
Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
A Performance Study of Distributed Architectures
for the Quality of Web Services

Valeria Cardellini, Emiliano Casalicchio
University of Rome Tor Vergata

Roma, Italy 00133
fcardellini, ecasalicchiog@ing.uniroma2.it

Michele Colajanni
University of Modena
Modena, Italy 41100
colajanni@unimo.it
Abstract

The second generation of Web sites provides more com-
plex services than those related to Web publishing. Many
users already rely on the Web for up-to-date personal and
business information and transactions. This success moti-
vates the need to design and implement Web architectures
being able to guarantee the service level agreement that
will rule the relationship between users and Web service
providers. As many components of the Web infrastructure
are beyond the control of Web system administrators, they
should augment satisfaction percentage of the assessed ser-
vice levels by relying on two mechanisms that can be in-
tegrated: differentiated classes of services/users, Web sys-
tems with multi-node architectures. The focus of this paper
is on this latter approach. We review systems where repli-
cated Web services are provided by locally and geograph-
ically distributed Web architectures. We consider different
categories of Web applications, and evaluate how static, dy-
namic and secure requests affect performance and quality of
service of distributed Web sites.

1. Introduction

The Web is becoming an important channel for critical
information and the fundamental technology for informa-
tion systems of the most advanced companies and organi-
zations. Many users already rely on the Web for up-to-date
personal, professional and business information. The sub-
stantial changes transforming the World Wide Web from a
communication and browsing infrastructure to a medium
for conducting personal businesses and e-commerce are
making quality of Web service an increasingly critical issue.
Users are not willing to tolerate latency times greater than
eight-ten seconds. Furthermore, their tolerance for latency
decreases over the duration of interaction with a site. This
new scenario motivates the need to design and implement
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architectures being able to guarantee the service level agree-
ment (SLA) that will rule the relationship between users and
Web service providers. The users do not know neither care
of complexity of Web infrastructure and technology. They
complain if the response time becomes too high, there are
many periods of unavailability, the security is not fully guar-
anteed. Because of the complexity of Web infrastructure,
many components could affect the quality of Web services.
Hence, the assessed service levels for all SLA parameters
would require interventions on each component of the Web:
from network technology and protocols, to hardware and
software architectures of Web servers and proxies. As most
components of the Web infrastructure are beyond the con-
trol of Web system administrators, quality of Web services
is very hard to achieve. Network carriers that have a full
control on their backbones can provide SLAs contracts with
their customers based on network availability and guaran-
teed network response times. Web service providers can-
not guarantee analogous contracts because their actions are
limited to a small part of the Web infrastructure. We con-
sider solutions for Web service providers that can act only
on their Web systems. To augment satisfaction percentage
of the assessed service levels, they can rely on two classes
of actions that are not mutually exclusive:

Differentiated Web services. It requires the definition of
classes of users/services, choice of the number of pri-
ority levels, guarantee of different SLAs through pri-
ority dispatching disciplines [6, 15, 20] and monitors
for starvation of low priority services.

Architecture design. The goal is to find the right architec-
ture that guarantees the SLA on all Web users/services.
The three directions are: scale-up by adding memory
and CPU power to the single server, local scale-out by
replicating servers in a local area, global scale-out by
replicating servers in a geographical context.

The focus of this paper is on the architecture design,
while we leave to future work the combination of the two
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previous solutions. As example of applications for stress
testing, we consider three categories of Web sites: Web
publishing sites with static pages, Web sites with static and
dynamic pages, e-commerce sites with some percentage of
secure requests that typically have the most severe SLA pa-
rameters. When these Web services are implemented on
top of locally and geographically distributed Web systems,
accurate design and sophisticated algorithms for traffic con-
trol, load balancing, and request dispatching are necessary.
We analyze performance and scalability of distributed Web
sites that have to guarantee the assessed SLAs for differ-
ent Web services even under high traffic conditions. We
discuss efficiency and limitations of proposed solutions and
compare how different architectural approaches satisfy SLA
performance requirements.

The rest of the paper is organized as follows. In Sec-
tion 2, we outline the differentiated Web service solution to
achieve the assessed SLA for the quality of Web services.
In Section 3 and 4, we propose a classification of locally
and geographically distributed Web architectures, respec-
tively. In Section 5 and 6, we describe the system model
and workload we use for the simulation analysis. In Sec-
tion 7, we present and discuss the results of the analysis for
three classes of Web sites with a mix of static, dynamic and
secure requests. In Section 8, we outline our conclusions
and future work.

