
A Performance Study of Software and Hardware

Data Prefetching Schemes*

Tien-Fu Chen

Department of Computer Science

and Information Engineering

National Chung Cheng University

Chiayi, Taiwan, R.O.C.

Abstract

Prefetching, i.e., exploiting the overlap of processor com-

putations with data accesses, is one of several approaches

for tolerating memory latencies. Prefetching can be ei-

ther hardware-based or software-directed or a combination

of both. Hardware-based prefetching, requiring some sup-

port unit connected to the cache, can dynamically han-

dle prefetches at run-time without compiler intervention.

Software-directed approaches rely on compiler technology

to insert explicit prefetch instructions. Mowry et al.’s soft-
ware scheme [13, 14] and our hardware approach [1] are two

representative schemes.

In this paper, we evaluate approximations to these two

schemes in the context of a shared-memory multiprocessor

environment. Our qualitative comparisons indicate that both

schemes are able to reduce cache misses in the domain of

linear array references. When complex data access patterns

are considered, the software approach has compile-time in-

formation to perform sophisticated prefetching whereas the

hardware scheme has the advantage of manipulating dynamic

information. The performance results from an instruction-

Ievel simulation of four benchmarks confirm these obser-

vations. Our simulations show that the hardware scheme

introduces more memory traffic into the network and that

the software scheme introduces a non-negligible instruction

execution overhead. An approach combining software and

hardware schemes is propos@ it shows promise in reducing

the memory latency with least overhead.

1 Introduction

Prefetching has been shown to be one of several effec-

tive approaches that can be used to tolerate large memory

latencies. Prefetching hides (part o~ the memory latency by

exploiting the overlap of processor computations with data

accesses. Whether prefetching should be hardware-based or
software-directed or a combination of both is an interesting

question for the architecture community.

Hardware-based prefetching [1, 8] requires some support

unit connected to the cache but little modification to the

processor. Its main advantage is that prefetches are handled

dynamiczdly at run-time without compiler intervention. The

drawbacks are that extra hardware resources are needed

and that memory references for complex access patterns are

“This work was supported in pan by NSF Grant CCR-91 -01541 and by

Apple Computer, Inc.

Jean-Loup Baer

Department of Computer Science

and Engineering

University of Washington

Seattle, WA 98195

difficult to predict. In contrast, software-directed approaches

[4, 9,11,13,14, 15] rely on compiler technology to perform

static progmm analysis and to selectively insert prefetch

instructions. The drawbacks are that there is some non-

negligible execution overhead due to the extra prefetch

instructions and that some useful prefetchilng cannot be

uncovered at run-time.

Mowry and Gupta’s software [13, 14] and Baer and Chen’s

hardware [1] approaches are two representative prefetching

schemes. The hardware scheme that we use in this paper is a

slight enhancement, described in the next section and in more

detail in [3], to the one we proposed originally,, The software

scheme is our “interpretation” of Mowry et al.’s compiler

algorithm and does not reflect advances in the algorithm

posterior to its publication. We first compare the two schemes

qualitatively, focusing on design aspects. A quantitative

evaluation is then performed by a direct-execution simulation

of three SPLASH benchmarks and of the Matnnat kernel in a-

shared-memory multiprocessor environment. The metrics of

interest include the effectiveness of prefetching, the increase

in network traffic, and the performance sensitivity to a range

of memory Iatencies. We also discuss means of combining

both approaches.

In the domain of Iinezu array references both hardware and

software schemes are able to generate prefetches to reduce

cache misses. When complex data access patterns are con-

sidered, the software approach may have more compile-time

information to perform sophisticated prefetching whereas the

hardware scheme has the advantage of manipulating dynamic

information. The software scheme might suffer from a code

expansion problem but the predictability that the prefetched

data will be used is greater than in the hardware solution. Our

performance results confirm these qualitative observations.

Our results also show that hardware prefetching introduces

more memory traffic into the network than software prefetch-
ing. Our simulations indicate that an approach combining

software and hardware schemes is very promising in reducing

the memory latency with least overhead.

The rest of the paper is organized as follows: the next W-

tion gives some background information on data prefetching.

In Section 3, we compare the two schemes in a qualitative

fashion. Section 4 describes the evahtation methodology.

Section 5 presents simulation results and explores the impact
of varying memory latencies, and side effects that prefetch-

ing can bring up. Section 6 proposes a way of combining

the software and hardware schemes. Finally, we conclude in

223

1063-6897/94 $03.0001994 IEEE

Section 7.

2 Data Prefetching- The two selected schemes

Software-directed Prefetching approaches are imple-

mented as an optimization phase of a compiler. Prefetch

instructions, loading data in the cache in a non-binding fash-

ion, are inserted several cycles before their corresponding

memory instructions. Portert3eld [15] showed that the in-

tuitive idea of inserting prefetches for array references one
iteration ahead in the most nested loops led to too much

overhead. The time to prefetch should depend on memory

latency and loop execution time [11, 4]. Gomish et al. [9]

proposed a conservative algorithm to find the earliest point

before a loop that an entire subarray could be prefetched.

In Mowry et al.’s approach [14], a compiler algorithm

identifies those data references that are likely to be cache

misses and prefetches are inserted only for them. Specifi-

cally, the focus is on array accesses whose indices are linear

functions of the loop indices. The algorithm performs data

reuse analysis and then derives, based on parameters such as

cache and block sizes, a set of accesses that belong to an it-

eration space in which locatity is preserved among accesses.

Once the locality is known, a prefetch pre&cate for each

reference that would lead to a cache miss is introduced in

the loop for determining if the prefetch should be executed

in a particular iteration. Loop splitting may be performed

in order to reduce the computational cost of evaluating the

predicates. Then prefetches are scheduled within the loop by

taking into account the memory latency and estimated loop

execution time.

