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Abstract 

A new peridynamic (PD) model for crevice corrosion damage is introduced and cross-validated with 

experimental results reported in the literature. The model defines a simple metal ion concentration-

dependent corrosion rate along the metal-electrolyte interface. Crevice problems have ratios of gap-to-

length of 1/100 or lower. To increase the computational efficiency when having a domain with an 

extreme aspect ratio, the PD formulation with spherical horizons is modified to accommodate arbitrary-

shape horizons.  The model is validated against experimental results on immersed bolted washers. The PD 

simulations predict the observed corrosion kinetics, and the deepest corrosion trenches form at a critical 

distance from the mouth of the crevice. The location of the most severe corrosion attack does not have to 

be specified as an input. Instead, it results directly from solving the problem with PD. The evolution of 

crevice corrosion damage is autonomous in PD, and only the geometry, initial, and boundary conditions 

control the evolution of the corrosion process. 

Keywords: crevice corrosion; peridynamics; corrosion; modeling; nonlocal mass transfer; nickel alloy 

1. Introduction 

Crevice corrosion is a type of localized corrosion that occurs in locations where the metallic surface is 

exposed to a confined, stagnant electrolyte in a “crevice,” while the rest of the metallic surface is in 

contact with the bulk electrolyte [1]. Restricted flow in the crevice slows down the transport of chemical 

species and leads to local acidification (pH drop), triggering a self-accelerating anodic dissolution of the 

metal surface in the crevice [1]. Crevice corrosion damage is considered a significant problem in many 

industries. Joints, fasteners, and most types of contacts in ships, aircrafts, infrastructures, or any other 

structures in offshore and marine environments, are highly susceptible to crevice corrosion attack [2, 3]. 

For example, in bridges’ tendons, crevice corrosion occurs between strands and the grout surrounding 

them and even between twisted wires in a strand, and may contribute to catastrophic failure of bridges [4].  

Computational models for corrosion damage phenomena, if predictive, are of significant interest since 

they provide a tool to virtually investigate the potential damage caused by environmental factors [5]. 

Computational models output chemical speciation, the evolution of various electrolyte properties such as 

pH, conductivity, and, more importantly, potential and current density profiles, which ultimately can 

determine the corrosion rate. Models for crevice corrosion are of two classes: 1) the first class uses a 

stationary domain, where the governing equations (usually mass transport and electrostatics) are solved 

within a fixed time-invariant domain (of the gap only) [6-18].  The second class of crevice corrosion 

models considers evolving geometry, where the anodic dissolution changes the shape of the crevice in 

time as the corrosion progresses [19-23]. The first class of models is computationally more efficient 
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because they do not deal with an evolving domain. However, they have obvious limitations because, at 

best, they can only provide rough estimates of the corrosion profile based on the computed current 

densities over the original crevice domain (see for example [24, 25]). Since geometrical changes of 

crevices influence the transport phenomenon and the electric potential distribution on the anodic surface, 

the second class is more realistic in simulating the corrosion damage front profile. This profile is 

important because, under mechanical loadings, cracks can initiate from the deep trenches carved by 

crevice corrosion attack [4]. 

Traditionally, corrosion problems with evolving domains have been described by Partial Differential 

Equations (PDEs)-based models. Some of such models have regarded corrosion as a moving boundary 

problem. For example, the Finite Element Method has been used to solve the PDEs in the domain 

configuration at each time step and the level set [21] or Arbitrary Lagrangian-Eulerian (ALE) [20] 

methods are used to update the domain boundary, leading to a new domain configuration for the next time 

step. Models with moving boundaries face serious challenges in their discretization as they need to 

change the domain and meshes at each time step. More discussion on the limitation of these models are 

provided in [5, 26]. Some other PDE-based models consider corrosion propagation as a moving interface 

problem in a domain consisting of both the liquid phase (electrolyte) and a solid phase (metal) (see, e.g., 

[19]). However, because of continuous changes on the solid-liquid interface, it is hard to predict those 

changes, forcing such PDE-based models into enforcing boundary conditions on the moving interface that 

do not always reflect reality. Combinations of numerical methods and sometimes ad-hoc techniques have 

been adopted to simulate moving boundaries/interfaces [5]. For example, in one study, the Finite Volume 

Method (FVM) was used for PDEs inside the domain, and a Voxel method was used to solve the moving 

interface problem [19].  