2. Differentiated Web services solutions

Most proposals for guaranteeing quality of Web services
look at new Web server architectures that can support dif-
ferentiated scheduling services to enable preferential treat-
ment of classes of users and services. The main motivation
is that first-come-first-served service policies implemented
by traditional Web servers can undermine any improve-
ments made by network differentiated service [6]. Since
overloaded servers affect all requests in the same manner,
a FCFS discipline makes impossible to guarantee SLAs
to preferred clients. To overcome this drawback, priority-
based scheduling schemes can be implemented in the Web
server to provide differentiated SLAs.

The main components of a Web server architecture that
provide differentiated service must include a classification
mechanism to assign different priority classes to incoming
requests, an admission control policy to decide how and
when to reject requests according to their priorities, a re-
quest dispatching policy that decides the order in which re-
quests should be serviced, and a resource dispatching policy
to assign server resources to different classes of priority [6].
Most proposed architectures modify Web servers at appli-
cation or kernel level to allow differentiated control through
dispatching of requests and resources.

A commercial system such as HP’s WebQos [6] provides
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quality of service by using priority levels to determine ad-
mission priority and performance level. The method used
to dynamically classify requests on a per-session basis in-
cludes source IP address, TCP port number, and the re-
quested content. Similar Web server prototypes that support
differentiated services have been proposed in [11, 20].

To enforce SLA constraints, Pandey et al. [15] examine
selective allocation of server resources through the assign-
ment of different priorities to page requests. Menasce et
al. [13] analyze and compare policies that dynamically as-
sign priorities to customers of a commercial Web site by
differentiating between visitors and potential buyers.

Most of the previous results consider Web sites consist-
ing of a single server node. On the other hand, we claim that
popular Web sites cannot rely on a single powerful server
to support SLA for ever increasing request load. Scalabil-
ity, load balancing, and dependability can be only provided
by multiple Web server architectures that distribute intel-
ligently client requests across multiple server nodes. The
main components of a typical multi-node Web system in-
clude a dispatching mechanism to route the client request
to the target Web server node, a dispatching algorithm to
select the Web server node best suited to respond, and an
executor to carry out the dispatching algorithms and sup-
port the relative mechanism. The decision on client request
assignment can be taken at various network levels. In the
following sections, we propose a classification of existing
approaches based on the type of distribution of the server
nodes that compose the scalable architecture that is, local
distribution and global distribution. We limit our attention
on Web sites that use a single URL to make the distributed
nature of the service transparent to the users.

3. Locally distributed Web systems

A locally distributed Web server system, namely Web
cluster, is composed by a tightly coupled architecture
placed at a single location. The Web cluster is publicized
with one URL and one virtual IP address (VIP). This is the
IP address of a Web switch that acts as a centralized dis-
patcher with full control on client requests. The switch re-
ceives the totality of inbound packets for the VIP address
and distributes them among the Web servers through the
mapping from VIP to the actual server address. The goal is
to share the load, and avoid overloaded or malfunctioning
servers. The Web switch is able to identify univocally each
Web server through a private address, that may correspond
to an IP address or to a lower-layer (MAC) address.

Web clusters can provide fine grain control on request as-
signment, high availability and good scalability. Implemen-
tations can be based on special-purpose hardware devices
plugged into the network or on software modules running
on a common operating system. The architecture alterna-
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tives can be broadly classified according to the OSI proto-
col stack layer at which the Web switch operates the request
assignment, that is, layer-4 and layer-7 Web switches. The
main difference is the kind of information available to the
Web switch to perform assignment and routing decision.

� Layer-4 Web switches are content information blind,
because they determine the target server when the
client establishes the TCP/IP connection, before send-
ing out the HTTP request. Therefore, the type of infor-
mation regarding the client is limited to that contained
in TCP/IP packets, that is IP source address, TCP port
numbers, SYN/FIN flags in the TCP header.

� Layer-7 Web switches can deploy content information
aware distribution, by letting the switch establish a
complete TCP connection with the client, examine the
HTTP request and then relay the latter to the target
server. The selection mechanism can be based on the
Web service/content requested, as URL content, SSL
identifiers, and cookies.