To our knowledge, Mowry et al.’s approach is the best

software prefetch algorithm currentty available. We will

use their framework as the basis of our comparison. We

refer to our interpretation of their approach as the” software

scheme.”

In many Hardware-based Prefetching schemes,

prefetches are generated on the basis of the access to the

current cache block. Smith [17] studied variations on the

one block lookahead (OBL) policy, i.e., upon referencing

block i, block i + 1 is to be prefetchcd. An extension to

OBL where several consecutive data blocks are prefetched

in FIFO stream bufers has been proposed by Jouppi [10].

In OBL and extensions, miss rates can be reduced at the

expense of some increase in memory traffic. These schemes

take advantage of limited (sequential) spatial locality but do
not deal with large strides. The use of stride information,

e.g., carried by vector instructions, led Fu and Patel [7,8] to
propose prefetch strategies for vector and scalar processors.

We have proposed a more elaborate approach[l], called

lookahead data prefetching, of which a slightly expanded

version will be the “hardware scheme” for our evaluation.

This scheme combines the advantages of stride information
and instruction lookahead.

The essential hardware component is a support unit for

a conventional data cache whose design is based on the
prediction of the instruction execution stream and associated

operand references in load instructions. The support unit is
not on the criticat path and therefore will not contribute to an

increase in the processor cycle time. A reference prediction

table (RPT) (cf. Figure 1), organized as a regular cache,

records the referencing patterns. The RPT will be accessed

ahead of the regular program counter (PC) by a Iookahcad

program counter (LA-PC). The LA-PC is incremented and

-- -

~

Figure 1: Structure of the hardware prefetching

maintained in the same fashion as the PC with the help

of a dynamic branch prediction mechanism. Each RPT

entry contains the reference prediction information for the

corresponding access instruction. A times field is provided

in each entry to indicate the number of iterations between

the LA-PC and PC when a prefetch is generated [3]. The
key to hiding memory latency is to keep enough distance,

at least the memory latency time, between PC and LA-PC

so that the prefetched data arrives just, or slightly before, it

is needed. A system parameter, the LA-limit, set to a value

slightly larger than the memory latency serves as an upper

bound on the distance between PC and LA-PC.

3 Qualitative Evaluation

3.1 Identifying Cache Misses

The success of software prefetching depends primarily on

identifying and inserting prefetch instructions only for those

accesses that are most likely to generate cache misses. To

that effect, the software scheme exploits three types of reuse

temporal, spatial, and group. Since reuses do not guarantee

locality [19], these reuses are mapped to data locality by

taking into account the loop iteration count and the cache

size. To illustrate the concept of reuse, let us consider the

loop in Figure 2 (a). The accesses to X[i] have spatiat

reuse since the same cache line is reused in consecutive

iterations. Accesses to Y [i] and Y[i+ 1] share group reuse

and the access Z has temporal reuse since it is referenced in

different iterations.

While misses for memory accesses with spatial reuse

are easily determined, the identification of cache misses

for accesses with temporal and group reuse is rendered
more complicated by other factors such as set associativity

and replacement policy. Moreover, conflict misses due to

self-interference from the same array references or cross-

interference from different arrays are not predictable at all.

Overall, the software scheme can be successful in identifying
most compulsory misses and some of the capacity misses

for linear array references, but is unable to handle conflict
misses.

In contrast, the hardware scheme has no information that

atlows it to avoid unnecessary prefetches. However, there
is no CPU-overhead associated with these extra prefetches

as long as they are not on the critical path of the processor.
Although prefetches are suppressed when the data block is

already found in the cache, there remains the drawback that

the additional lookup of thecachetag dirwtory may still delay

demand cache accesses or data refills from memory modules.

Furthermore, since the prefetches have no knowledge of

potential reuse, the hardware scheme is more likely to bring

224

(a) A loop example

fori=Oto255

X[i] = Y[i+l] + Y[i+2] - Z
end

(b) Instrumented code

fori=Oto3by2

prefetch(&X[i])

prefetch(&Y[i+l])
end

fori=Oto251by2

prefetch(&X[i+4])
prefetch(&Y[i+5])
X[i] = Y[i+l] + Y[i+2] - Z
X[i+l] = Y[i+2] + Y[i+3] - Z

end
for i = 252 to 255 by 2

X[i] = Y[i+l] + Y[i+2] - Z

X[i+l] = Y[i+2] + Y[i+3] - Z

}

prologue

/

main

loop

}

epilogue

Figure 2 Example of instrumented loop

data that are not useful. On the other hand, the hardware

mechanism can prefetch data that have been replaced due to

conflict misses.

3.2 Prefetch Instruction and Predicate

Once a potential cache miss has been identified, the
software scheme inserts a prefetch instruction. If accesses

have spatial or group locality in the same cache line, only the

first access to the line will result in a cache miss and only one

prefetch instruction should be inserted. However, testing for

this condition, i.e., computing a prefetch predicate, can be

very expensive mostly if it occurs in an inner loop. Instead,

the compiler will generally perform loop splitting and loop

unrolling (or loop peeling).

The instrumented code of the previous example is shown
in Figure 2 (b). We assume that a cache line holds two

array elements, and that the memory latency requires the

prefetch to be scheduled four iterations ahead. We split the

original loop in three sections prologue, main, and epilogue.

The prologue prefetches the initial data set for the first four

iterations. The main loop consists of the largest portion of

the loop execution where the loop is in a steady state, that

is, the demand of data can be satisfied by those prefetches

occurring several iterations ahead. Finally, the epilogue

finishes the last four iterations without any prefetching.