More recently, a new class of models has emerged that solves the governing equations defined over a 

two-phase, electrolyte-solid domain, and predict the evolution of the corrosion front caused by anodic 

dissolution more efficiently This approach eliminates the need to explicitly track the corrosion front, 

simplifies numerical complexity, and improves a model’s applicability to more complex situations. One 

such class of models is Cellular Automata (CA) [27, 28]. However, given their discrete nature and the 

heuristic rules for “cell” transformation they implement, they are difficult to calibrate and less applicable 

for quantitative predictions [5]. While CAs may offer results that replicate certain qualitative aspects of an 

observed phenomenon, validations against experimental results are almost non-existent.  

Peridynamic (PD) models of corrosion [29-32] are another class of models that does not require tracking 

the moving boundary explicitly. PD is a  nonlocal approach that replaces spatial derivatives with integrals 

in its formulations. This change allows PD models to naturally capture autonomous emergence and 

evolution of discontinuities, moving boundaries, and critical features in modeling corrosion damage. PD 

models have been shown to be remarkably accurate in modeling fracture [33, 34], corrosion-induced 

fracture [35], and stress corrosion cracking [36, 37].  

Phase-field corrosion models [22, 38] are PDE-based models of corrosion that approximate the material 

discontinuity at the corrosion front with a smooth transition function over a small length scale, so that 

spatial derivatives can exist. Phase-field models have shown promise in some corrosion problems, but 

challenges persists. For example, unrealistically thick cracks/damages develop when simulating 

corrosion-induced fracture and damage [39, 40].  

To the best of our knowledge, no crevice corrosion model has yet produced results that have been 

quantitatively cross-validated with published experimental results in terms of the damage propagation in 

time. In this study, we introduce a simple and predictive peridynamic model for simulating crevice 
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corrosion damage. The model is based on simplifying the complex phenomenon using a metal ion 

concentration-dependent parameter. In addition, in order to be able to efficiently handle problems with 

high aspect ratio geometries, a modified version of the peridynamics formulation (with non-circular 

horizon regions) is presented, allowing domain discretizations that mimic the given geometry extreme 

aspect ratio. Crevices with micrometer-sized gaps and centimeter-sized lengths in fasteners are examples 

of such geometries. The model is validated against published experimental images on the progression of 

crevice corrosion damage in bolted washers.   

2. Peridynamic corrosion models 

In this section, we briefly review the basics of peridynamic (PD) theory, the general formulation of PD 

corrosion models, and the employed discretization method. 

2.1. Peridynamics 

Peridynamics theory is a nonlocal extension of continuum mechanics [41, 42]. In this theory, each 

material point interacts with other material points that are located within its finite size neighborhood. For 

a point with the position vector 𝒙, the finite size neighborhood (𝐻𝑥), which is usually taken to be a sphere 

in 3D (or a disk in 2D, a line segment in 1D) centered at 𝒙 with the radius 𝛿 called horizon size. In 

Section 4 we present a formulation for horizon sizes of arbitrary shapes, including extremely elongated 

ones, useful in treating problem with extreme aspect ratios. Other points inside 𝐻𝑥 are called the “family” 

of 𝒙 and are denoted by the position vector �̂�. Fig. 1, schematically shows a PD body, a generic point 𝒙, 

its horizon, and family nodes. 

 
Fig. 1. Schematic of a peridynamic body 𝛺, and the nonlocal interactions between a generic 

material point and its family (from [32]). 

The term PD bond refers to objects that carry the nonlocal interactions between two family points. There 

are different types of bonds, depending on the type of interaction. For example, in a mechanical problem, 

PD mechanical bonds transmit force densities between points, while for diffusion problems, PD diffusion 

bonds carry heat/mass between family points. 