Layer-4 Web switches work at TCP/IP level. Since pack-
ets pertaining to the same TCP connection must be assigned
to the same Web server node, the client assignment is man-
aged at TCP session level. The Web switch maintains a
binding table to associate each client TCP session with the
target server. The switch examines the header of each in-
bound packet and on the basis of the bits in the flag field
determines if the packet pertains to a new or an existing
connection. Layer-4 Web switches can be classified on the
basis of the mechanism used by the Web switch to route
inbound packets to the target server and the packet way be-
tween the server and client. The main difference is in the
return way that is, server-to-client.

In two-ways architectures both inbound and outbound
packets are rewritten at TCP/IP level by the Web switch.
Packet rewriting is based on the IP Network Address Trans-
lation approach: the Web switch modifies inbound packets
by changing the VIP address to the IP address of the target
server, while it rewrites the server IP address with the VIP
address in outbound packets. Furthermore, the Web switch
has to recalculate the IP and TCP header checksum for both
packet flows. In one-way architectures only inbound pack-
ets flow through the Web switch, thus allowing a separate
high-bandwidth network connection for outbound packets.
The routing to the target server can be accomplished by
rewriting the IP destination address and recalculating the
TCP/IP checksum of the inbound packet or by forwarding
the packet at MAC level [12].

Layer-7 Web switches work at application level, thus al-
lowing content-based request distribution. The Web switch
must establish a TCP connection with the client and inspect
the HTTP request content prior to decide about dispatching.
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The potential advantages of layer-7 Web switches include
increased performance due to higher cache hit rates [14, 19],
the ability to employ specialized Web server nodes and par-
tition the Web content among the servers [21]. However,
content aware routing introduce an additional processing
overhead at the dispatching entity and may cause the Web
switch to become the system bottleneck, thus limiting clus-
ter scalability [3, 19]. Similarly to the layer-4 solutions,
layer-7 Web switch architectures can be classified on the
basis of the mechanism used by the switch to redirect in-
bound packets to the target server and the way back of pack-
ets from server to client.

In two-ways architectures, outbound traffic must pass
back through the switch. The proposed approaches differ
in the way requests are routed from the Web switch to the
target server. In the TCP gateway approach, an application
level proxy located at the switch mediates the communica-
tion between client and server; the TCP splicing approach
is an optimization of TCP gateway in that data forwarding
occurs at network level. In one-way architectures the server
nodes return outbound traffic to the client, without passing
through the Web switch. This is achieved by allowing the
Web switch to hand-off the TCP connection to the selected
server [14].

4. Globally distributed Web systems

Upgrading content site infrastructure from a single node
to a locally distributed system provides a limited relief be-
cause the network link of the Web site to Internet may be-
come the bottleneck. In order to reduce network impact on
users’ response time and to scale to large traffic volumes,
a better solution is to distribute Web servers over the In-
ternet, namely global scale-out. In this section we consider
two classes of globally distributed Web systems: distributed
Web servers and distributed Web clusters.

A distributed Web servers system consists of geograph-
ically distributed nodes, each composed of a single server.
In these architectures the requests assignment process can
occur in two steps: a first dispatching level where the au-
thoritative Domain Name Server (DNS) of the Web site or
another centralized entity selects the target Web server, and
a second dispatching level carried out by each Web server
through some request redirection mechanism.

DNS-based dispatching was originally conceived for lo-
cally distributed Web systems. It works by intervening on
the address lookup phase of the client request. Load shar-
ing is implemented by translating the site hostname into the
IP address of the selected Web server. When the authori-
tative DNS server provides the address mapping, it can use
various dispatching policies to select the best server, rang-
ing from simple static round-robin to more sophisticated
algorithms that take into account both client and server
0.00 (c) 2001 IEEE 3
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state information [7]. Most implemented distributed Web
servers evaluate client-to-server network proximity, so that
the DNS can return the IP address of the server closest to the
user [9]. The goal is to limit the network latency component
in the response time.

The main problem of DNS dispatching is its limited
control on workload reaching the Web site, because of
hostname-to-IP caching occurring at various network lev-
els. In particular, the authoritative DNS of highly popular
sites can provide only a very coarse distribution of the load
among the Web servers, as it controls less than 5-7% of re-
quests reaching the Web site. Furthermore, heterogenous
Web traffic arrivals due to domain popularity and world time
zones are highly amplified by the geographical contest. In-
deed, a geographically distributed Web site that tends to
serve closest requests only, may risk to be highly unbal-
anced because the amount of request from an Internet re-
gion is strictly dependent on day time. The consequence of
time zones and proximity algorithms alone is to have one or
two highly loaded servers in two regions and other almost
idle servers. To address DNS (centralized) dispatching is-
sues we can add a second level dispatching mechanism. The
most common is a distributed dispatching policy that is car-
ried out by the critically loaded Web servers through some
redirection mechanisms, for example HTTP redirection [7],
or IP tunneling [5].