After the original split, the loops are unrolled by a factor

of two in order to eliminate the execution of the prefetch

condition (i mod 2) = O. One consequence of loop splitting
and unrolling is that the code will expand significant y. This

may result in an increase in the I-cache miss ratio and may

introduce extra spilling of store/load instructions due to an

increase in register pressure.

Another potential difficulty is that the prefetching refer-

ences are not necessarily aligned on a cache line boundary

(cf., X[i] and Y[i+l] in the example).

An advantage of the hardware scheme is that it executes
the original loop without modification. However, at least two

iterations are required before obtaining correct strides. There

is no equivalent to the prologue as the hardware scheme

prefetches the (initial) data by letting the LA-PC move

gradually several iterations ahead of the PC. When the loop is

in steady state, i.e., in the main loop, prefetching is performed

in a similar way in both schemes. One important drawback

of the hardware approach is that the system still continues to

prefetch data even in the last iterations (corresponding to the

epilogue), since the hardware is unable to knc~w when the

loop will end.

3.3 Scheduling Prefetches

Prefetches should be issued early enough to hide memory

latency but not too early so that they do not dkplace useful

data or are replaced before use. The software algorithm

usually schedules prefetches ahead by a number of iteration~

1$1 where 6 is the memory latency ands is the estimated

execution time of the loop body. As a result, the software

scheme prefetches a data item at least one iteration before it

is used. The prefetch is usually placed immediately before or

after a corresponding reference to minimize the computation

cost of the effective address. A window of vulnerability is

left open between the arrival time of the prefetched data and

its actual use. During this time window, the prefetched data

can be displaced or it can displace some data that is accessed

during that time.

The hardware scheme has a more flexible scheduling. As

in the software scheme, a prefetch can be identified several
iterations ahead if the memory latency is greater than the

loop execution time (recall the times field in the RPT). If

the latency is small, as for example in a multi-level cache
hierarchy, the prefetching can occur in the same iteration as

the load. Thus, in general, the data will arrive at the cache

at a time closer to its actual use than in the software scheme.

Therefore there will be fewer unwanted replacements in the

cache, and the prefetches will be more spaced in time. We

should note however a drawback of the hardware scheme,

namely its reliance on good branch prediction to predict the

look-ahead St.IWUTL

A potential advantage of the software scheme is that more

aggressive program-specific prefetches can be supported.

The software solution may be able to provide more flexible
prefetching, such as pointer-chasing for linked lists, block

prefetches (the prefetching size being determined in terms

of semantic object instead of cache line size), and can

take advantage of data reorganization. MowIry and Gupta

[13] have shown the success of several strategies by code-

specific and programmer-directed techniques. However, it is

still unknown whether the techniques can be automated for

general applications without programmers’ intervention.

3.4 Prefetching in Multiprocessors

Thus far we have been focusing on prefetching for unipro-
cessors. When we consider a multiprocessor environment,
additional factors come into play: (1) prefetches increase
memory traffic, (2) prefetching of shared data items can

bring additional coherence traffic, (3) invalidation misses

are not predictable at compile time, and (4) dynamic task

scheduling and migration policies are detrimental to the

efficiency of prefetching.

‘fhe first factor, additional memory traffic, stems from

the prefetching of unnecessary data (mostly in the hardware
scheme) and from the early displacement and later recall

of useful data (mostly in the software scheme). The in-

creased memory traffic has more of a performance impact

225

in a multiprocessor environment since it contributes to the

saturation of the interconnmt between the processors and

main memory. Tullsen and Eggers [18] have shown that

the prefetching benefits are limited if memory bandwidth

is a primary resource (e.g., in a bus-based shared memory

multiprocessor). We will examine in Section 5.3 the issue of

increase in the memory traffic when the available bandwidth

is not as limited as that of a single shared-bus.
The increase in coherence traffic is difficult to avoid in

both approaches. The problem arises from the same sources

as that of the increase in memory traffic. A prefetched data
item may need to be invalidated before it is used and an

exclusive-prefetch causes invalidation misses on data that

might yet have to be used in other processors. If a relaxed

consistency model is assumed, write propagations are usually

delayed until synchronizations. In this case, the first situation
is equivalent to the attempt at controlling data that arrive at

the cache just in time for its use. The second situation occurs

when there is high contention for some shared writable data.

Approaches, such as binding prefetch [9], avoid the problem

by suppressing prefetches that may have data and control

dependencies of accesses in other processors but they are

overly conservative.
The fact that invalidation misses are not predictable at

compile time is a weak point of the software approach, since it

lacks the dynamic information necessary to initiate prefetches

for missing data that have been invalidated. Restructuring the

&ta to alleviate the effects of false sharing [6] might partially

remedy the situation. On the other hand, the hardware scheme

should be able to fetch back the data that were invalidated, if

the state information mandates the prefetching.
Prefetching in parallel programs scheduled statically can

be handled by both approaches. Dynamic task scheduling and
task migration, and in particular fine grain task scheduling,

will be very detrimental to the efficiency of prefetching since
processor assignments may change before the prefetched

data in the cache has been used. The problem is more critical

to the hardware scheme which requires past access histories

stored in the RPT, a cache-like table.

In summary, the software scheme is able to identify access

locality for generating prefetches in the domain of linear

array references at compile time, whereas the hardware

scheme dynamically determines when and what to prefetch.

However, the software scheme may suffer from a code

expansion problem while the hardware scheme cannot predict
as well the usefulness of the data it prefetches. The two

approaches face the problems of increasing memory and

coherence traffic in a multiprocessor environment.

4 Quantitative Evaluation Methodology

4.1 Architectural Models

The architecture that we assume is a shared-memory

multiprocessor. It includes 16 MIPS R3000-like processors
connected to memory modules through an interconnection

network. We assume that instructions and private data
references hit in a local memory with the prcwessor incurring

no time penalty. The cache hierarchy is used only for

storing shared data. Cache coherence is maintained using

a full directory protocol [2] distributed among the memory
modules. Prefetched data are put into the caches so that the

data still remain visible to the cache coherence protocol.

