently a Ph.D. student in
Computer Science and Engineering Department of
the Ohio State University. He is a student member
of IEEE.

Xiaodong Zhang is the Robert M. Critchfield Pro-
fessor in Engineering, and Chair of Department
of Computer Science and Engineering at the Ohio
State University. He served as the Program Director
of Advanced Computational Research at the Na-
tional Science Foundation, 2001-2004. He is the
associate Editor-in-Chief of IEEE Transactions on

Parallel and Distributed Systems, and is serving on
the Editorial Boards of the IEEE Transactions on

Computers, IEEE Micro, and the Journal of Parallel

and Distributed Computing. He is a senior member
of IEEE.