 

2.2. Peridynamics modeling of corrosion damage 

The PD corrosion damage model was originally introduced in [29] and later modified in [32]. In this part, 

we briefly layout the PD corrosion damage formulation based on the modified version in [32].  
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2.2.1. Formulation of peridynamic corrosion damage 

PD corrosion model is based on a damage-dependent nonlocal diffusion equation that governs the mass 

transport in a two-phase domain consisting of both metal (solid) and electrolyte (liquid) phases. The 

governing equations are as follows: 

𝜕𝐶(𝒙, 𝑡)

𝜕𝑡
= ∫ 𝑘(𝒙, �̂�, 𝑡)

𝐶(�̂�, 𝑡) − 𝐶(𝒙, 𝑡)

|�̂� − 𝒙|2𝐻𝑥

d𝑉�̂�  
(1)   

𝑘(𝒙, �̂�, 𝑡) =  {

𝑘diff(𝐷, 𝛿) , if 𝑑(𝒙) = 1 and 𝑑(�̂�) = 1
0      , if 𝑑(𝒙) < 1 and 𝑑(�̂�) < 1

𝑘diss(𝑖)    , if 𝑑(𝒙) = 1 xor 𝑑(�̂�) = 1
 

 

(2)   

𝑑(𝒙, 𝑡) = 1 −
∫ 𝜇(𝒙, �̂�, 𝑡)
𝐻𝑥

d𝑉�̂�

∫ d𝑉�̂�𝐻𝑥

 

 

(3)   

𝜇(𝒙, �̂�, 𝑡) = {
1 , if there is an intact mechanical bond between  𝒙 and �̂�  at time 𝑡
0 , if there is no mechanical bond between  𝒙 and �̂�  at time 𝑡

 

 

(4)   

𝑑𝑐(𝒙, 𝑡) = {

1                         , 𝐶(𝒙, 𝑡) ≤ 𝐶sat  

𝐶solid − 𝐶(𝒙, 𝑡)

𝐶solid − 𝐶sat
      , 𝐶sat < 𝐶(𝒙, 𝑡) ≤ 𝐶solid

 

(5)   

In Eq. (1), 𝐶(𝒙, 𝑡) denotes the concentration of the dissolving species (here metal atoms/ions) at point 𝒙 

and time 𝑡. The integrand is the mass flow density which is the molar amount that a unit volume at point 𝒙 

receives from the unit volume at a family point �̂� in one second. 𝑘(𝒙, �̂�, 𝑡) is a constant that is determined 

from Eq.(2), based on the phases of the points 𝒙 and �̂� (solid or liquid) at time 𝑡. In this model, phases are 

represented by their damage index: the scalar 𝑑(𝒙, 𝑡) ∈ [0,1].  If 𝑑(𝒙, 𝑡) = 1 at a point 𝒙 and time 𝑡, then 

𝒙 is in the liquid phase, and if 0 ≤ 𝑑(𝒙, 𝑡) < 1 , then 𝒙 is the solid phase. 

 
Fig. 2. Schematics of a PD corrosion domain with focus on the solid-liquid interface and the 

three different types of PD bonds: solid-solid, liquid-liquid, and solid-liquid (interfacial) bonds 

[32]. 

According to Eq.(2), for the liquid-liquid bonds (bonds connecting two liquid points) 𝑘 = 𝑘diff. 𝑘diff is 

called the micro-diffusivity and is a function of the classical diffusivity of the electrolyte (𝐷) and the 

horizon size (𝛿): 
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𝑘diff(𝐷, 𝛿) =  

{
 
 

 
 
𝐷

𝛿
          , for 1D

4𝐷

𝜋𝛿2
          , for 2D

9𝐷

𝜋𝛿3
         , for 3D

 

(6)   

This parameter allows modelling of diffusion of metal ions in the electrolyte. Note that we use the italic 𝐷 

for diffusivity and the non-italic D to denote the dimensions. Eq. (2) requires solid-solid bonds (bonds 

connecting two solid points) to have 𝑘 = 0, implying that no mass transfer in the metal phase is 

considered. For interfacial bonds that connect solid and liquid points and cross the solid-liquid interface 

(𝒙, �̂�, 𝑡) = 𝑘diss , where 𝑘diss denotes the micro-dissolvability, a parameter that controls the dissolution 

rate and is calibrated to the current density (𝑖). We use a numerical calibration procedure to find the 

correlation between 𝑘diss and 𝑖. This process is described in Section 2.2.3.  