We experimented with three architectural choices: base-

line caches, caches with hardware prefetching, and caches

with software prefetching. In prefetching caches, prefetching

was performed for read misses only, not including exclusive-

prefetching. The default consistency model is weak con-

sistency [5] under which most of the write latency can be

hidden. Each cache-network interface has a prefetch issue

buffer which can hold up to 16 prefetches. The prefetch
request will check the tag directory in the cache and will

be forwarded to the memory system if there is no matched

cache line. When the buffer is full incoming prefetches are

just discarded. Each processor has a 64K-byte data cache,
which is direct-mapped and copy-back with a cache line size

of 16 bytes. The caches are lockup-free [12], thus allowing

multiple outstanding data requests. A 16-entry outstanding

request list (ORL) is used to keep track of pending requests,

some of which might then become hit-wait accesses when an

actual load hits on a pending request but still stalls waiting
for the data. The stall time incurred by a hit-wait access will

be referred to as hd-wait time. Reads on actual misses or on

hit-wait accesses are blocking.

We assume that the memory bandwidth is sufficient and

that a fixed latency time is used when a request travels

through the network. The one-way latency time betwem

caches and the global memory modules is 40 cycles. Hence,

a reference that misses in caches incurs a total latency of at

least 80 cycles (L~). A read miss to a dirty block owned by

another cache or a write request to a block that is already

cached elsewhere will need at least two network round trips,

i.e., 160 cycles. Although we do not model the contention

in the network, we do take into account interference at the

caches and at the memory directories since each cache and

directory module can process only one request per cycle.
Lo&/unlock and barrier requests are handled using a queue-

based protocol in the directory. A request waiting on a

synchronization operation will not cause extra traffic for the

caches and the network.

4.2 Benchmarks

We developed a direct-execution simulator that simulates

important events of interest in a shared-memory multiproces-

sor, while the computation instructions are directly executed

by the host machine. The benchmarks we used are Matmat

and three SPLASH benchmarks [16]. Table 1 summarizes

the statistics collected on these benchmarks once their paral-
lel sections are started up to the completion of the program.

Only shared references are recorded in the table and the

column below “shared data size” indicates the total size of

globat shared area which is explicitly allocated in the pro-

gram. Matrnat is a blocked matrix multiplication program,

run with two 300 x300 matrices with proper cache buffer

and block setting so that the effects of cache size and block

size can be balanced. Mp3d is a particle-based fluid flow

simulation program. We ran Mp3d with 100,000 particles
in a 14 x 24 x 7 space array for 10 time steps. Water, an
N-body molecular application, was run with 288 molecules

for 4 time steps. Cholesky performs parallel factorization of

a sparse matrix, run with the test set bcsttk15.

In order to implement the software scheme, we instru-

mented the original SPLASH benchmarks. Through pro-

filing, we identified those accesses with the highest cache

miss rates. The instruction addresses of the cache misses

(candidates for prefetching) were recorded by running each

program on a configuration similar to that of the prefetching

study and with the same data set. We surmise that this

226

Table 1: Benchmarks characteristics - average numbers for a

single processor in the 16 processor simulation

approach allowed us to determine realistic prefetching can-

didates as well as a thorough compiler analysis. For instance,

a reference which has temporal locality in a lwp will not be

prefetched because of its low miss frequency.

After the accesses for prefetching are identified, we man-

ually insert prefetch instructions related to these high miss

frequency items based on the following strategies:

1.

2.

3.

4.

A data item accessed in a loop is prefetched one or more

iterations ahead depending on the relative values of the

estimated loop execution time and the memory latency.

Taking the block size into account, we perform loop

unrolling and loop splitting. Additional spilled code
resulting from an increase in register pressure will

contribute to the prefetching overhead.

By default, each prefetch will bring one cache block.

If our profiling information detects that prefetching a

whole data object at once would be beneficial, block

prefetching is performed. An additional instruction is

needed to specify the prefetch size in that case.

If a mefetch is orhzinated from an indirect load. we at-

tempt to schedule he source load ahead in the inskuction

stream to provide as large a non-blocking span as pos-

sible. The address computation of prefetch instructions

is generally combined with that of the corresponding
loads thus resulting in no overhead. However, when

the prefetches are moved away from their loads the cost

of computing prefetch address expressions cannot be

completely eliminated.

In summary, we emulate a compiler algorithm that will

carefully generate effective prefetches. The overhead in our

implementation is relatively low (just over one instruction

per prefetch instance).

5 Quantitative Evaluation

5.1 General results

Figure 3 shows the simulation results of the average ex-

ecution time of the 16 processors with respect to various

approaches. The left-most bar shows the breakdown of the

execution time of the baseline cache (BASE). The next two

bars are for the hardware (HW-pf), and software (SW-pf)

schemes respectively. We present the data by normalizing

the total execution time with respect to the baseline organi-

zation. Each bar contains several sections. The exec section

denotes the time to execute instructions--it also includes the
extra instruction overhead for executing software prefetch-

ing instructions, necessary address/size computations, and

execution of possible extra spilling loads; read and write

indicate the fraction of processor stall time for reads and

wri-, delay shows the delay of demand accesses resulting

from handling prefetch and tag updates in the Cach% and

synch gives the time waiting for lock and barrier accesses.

Let us examine each stall time component. The instruction

execution time, corresponding to processor utilization, is

between 13% in Mp3d and 75% in Water. By looking at

the results for BASE, we note that there is much room for

improvement for reducing the read access penalty. This is

borne out by the results showing remarkable reductions in

read stall time for both schemes 10%-39% for HW-pf and

15%-43% for SW-pf of the original total cycles.