As an alternative solution we consider a distributed Web
clusters system consisting of geographically distributed
nodes, each composed of a cluster of servers. A distributed
Web cluster has one hostname and an IP address for each
Web cluster. We suppose that requests to a Web cluster are
scheduled through one of the mechanisms described in Sec-
tion 3. Here, we focus on request management among the
Web clusters. We can distinguish the proposed architectures
on the basis of dispatching levels, typically two or three.
The first level dispatching among the Web clusters is typi-
cally carried out by the authoritative DNS of the Web site
or another entity that implements some proximity dispatch-
ing strategy The second level dispatching is carried out by
the Web switches that dispatch client requests reaching the
cluster among the local Web server nodes. Most commer-
cial products that provide global load balancing implement
this class of architectures [9, 12, 17].

The main problem is that dispatching algorithms based
on network proximity are not able to react immediately to
heavy load fluctuations of Web workload that are amplified
by the geographical context. Therefore, it seems convenient
to integrate the two level dispatching architecture with a
third level assignment activated by each Web server through
the HTTP redirection mechanism [8]. This third level dis-
patching mechanism allows an overloaded Web cluster to
easily shift away some portion of load assigned by the first
dispatching level. The third dispatching level is necessary to
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guarantee scalability and load balancing of geographically
distributed Web sites, and to enhance quality of Web ser-
vices by augmenting the percentage of requests with guar-
anteed response time. On the other hand, request redirec-
tion should be used selectively because additional round-
trip time risks to increase latency time experienced by users.
We investigate some mechanisms to limit request reassign-
ments in [8].

5. System models

The main goal of our analysis is to find the main charac-
teristics of the architecture that can guarantee the SLA on
all Web services. To this purpose, we investigate two direc-
tions for system design that is, local scale-out by replicating
Web servers in a local area, and global scale-out by repli-
cating Web servers in a geographical context. We consider
a selection of the previously described multi-node architec-
tures. In particular, we focus on Web clusters with layer-4
Web switch (for sites with static and dynamic requests) and
layer-7 Web switch (for sites with secure requests) for local
scale-out, and distributed Web clusters for global scale-out.

5.1 Web cluster

A Web cluster system consists of a front-end that acts
as a (layer-4/layer-7) Web switch and two levels of server
nodes. The nodes in the first tier work as Web servers, while
the back-end servers on the second level work as applica-
tion or database servers (Figure 1). The authoritative DNS
server translates the hostname site into the IP address of
the Web switch. The addresses of internal server nodes are
private and invisible to the extern. The Web switch, Web
servers, and back-end servers are interconnected through
a local fast Ethernet with 100 Mbps bandwidth. The data
flow in Figure 1 shows that the Web switch assigns client
requests to a Web server node that cooperate with back-end
nodes to produce responses to dynamic requests. We sup-
pose that each Web server stores the same document tree
and that each back-end node provides the same services. As
the focus is on Web cluster performance, we did not model
the details of the external network. To prevent the bridge to
the external network from becoming a potential bottleneck
for the Web cluster throughput, we assume that the system
is connected to the Internet through one or more large band-
width links that differ from that of the Web switch [12].

Each Web server in the cluster is modeled as a separate
CSIM process [18]. Each server has its CPU, central mem-
ory, hard disk and network interface. About 15-20 percent
of the main memory space of each server is used for Web
caching. All above components are resources having their
own queuing systems that allow for requests to wait if CPU,
disk or network are busy. We use real parameters to setup
0.00 (c) 2001 IEEE 4
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Figure 1. Web cluster architecture.

the system. For example, the disk is denoted with the val-
ues of a real fast disk (IBM Deskstar34GXP) having trans-
fer rate equal to 20 MBps, controller delay to 0.05 msec.,
seek time to 9 msec., and RPM to 7200. The main memory
transfer rate is set to 100MBps. Internal network interface is
a 100Mbps Ethernet card. Each back-end server is modeled
as a black-box that provides three classes of service with
different service time. The parameters for each class are
defined in Section 6. The Web server software is modeled
as an Apache-like server, that can support secure connection
based on Netscape’s Secure Socket Layer (SSL). An HTTP
daemon waits for requests of client connections on standard
HTTP port 80 and on port 443 for secure connections.