The portions of stall time due to writes ancl synchroniza-

tions are almost negligible in the BASE case. Writes can

be efficiently buffered since we operate under a weak con-

sistency model. The stall time due to synchronizations is

very small in all cases except Water where it reaches 5.570.

Neither HW-pf nor SW-pf modify significantly these figures.

The last component in the overall execution time, i.e., the

delay due to contention in the cache between prefetch and

regular accesses, is clearly art overhead introduced by the

prefetching. As seen from the delay section in Figure 3, the

number of cycles lost because of this interference are very

small (only 0.05% -O.670). Hence, this side effect is rdmost
negligible.

Extra instruction execution time is yet another overhead,

which is present only in SW-pf. As shown in the exec section

of SW-pf, the SW-pf instruction overhead can be substantial.
The portion of normalized time due to the software overhead

ranges from 0.9% in Mp3d to 8.6940for Mat.mat and may

offset part of what was gained in reducing the read penalty.

5.2 Detailed Analysis

We examine further the effectiveness of prefetching by

looking in more detail at the individual behavior of the four

benchmarks (cf. Table 1).

Matmat is a blocked matrix multiplication program in

which almost atl references are regular and sequential. Both

HW-pf and SW-pf perform quite well on the Matmat bench-
mark since data access patterns are regular (read penalty

reduced by 77% and 87% respectively). Even so not all of

the read penalty has been eliminated. In HW-lpf some of the

read penalty is contributed by a portion of hit-wait cycles in

the first iterations. Another portion of the remaining read

penalty stems from the fact that the blocking technique tries

to localize the referenced domain of inner loops and thus data

blocks prefetched at the last iteration of an inner loop are

generally unused. Similarly, SW-pf has a portion of hit-wait

cycles. Moreover, the loop splitting introduced because of

the prefetching increases the register pressure that is already
very tight because of the tiling of the inner-most loop. Look-

ing in more detail at SW-pf shows that the execution time

of one iteration of the inner-most loop (unrollled by a factor

of 2) takes 85 ideal cycles. It has been increased by 11 ‘ZO,

compared with the execution time of the original code (76

cycles for two iterations). The increase comes from the

prefetch instructions and extra spilling code. This explains

the magnitude of the instruction overhead (8.6% of total

time) for SW-pf. It indicates that SW-pf should be more

conservative when taking into account optimization arising
from locality considerations.

In Mp3d, the two data structures that account for most of

227

Matmat
81

86s

13.1

Mp3d -~:

❑w mite
mmfl

67.2g!

I--Ill

49 83
53.3

. 34.3

13.1 14

BASE Hw pf Sw pf BASE Hw pf Sw pf

Water

.-

BASE Hw pf Sw pf BASE HW pf Sw pf

Figure 3: Simulation results

the references are particles and space cells. The particles are

statically rdlocati, the spacecells are accessedin a relatively
random manner depending on the location of the particle

being moved. In such an application where data structures

are more complex, SW-pf exhibits better performance in
reducing the read penalty than HW-pf (38Y0 for HW-pf in

Mp3d vs. 60% reduction for SW-pf). Although HW-pf has

no difficulty in prefetching a particle record, it is not good

at dealing with space cells because their locations vary with
time. Thus only roughly half of the cache misses are covered

through HW-pf. In contrast, SW-pf performs much better

than HW-pf. SW-pf can statically prefetch pzuticle data and

use indirect load prefetches to get the space cell when the

address of an associated particle is determined. Moreover,

particle objects and space cells can be prefetched by a single

block prefetch instruction. Consequently, several memory

access requests triggered by only one prefetch instruction can

be pipelined to the memory system. The prefetching of space

cells is scheduled so that it can be performed in parallel with

other computations. Therefore the latency of the indirect load

prefetch is hidden further. The use of block prefetches is also

the reason that Mp3d has a negligible instruction overhead.

In Water, the main data structure is an array of molecules

where each element holds all the data for one molecule.

Each molecule requires about 38 cache lines. Data accesses
preserve spatial locality in the intramolecular computations

and data access patterns are predictable in the intermolecular

computation phases. Since the ratio of the number of shared

references to instructions is very small, the instruction time

accounts for a large portion of the total execution time (cf.

Table 1). In addition because the cache can hold almost the

entire working set, most of the accesses result in cache hits.

Therefore the read penalty contributes only 18% of the total

execution time. In this benchmark with predictable access

patterns and small nested loops, the read penalty rtiuction

is very good but does not improve performance that much

since the read penalty is relatively small. SW-pf moderately

outperforms HW-pf (52% for HW-pf vs. 83% for SW-pf).

Both schemes can easily handle the shared references in

the intra and intermolecular computation phases. The main
reason for the superiority of SW-pf is that each computation

of a molecule involves two or three nested small inner loops

with only a small number of iterations in each level of loop.

SW-pf simply prefetches data for all the iterations at one

time, whereas the small loops hinder HW-pf from gaining

sufficient prefetching distance.

Choiesky is dynamically scheduled with coarse task gran-

ularity (about 86,000 shared references per task), Each task

works on supemodes, which are sets of columns of a very
large sparse matrix. The input data file is a 3948-by-3948

matrix with only 56934 non-zero elements. The primary op-

eration is a column modification algorithm which involves

the addition of two columns in order to cancel a non-zero

element in the upper triangle of the matrix. Since all non-zero

elements belonging to a certain column are stored contigu-

ously in an array and the row numbers of these non-zero

elements are stored in a compressed manner, the program

iterates on the array of row numbers to find matching rows

and then fetch the non-zero elements to perform the compu-
tations. As a result, the starting and ending values of loops

me generally unknown at compile time. In this benchmark,

the hardware scheme performs better than SW-pf (82% vs.
48%). The HW-pf scheme can benefit from the assignment of

large supemodes to the processors by sequentially prefetch-

ing the array and dynamically extracting data access patterns

for the accesses of non-zeros. Similarly, SW-pf can prefetch

the data for accesses to the array holding row numbers.