5.2 Client - Web site interactions

The interactions of the client with the Web site are mod-
eled at the details of TCP connections including both data
and control packets. When a secure connection is requested,
we model all details of communication and Web server
overhead, due to key material exchange, server authentica-
tion, encryption and decryption of public-key and user data.
Since HTTP/1.1 protocol allows persistent connections and
pipelining, all files belonging to the same Web page request
are served on the same TCP connection.

A Web client is modeled as a process that, after activa-
tion, enters the system and generates the first TCP connec-
tion request to the cluster Web switch. The period of visit
of each client to the Web site, namely Web session, consists
of one or more Web page requests. Each page request is for
a single HTML page that may contain a number of embed-
ded objects and may include some computation or database
search. The Web switch assigns a new TCP connection re-
quest to the target server using the weighted round-robin
algorithm [12], while packets belonging to existing connec-
tions are routed according to the binding table maintained
for each connection. The granularity of dispatching at the
Web switch in the static and dynamic scenario is at the client

Proceedings of the 34th Hawaii Internation
0-7695-0981-9/01 $1
page request level because of the HTTP/1.1 protocol, while
it is at the client session level when secure requests are sub-
mitted, so as to minimize the authentication overhead re-
quired by the SSL protocol. If no HTTP process/thread is
available at the Web server, the server forks the HTTP dae-
mon and dedicates a new process for that connection. The
client will submit a new page request only after it has re-
ceived the complete answer that is, the HTML page and all
embedded objects. Between two page requests we intro-
duce a user think time that models the time to analyze the
requested page and decide (if necessary) for a new request.

The disconnection process is initiated by the client when
the last connection of the Web session is closed. The HTTP
process of the server receives the disconnection request,
closes the TCP/IP connection and then kills itself. The
client leaves the system and its process terminates.

5.3 Distributed Web cluster

The distributed Web cluster for global scale-out initia-
tives consists of an authoritative DNS server and some Web
clusters placed in strategic Internet regions. Each cluster is
modeled as described in Section 5.1. The DNS server ex-
ecutes the first-level assignment by mapping the hostname
into the virtual IP address of one of the Web switches. To
reply to the name resolution request issued by the client, the
DNS uses a proximity algorithm that assigns the Web clus-
ter closest to the client. The requests arrive then to the Web
switch of the target cluster, that executes the second level
assignment. We divide the Internet into 4 geographical re-
gions located in different world areas. Each region contains
a Web cluster and various client domains. The details of
this system are in [8].

6. Workload model

The analysis considers three main classes of load. A Web
site may provide one or a mix combination of the following
Web services.

Static Web services. Requests for HTML pages with some
embedded objects. Typically, this load has a low im-
pact on Web server components. Only requests for
very large files are disk and network bound.

Dynamic Web services. Requests for HTML pages, where
objects are dynamically generated through Web and
back-end server interactions. Typically, these requests
are CPU and/or disk bound.

Secure Web services. Requests for a dynamic page over a
secure connection. Typically, these services are CPU
bound because of overheads to setup a secure connec-
tion and to execute cryptography algorithms.

al Conference on System Sciences - 2001
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Special attention has been devoted to the workload
model that incorporates all most recent results on the char-
acteristics of real Web workload. The high variability
and self-similar nature of Web access load is modeled
through heavy tail distributions such as Pareto, lognormal
and Weibull functions [2, 4, 16]. Random variables gener-
ated by these distributions can assume extremely large val-
ues with non-negligible probability.

The number of consecutive Web pages a user requests
from the Web site (page requests per session) follows the
inverse Gaussian distribution [16]. The user think time is
modeled through a Pareto distribution [4, 16]. The num-
ber of embedded objects per page request including the base
HTML page is also obtained from a Pareto distribution [16].
Web files typically show extremely high variability in size.
The function that models the distribution of the object size
requested to the Web site varies according to the object
type. For HTML objects, the size is obtained from a hy-
brid function, where the body follows a lognormal distribu-
tion, while the tail is given by a heavy-tailed Pareto distribu-
tion [2, 4, 16]. The size distribution of embedded objects is
obtained from the lognormal distribution [4]. Table 1 sum-
marizes the parameters’ value we use in the so called static
workload model.

Category Distribution Parameters

Pages per session Inverse Gaussian � = 3:86, � = 9:46

User think time Pareto � = 1:4, k = 1

Objects per page Pareto � = 1:245, k = 2

HTML object size Lognormal � = 7:630, � = 1:001

Pareto � = 1, k = 10240

Embedded object size Lognormal � = 8:215, � = 1:46

Table 1. Static workload model.