However, our implementation is conservative in prefetching

the non-zeros by using indirect load prefetches only after the

228

Matmat

BASE Hw pf Sw pf

BASE Hw pf Sw pf

Water

111.8

100 100.8

29.7

111

35.3 29.9
...

27.1 27.9 27.3

0
:::::::::::::,:,;,,.,.,.,.,.,.,.,. ;;.::~
W 34.4

43.2
~jj 40.3

_ ,::~jyfi

m 14.1
::::::.:.:.:,::::,,,,:,:,:,::::.:.
~.3

Mp3d

100 101.2 101.9

BASE Hw pf Sw pf

Cholesky - ~$&ti

121.9 s ~ m
~~~~prefetch

1111”

34.5
101.1

i

5.9
.................
::::::.,......., 34.4,.,.,.:.:.:::j,::,,,,,..,,,,,...,,:,:,:,<::::::;:: .:.,.,.,.::,:,:,:
@ 77.2 *:::::;
:,::::::::::::~: = 49.9M :::;::::~::::::.:.:.:.:.::;:::::::::W: ::::::::,:.:.:.:..,.,.,.,,,.,,,.,.
:.:.:.:.:........ M##_Lo.9,

BASE Hw pf Sw pf

Figure 4: Network traffic

row pointer is knownl. This will usually cause prefetched

blocks to arrive in the cache too late and thus to contribute

a large portion of hit-wait cycles to the read penalty. In

addition, because the starting and ending vahtes are run-time
variables, the code is significantly expanded as a result of

loop unrolling and splitting as well as prefetch insertion. For

example, an IF statement is required in the prologue to align

the prefetch access on the cache line boundary. Hence, the

instruction execution time is increased.

To summarize, our data show that SW-pf and HW-pf

can achieve good performance improvements in programs

with regular access patterns. HW-pf can handle applications

with input data dependence if the loop granularity is not too

small. SW-pf is flexible and can deal with programs with

complicated but well-organized data structures. However,

the benefit of software prefetching may be offset by the extra

overhead it incurs.

5.3 Negative Effects of Prefetching

As mentioned earlier, prefetching increases memory traf-

fic. The main sources for the increase are (1) prefetches

of unused data lines, (2) extra cache misses due to conflicts
with the current working set, (3) extra invalidates due to

additional write-sharing caused by prefetching, and (4) the
increase of invalidation misses due to exclusive prefetches.

Since we do not perform prefetch for writes, the last problem

does not occur in our study.

In Figure 4, we present the increase in network traffic. We

consider four kinds of requests for the network: read misses,

prefetch requests, write requests (write misses and write hits

1A ~feme has ~k~d out that Cholesky has been rewire SOhat tie

compiler can cleat with this problem.

on clean), and invalidates. While the number of memory

requests increase, as expected, for both types of prefetching
for all benchmarks, the increaseduetoprefetching (especially

SW-pf) is relatively insignificant with respect to the total

traffic. Most of the memory traffic increase stems from the
fact that the total requests of read misses and prefetches are

greater than those of read misses for the baseline cache. Since

prefetching may fetch write-shared data, a slight increase of

write requests and invalidates can be also observed in the

figure. In general, SW-pf is more conservative in introducing

memory traffic than HW-pf. The reasons me that HW-pf

has less information to avoid sending unnecessary prefetches

to the system and that data blocks prefetched during the

last iterations are generally unused. The traffic increase is

more significant in benchmarks with small iterations, such

as Water, where the penalty reduction by IHW-pf is less

than that by SW-pf, but where HW-pf brings more network

traffic. One exception is Matmat, where SW-pf results in

more network traffic than HW-pf. However, the increase is

mainly because more writes and invalidates are issued since

there is more prefetching of write-shared data.

To examine the impact of prefetching on the working set
in the cache, we estimate the negative effect by measuring

conflicts between the working set and prefetched data. We
record the information on replaced data lines in a‘’ shadow”

direct-mapped cache with the same size as the data cache.
If a cache miss finds a matched entry in the shadow cache,

we record the status of both replaced and current blocks.

As most cache misses are reduced by prefetching, we are
interested in conflict misses. Table Z gives tlhe proportions

of those conflict misses among three categories: conflicts

within the current working set itself, between the working set

229



Matmat

BUG Hw-pf Sw-pf k aw-pf Sw-pf B- HW-pf SW.pf

Latency 40 hc31Cy 80 Latency 160

Bane mv.pf Sw-pf Base Hw.pf Sw.pf Bnc HW-pf SW-pf

Latency 40 t.23kllCy 80 Latency 160

B- HW-pf SW.pf Base HW-pf SW-pf B= HW-pf SW-pf B- HW-pf SW.pf Emc Hw.pf Sw.pf Base HW-pf SW-pf

Latency 40 Lstettcy 80 Latency 160 Latency 40 tAtSflCy 80 Latency 160

Figure 5: Effect of memory latency

Table 2: Proportions of conflicts in direct-mapped cache

Programs

Kmiiir
Mp3d

Water
Choleskv

and txefetched blocks. and between txefetched blocks them-

selv&. In the table, the miss ratio of ‘wftware prefetching for

Matmat is very small (< 0.001) and in Water, there are very
few conflict misses left, since most of the data set fits in the

cache and misses are mainly caused by invalidation misses.

The results show that a large portion of conflicts occurs

among data in the working set itself. When a prefetched item

arrives in the cache at a time close to its actual use, the prob-

ability of conflicts with the current working set is small. It is
only in the case of HW-pf in Cholesky that significantly more
prefetched data than necessary is brought into the cache. In

that benchmark we can observe a non-negligible amount of

conflict between the prefetched data and the working set.

This explains partially the increase of data read (read misses

and prefetches) traffic in the network, as shown in Figure 4.

To sum up, we observe that the negative effect of prefetch-

ing in network traffic and conflicts with the working set is