A dynamic request includes all overheads of a static re-
quest and overheads due to back-end server computation to
generate the dynamic objects. We consider three classes of
requests to the back-end nodes that have different service
times and occurrence probability. Light, middle-intensive
and intensive requests are characterized by an exponential
service time on back-end nodes with mean equal to 16, 46
and 150 msec, respectively. The three classes represent
10%, 85%, and 5% of all dynamic requests, respectively.
These last parameters are extrapolated by the logfile traces
of two real e-commerce sites. Table 2 summarizes the pa-
rameters of the so called dynamic workload model.

Category Mean Service Time Frequency

Light Intensive 16 msec. 0.1
Medium Intensive 46 msec. 0.85
Intensive 150 msec. 0.05

Table 2. Dynamic workload model.
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Secure transactions between clients and Web servers in-
volve the SSL protocol. Our model includes main CPU and
transmission overheads due to SSL interactions, such as key
material negotiation, server authentication, and encryption
and decryption of key material and Web information. The
CPU service time consists of encryption of server secret key
with a public key encryption algorithm such as RSA, com-
putation of Message Authentication Code through a hash
function such as MD5 or SHA, and data encryption through
a symmetric key algorithm, such as DES or Triple-DES.
Most CPU overhead is caused by data encryption (for large
size files), and public key encryption algorithm (RSA algo-
rithm), that is required at least once for each client session,
when the client has to authenticate the server. The transmis-
sion overhead is due to the server certificate (2048 bytes)
sent by the server to the client, the server hello and close
message (73 bytes), and the SSL record header (about 29
bytes per record). Table 3 summarizes the throughput of the
encryption algorithm used in the secure workload model.

Category Throughput (Kbps)

RSA(256 bit) 38.5
Triple DES 46886
MD5 331034

Table 3. Secure workload model.

The workload models are mixed together to emulate
three scenarios: static scenario characterized by static
workload only; dynamic scenario characterized by a mix
of static (50%) and dynamic (50%) workload; secure sce-
nario characterized by a mix of static (50%) and secure
(50%) workload. The secure workload consists of dynamic
requests only.

7. Performance analysis

SLA in terms of performance is typically measured as
the K-percentile of the page delay that must be less than
Y seconds. Typical measures are 90- or 95-percentile of
the requests that must have a delay at the server less than
2-4 seconds, while 7-8 seconds of response time (includ-
ing also the time for the address lookup phase and network
transmission delay) are considered acceptable SLAs at the
client side.

In the design of a Web site it is necessary to know the
maximum number of clients per second that the system
could serve with the requested SLA. We referee to this value
as the break-point for the Web site. To analyze when the
network connection of the Web site to Internet starts to be-
come a bottleneck, we use the peak throughput that is, the
maximum Web system throughput measured in MBytes per
second (MBps). Over certain peaks, it is necessary to pass
from a locally to a geographically distributed Web system.
0.00 (c) 2001 IEEE 6
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However, it is reasonable to consider a geographical distri-
bution even when the throughput in bytes begins to require
more than half of a T3 connection that is, 45 Mbps.

In the following sections we discuss a methodology to
tune the system for Web system configurations, so as to
achieve acceptable SLA performance for the workload sce-
narios described in Section 6.

7.1 Static scenario

Figure 2 compares the 90-percentile of page delay for
different Web cluster configurations. This figure shows that
a Web cluster with less than 8 servers does not guarantee
performance SLA. We observe that when the system with
4 server nodes begins to be overloaded, corresponding to
190 clients per second (cps), if we scale to 8 or more Web
servers, the 90-percentile of page delay decreases of one
order of magnitude, from 11.6 seconds to 1.35 seconds.
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Figure 2. Static scenario: 90-percentile of page delay.

When a Web cluster with 4 nodes receives more than 160
clients per second, the system is overloaded. Figure 3 indi-
cates that over that load threshold the peak system through-
put decreases dramatically. The throughput for a Web clus-
ter with 8 and 16 nodes continue to increase for higher num-
bers of client arrivals. However, the resulting throughput is
much lower than the double of that related to the Web clus-
ter with 4 nodes. The motivation is that the system with 4
nodes has a utilization much higher than that of the system
with 8 and 16 nodes.

However, the main goal of Figure 3 is to demonstrate
that a Web cluster with four servers requires a T3 Inter-
net connection. When we scale-out the system to more
than a certain number of servers, the Web cluster requires
a larger bandwidth connection or (better) a geographically
distributed Web site. Otherwise, the risk is that the SLA is
not guaranteed because of the network latency. However,
we will see that passing from a locally to a geographically
0-7695-0981-9/01 $1
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Figure 3. Static scenario: Peak system throughput.

distributed Web system causes a relatively high loss of per-
formance. To this purpose, in Figure 4 we compare 90-
percentile of page delay at a Web cluster and at a geograph-
ically distributed Web cluster. Both architectures have the
same number of server nodes and are subject to same static
workload with an arrival of 400 clients per second.

To model a geographical distribution and different time
zones, we divide the Internet into four world areas. Each
area contains a Web cluster with four Web server nodes and
various client domains. To represent the variability of traffic
coming from different regions, we assign each client to one
Internet region with a popularity probability that depends
on the day hour in each time zone [8]. The popularity curve
is taken from [1]. In the figures we consider four consec-
utive hours starting from 24pm until 3am. Each region is
supposed to be in a time zone shifted of 6 hours from the
previous region. Due to different connection popularities,
in the considered four hours we have the following proba-
bilities of receiving requests from each of the four regions:
hour 24pm, 0.26, 0.08, 0.26, 0.4; hour 1am, 0.18, 0.13, 0.26,
0.43; hour 2am, 0.1, 0.17, 0.28, 0.45; hour 3am, 0.06, 0.2,
0.31, 0.43. Figure 4 evidences the difficulties of geographi-
cally architectures: at any of the four hours, the page delay
is much higher than that guaranteed by the Web cluster. One
motivation for this result is that request dispatching among
the Web clusters is based on network proximity only that
is, clients requests are assigned to the closest Web cluster.
Although this policy is implemented in most real systems
(e.g., [9]), the consequence is that the distributed Web clus-
ter is highly unbalanced when the sources of traffic requests
from the four regions are more skewed, say Hour 2am in
our experiments. The result motivates the search for more
sophisticated algorithms for geographically load balancing.
0.00 (c) 2001 IEEE 7
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Figure 4. Web cluster vs. Distributed Web cluster.

7.2 Dynamic scenario

Dynamic requests are served through the cooperation of
Web and back-end server nodes. Looking at Table 2, we
can expect that in this scenario, the system bottleneck is at
the back-end level. Nevertheless, in the first set of experi-
ments we configure the Web cluster with the same number
of Web server (ws) and back-end (be) nodes. The goal is
to find the break-point for the system, thereby motivating
an increase in the number of back-end nodes that avoids the
system bottleneck.
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Figure 5. Dynamic scenario: 90-percentile of page delay.

Figure 5 shows that for a Web cluster with 8 servers at
each level the break-point is 130 cps, when the 90-percentile
of page delay is equal to 3.6 seconds. With 16 nodes at
each level, we scale the break-point to 300 cps (4 seconds
for page delay). This threshold is more than double than
the previous limit. If we compare the results of static versus
dynamic scenario, we may observe that, without an appro-
0-7695-0981-9/01 $1
priate tuning of the system, performance decreases up to
50%. For example, in static scenario the break-point with
8 nodes is up to 250 cps, while in dynamic scenario the ac-
ceptable load halves that is, 130 cps. Figure 6 shows the
peak throughput of the Web cluster. Analogously to the
static scenario, a 16 node cluster needs a large bandwidth
network or a geographically distributed architecture. For
Web clusters with 4 and 8 nodes the dramatical crash of the
system due to the over-utilization is evident.
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Figure 6. Dynamic scenario: Peak system throughput.

The next step is to tune the number of back-end nodes to
reduce the bottleneck. In Figure 7, we start from an over-
loaded system with a 90-percentile of page delay of about
100 seconds and increase the number of back-end nodes un-
til an acceptable page delay is reached. The starting point is
a cluster with a number of back-end nodes (num be) equal
to the number of Web server nodes (num ws), then we in-
crease the ratio between num be and num ws from 1.5 to 5.
Figure 7 shows that a cluster composed by 4 Web servers
and 10 back-end nodes can manage the high workload con-
dition, while with 8 Web server nodes we need up to 20
back-end nodes. When the ratio is over 4 Web back-end
servers for each Web server, the performance begins to dete-
riorate because the front-end nodes become the bottleneck.