not severe. The increase of network traffic is very small for

SW-pf, whereas HW-pf may give a slight increase. Most

conflict misses are caused by the working set itself.

5.4 Effect of Memory Latency

In this section we explore how variations in the secondary

cache and main memory latencies influence the performance

of the three prefetching schemes. We consider three sets

of latencies: the one used previously (Lj = 80), one where

we consider a processor twice as slow (L.~ = 40), and one

where the main memory latency is doubled (L. = 160) with

the rationale here that our 16-processor system might be a

subset of a larger multiprocessor. In Figure 5, we show the

read access times for these three ormnizations normalized

with respect to the no-prefetch BASE”default case (L = 80).

The read access penalty is decomposed into two section.x

read miss, the stall time due to cache misses, and hit-wait,

the waiting time for a prefetch which is issued too late. In

order to have a fair comparison for SW-pf, we modified and

moved around some prefetch instructions in an attempt to

provide a sufficient prefetching span for large latencies.

As can be seen in Figure 5, the reduction in the read

penalty slightly degrades as the memory latency increases.

This illustrates that both HW-pf and SW-pf still can be

effective, to a lesser extent, in tolerating large latencies by
adjusting prefetching to occur several iterations ahead of the

actual use. Note that since the number of instruction executed

is generally fixed, the slight increase in the read penalty in

SW-pf is more than compensated by the relative decrease in

the overhead of the prefetch instructions. For example, when

passing from L. = 80 to L. = 160, the overall execution

time increases and the overhead from software prefetching

(not shown in the figure), an almost constant number of

instructions for each benchmark, decreases from 8.6% to 690

in Matmat, from 0.9% to 0.04% in MP3D, from 1.770 to

230



k Hw pf Sw pf
%%Ri3%’f

Baa Hw pf Sw pf mmpf

Water

B8ss Hw pf Sw pf
Y.Y.2Qf

b Hw pf Sw pf W= pf

Figure 6: Effectiveness of combining HW-pf and SW-pf

0.013% in Water, and from 3.5% to 0.3% in Cholesky. This

leads us to conjecture that software prefetching should be

more advantageous as the prefetch overhead becomes less

significant with an increase in latency.

The cost of the hit-wait cycles is particularly important

in prefetching. The read penalty in HW-pf contains a fair

amount of hit-wait time. In this scheme, the bokahead
mechanism needs to be reset to the value of the PC after

each incorrect branch prediction. Therefore, the first few

prefetches are not yet one “memory latency time” ahead

of when their data will be used. This phenomenon tends to

be serious in those programs with nested inner loops with

only a few iterations such as Matmat and Water. For SW-pf

(cf. Cholesky), the hit-wait cycles are mostly contributed

by the indirect load prefetches, which are constrained by the

data dependencies. While SW-pf is generally able to identify

most of the cache misses, the stall time for prefetches in the

prologue loop becomes more significant when the latency

increases. There remains the challenge of scheduling useful

computations to overlap with the prefetches, a task that

becomes more difficult as latencies get larger.

6 Combining Hardware and Software

Prefetching

In this section, we propose a combination of hardware and

software prefetching techniques. The main idea is that the

compiler inserts prefetches for user’s semantic data objects

that can be of any size, not necessarily a cache line, in a
manner more related to the program information available

to the compiler, and that the hardware supporting unit takes

care of individual element accesses in loops. The advantage
of this combined scheme is that the amount of software

prefetching instructions is considerably reduced and loop

splitting can be avoided. Thus, the compiler simply finds a

proper prefetching program point for each data object to be

used in loops. To achieve maximum gains, the hardware part

is aimed at prefetching data from the secondary cache to a

relatively small primary cache -- a portion of the design space

where it is recognized that the hardware scheme performs

best [1] -- and the software part is aimed at a large block

fetch from memory modules to the secondary cache. By
adding a special control instruction to the instruction set,

some unnecessary prefetches in the hardware prefetching

scheme can be further reduced by using the instruction as a

control hint to enable (and disable) the hardware mechanism.

Such control hints can be inserted around a loop body so that

the hardware unit will operate only during loop execution.

We performed experiments for studying the effectiveness

of the HW-pf and SW-pf combined architecture. In the ex-

periment, we consider an architecture similar to the previous

ones, except that each processor has a 32K-byte primary

cache (C 1) backed up by a 256K-byte seeonld-level cache

(C2). Both caches are direct-mapped, copy-back with a
cache line size of 16 bytes and are lockup- free,, The one-way

latency time between C 1 and C2 is 5 cycles and thus the

delay for a miss in Cl with a hit in C2 is 10 cycles. Misses

in C2 trigger requests to the global memory lmodules. The

one-way network latency is 35 cycles. Hence, a reference

that misses in both caches incurs a total latency of at least 80

cycles as before. In the experiment, we modify the strategy

for prefetch insertion in software prefetching: we do not

prefetch data in inner-most loops, we do not perform loop

unrolling and splitting, we insert prefetches for user data
structures to be used (regardless of cache size, line size), and

we move prefetches far ahead of actual use (they may even
move to locations before the loop).

Figure 6 gives the simulation results of the new architecture