7.3 Secure scenario

In the last set of experiments we evaluate the perfor-
mance of a Web system, say an e-commerce site, that is
subject to a mix of static, dynamic and secure workload.
As for the previous scenario, we first aim at discovering
the break-point of the system and then we pass to discuss
a methodology to tune the system for performance SLA.
For the scenarios subject to half of secure requests, the bot-
tleneck of the system is represented by the CPU of Web
servers that must implement all secure connections and data
encryption/decryption operations.
0.00 (c) 2001 IEEE 8
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Figure 7. Dynamic scenario: 90-percentile of page delay
for system tuning.

Figure 8 shows that the operations of encryption and de-
cryption are very critical tasks. A very limited increase
in client arrivals is sufficient to congestion CPU system’s
queues. The motivation for this critical system behavior
is that each new secure session requires an authentication
procedure through the computationally expensive RSA al-
gorithm. As expected, the admitted arrival rate is about half
of the load supported by a Web cluster subject to a dynamic
scenario (in which half requests are not secure).

Although Figure 8 shows that at the break-point the 90-
percentile of page delay is about 2 seconds, we have to con-
sider that the setup of a new SSL session requires an ex-
change of 7 messages. Moreover, each successive object (if
the session ID is still valid) requires an exchange of 5 mes-
sages. Hence, network delays have an impact on the page
response time experimented by the client much higher than
that corresponding to the previous two scenarios.
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Figure 8. Secure scenario: 90-percentile of page delay.
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Since for the secure scenario the bottleneck is repre-
sented by the Web server nodes, we can reduce the number
of back-end nodes. To this purpose, we consider three archi-
tectures where the number of back-end nodes is a fraction of
the Web server nodes number that is, 0.5, 0.75, and 1 ratios.
Figure 9 shows that the best configuration is achieved for
the 0.75 ratio, say 12 back-end and 16 Web server nodes.
Below this ratio, the back-end nodes become the system
bottleneck again.
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Figure 9. Secure scenario: 90-percentile of page delay
for system tuning.

7.4 Significance of this performance study

From the performance study carried out in this section
we can take the following main recommendations.

� To dimension and manage Web system architectures
for static scenarios is not a big issue, even if Web sites
have to serve very large files.

� When we pass to consider a dynamic scenario, the dif-
ficulty of choosing the right dimension of the system
for SLA augments. The main reason is that a dynamic
request can have a service time of two order of mag-
nitude higher than a static request with not negligible
probability. Overprovisioning of the system with re-
spect to that required by the average load is reasonable
if we want to guarantee SLA to all classes of users. In
this case, the main problem is to choose the right ratio
between Web server and back-end nodes. As a rule of
thumb, we can reason on the basis of average service
times even if mean values are not always realistic when
heavy-tailed distribution functions are involved. An
empiric demonstration of this result is given by Fig-
ure 7 where we see that when the dynamic load rep-
resent four-five times the static load, we need at least
10.00 (c) 2001 IEEE 9
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two back-end servers for each Web server. At the other
extreme, we have that the maximum number of Web
servers per back-end is four. After this threshold, the
Web server node becomes the system bottleneck.

� The secure scenario is the most severe. This was cer-
tainly expected, even if we were surprised to observe
that even a very slight increment of the load could have
crash consequences on the Web site (see Figure 8). For
this reason, we conclude that Web sites that provide
secure services are the only systems for which over-
provisioning is highly reasonable in order to guarantee
SLA.

� When we consider systems with a large number of
server nodes, the network connection risks to be the
system bottleneck, so we have to consider a geograph-
ically distributed Web system. Passing from a locally
to a geographically distributed Web system, we have
to take into account the performance loss of these lat-
ter architectures. We have seen that with present poli-
cies for geographic load balancing this loss can be
extremely high. For example, if we have N server
nodes in a Web cluster, we can even require M = 3N
servers geographically distributed to guarantee analo-
gous SLAs. We feel that this result can be improved
by using more sophisticated algorithms for geograph-
ically load balancing. However, it seems difficult to
reach M=N ratios below 1:5.

8. Conclusions

This paper analyzes which locally and geographically
distributed Web systems can achieve SLA for all users and
services. Unlike other researches focusing on differenti-
ated Web service approaches that favor only some classes
of users and/or services, our goal is to design a distributed
Web architecture that is able to guarantee the assessed SLA
for all client requests. As examples of application of the an-
alyzed systems and management policies, we consider Web
sites with a mix of static, dynamic and secure requests.
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