with the combined hardware and software schemes. The read

access penalty has been further decreased when compared

231



to either the hardware approach or the software approach.

The total reductions of the read penalty are 90% for Matmat,

78% for Mp3d, 88% for Water, 80% for Cholesky. The

instruction overhead of the new scheme is relatively small

when compared with the software approach (note that SW-

pf already performed blcck prefetching in Mp3d). The

portion of total normalized time due to the overhead ranges

from 0.8% in Mp3d to 2.1% in Matmat. Overall, the total

execution time is significantly improved by the combination

of software and hardware schemes.

7 Conclusion
In this paper, we have studied the performance of

hardware-based and software-directed prefetching schemes.

Our qualitative comparisons indicate that in the domain of

linear array references, both hardware and software schemes

are able to generate prefetches for cache misses. However,

the software scheme may have a code expansion problem,

while the hardware scheme has less information on the

usefulness of the prefetched data. The software approach

may use compile-time information to perform sophisticated

prefetching, whereas the hardware scheme has the advantage

of manipulating dynamic information.

The quantitative evaluation was performed by running

direct-execution simulations of a shared-memory multipro-

cessor using four benchmarks. Our experiments confirm the

above observations. We observed that the cache interference

incurred by prefetching is almost negligible. The software

approach has less negative effect on network traffic and

conflicts with the working set than the hardware approach.

However, the overhead due to the extra prefetch instructions

and associated computations is substantial in the software-

directed approach and can offset the performance gain of
prefetching. Our results show that the relative effectiveness

of prefetching is slightly degraded by the increase of memory
latencies, with the software prefetching suffering less.

Finally, we proposed and examined a technique for com-

bining the software and hardware solutions. The main idea is

that software will use program user’s semantics to prefetch

data objects into a secondary cache and that the hardware
supporting unit will take care of accesses in the loop and

fetch the data into the primary cache, The new approach

can combine advantages of both hardware and software ap-

proaches and at the same time avoid most of their negative

effects. Our experimental results show that the new solution
is very attractive in reducing the data access penalty without

incurring much overhead.

References
[1] J.-L. BaerandT.-F. Chen. An effectiveon-chip’ reload-

ing scheme to reduce data access 5nalt . In roe. of
Supercomputing ’91, pages 176--1%, 19~1.

[2] L. Censier and P. Feautrier. A new solution to coherence
problems in multicache systems. IEEE Transactions
on Computers, C-27( 12):1112--1 118,1978.

[3] T.-F. Chen. Data Prefetching for Hi h-Pe~ormance
fProcessors. PhD thesis, Department o Computer Sci-

ence and Engineering, Univ. of Washington, 1993.

[4] W. Y. Chen, S. A. Mahlke, P. P. Chang, and W.-M.
Hwu. Data access microarchitectttres for superscalar

rocessors with com iler-assisted data prefetching. In
F Jroceedings of the 4th International Symposium on
Mircoarchitecture, 1991.

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

M. Dubois, C. Scheurich, and F. Briggs. Memory
access buffering in multiprocessors. In Proc. of the
13th Annual Intl. Symp. on Computer Architecture,
pages 434-442,1986.

S. J. Eg ers and T. E. Jeremiassen. Eliminating false
5sharing. n Proc. of the Int. Conf on Parallel Process-

ing, pages 1:377--1:381,1991.

J. W. C. Fu and J. H. Patel. Data prefetching in
multi rocessor vector cache memories. In Proc. of

Ithe 1 th Annual Intl. Symp. on Computer Architecture,
pages 54--63,1991.

J. W. C. Fu and J. H. Patel. Stride directed ~refetching
in scalar processors. In Proc. of the 25th Znt 1Sy

TonMicroarchitecture, pages 102--110, December 192.

E. Gomish, E. Granston, and A. Veidenbaum.
Compiler-dtrected data prefetching in multi rocessors

fwith memory hierarchies. In Proc. 1990 Int. Conf on
Supercomputing, pages 354--368,1990.

N. P. Joup i. Improvin direct-mapped cache perfor-
mance~~eadd~tionofismallfully-associativecache
and pre etch buffers. In Proc. of the 17th Annual Intl.

. on Computer Architecture, pages 364--373, May
;6%.

A. C. Klaiber and H. M. Levy. An architecture for
software-controlled data prefetching. In Proc. of rhe
18th Annual Intl. Symp. on Computer Architecture,
pages 43--53,1991.

D. Kroft. Locku -free instruction fetch/ refetch cache
% ?organization. In roe. of the 8th Annua Intl. Symp. on

Computer Architecture, pages 81--87,1981.

T. Mowry and A. Gupta. Tolerating latent through
clsoftware-controlled prefetching in shar -memory

f
multiprocessors. Journal o Parallel and Distributed
Computing, 12(2):87--106, une 1991.

T. Mowry, M. S. Lam, and A. Gupta. Design and
evaluation of a com iler algoritm for prefetchmg. In

rProc. of the 5th Int . Con, on Architectural Support
for Pro ram”n Languages and Operating Systems,
pages 65--73,19$2.

A. K. Porterfield. Software methods for improvement
of cache rformance on su rcom uter a lications.
Techni x Report COMP 1#89-9~ Rice~niversity,

May 1989.

J. P. Singh, W.-D. Weber, and A. Gu ta. SPLASH
IStanford parallel applications for s ared-memory.

Co uter Architecture News, 20(1):5--44, March
199Y

A. J. Smith. Cache memories. ACM Computing Sur-
veys, 14(3):473--530, September 1982.

D. M. Tullsen and S. J. Eggers. Limitation of cache
prefetching on a bus-based multiprocessor. In Proc. of
the 20th Annual Ind. Symp. on Computer Architecture,
1993.

M. E: Wolf and M. Lam. A data locality o timizing

?algorithm. In Proc. ACM SIGPLAN 91 Con erence on
Programm@ Language Design and Implementation,
pages 30--44,1991.

232