Different corrosion types can be modeled via defining the appropriate formula for current density 

according to the particular anodic dissolution kinetics of the desired corrosion type. For example, pitting 

[30, 32, 43], intergranular [31], stress-dependent [36, 37], and galvanic corrosion [26], are respectively 

modeled by defining 𝑖 as a function of concentration, various solid phases, deformation, and electric 

potential. In Section 3, we discuss how to define 𝑘diss for crevice corrosion. 

The damage index that defines phases in Eq. (2), is determined from Eq. (3). To use this definition of 𝑑, 

one needs to consider the mechanical bonds between solid points. Eq. (3) and Eq. (4) state that 𝑑 at a 

point 𝒙 is equal to the number of intact mechanical bonds, divided by the total number of mechanical 

bonds connected to 𝒙. In order to model the corrosion-induced damage in time, as the anodic dissolution 

takes place by the mass transfer from solid to liquid, one breaks mechanical bonds accordingly. To this 

aim, the concentration-dependent damage (CDD) model in Eq. (5) is used, to give an expected damage 

index 𝑑𝑐 proportional to the concentration drop at the solid points near the interface (solid points that are 

connected to  liquid points via interfacial dissolution bonds) [26]. In Eq. (5), 𝐶solid is the molar 

concentration of pristine metal, equal to the molar mass divided by mass density. 𝐶sat is the saturation 

concentration: the maximum possible concentration of metal ions in the electrolyte. Once 𝑑𝑐 is found by 

Eq. (5), one then uses a stochastic procedure to break the mechanical bonds accordingly. This is achieved 

by randomly assigning 𝜇(𝒙, �̂�, 𝑡) = 0 for the bonds of 𝒙, such that 𝑑 in Eq. (3) is approximately equal to 

𝑑𝑐 from Eq. (5). One then updates the solid to liquid phase-change by updating 𝑑 using Eq. (3) and Eq. 

(4). The stochastic bond-breaking procedure was introduced in [29], and is briefly reviewed in Section 

2.2.2, where the discretization method is presented. 

It is noteworthy to say that this model results in a corrosion front with a 𝛿-thick graded damaged layer in 

the solid phase, because of the bonds that have one leg in the solid and the other in the electrolyte. This 

solid layer is referred to as the dissolving solid as opposed to the intact solid being the rest of the solid 

phase (see Fig. 2). The intact solid domain does not participate in the computations. The dissolving solid 

region has also a graded metal concentration between 𝐶solid and 𝐶sat, and is similar to the partially 

damaged/dissolved subsurface layer experimentally observed in different corroding metals [44-48]. This 

layer is weaker than the bulk metal (intact solid) and is a potential site for the initiation of cracks under 

mechanical loading. PD corrosion models naturally capture this corrosion-induced embrittlement [37, 46].  
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2.2.2. Discretization 

For the numerical discretization of the model presented in the previous section, we employ a quadrature-

based meshfree method [49]. We first discretize the domain with a uniform grid (see Fig. 3): 

  
Fig. 3. Discretization of space using uniform grid spacing (from [36]). 

Let 𝑁 be the total number of nodes/grids. The PD integral can be approximated by mid-point (one-point 

Gaussian) quadrature as follows: 

d𝐶

d𝑡
(𝒙𝑝, 𝑡) = ∑ 𝑘(𝒙𝑝, 𝒙𝑞 , 𝑡)

𝐶(𝒙𝑞 , 𝑡) − 𝐶(𝒙𝑝, 𝑡)

|𝒙𝑞 − 𝒙𝑝|
2 Δ𝑉𝑝𝑞

𝒙𝑗∈𝐻𝒙𝑖

;     𝑝 = 1,2,… ,𝑁 
(7)   

where 𝒙𝑝 denotes the position vector for node 𝑝, and Δ𝑉𝑝𝑞 is the volume (area in 2D) of the node 𝒙𝑗 that 

is covered by the horizon of 𝒙𝑝. While for most family nodes, Δ𝑉𝑝𝑞 = Δ𝑥
2 (in 2D), there are nodes near 

the horizon edge whose volumes are not fully covered by the horizon of 𝒙𝑝. We use Eq. (8) to 

approximate Δ𝑉𝑝𝑞 in 2D [50]: 

Δ𝑉𝑝𝑞 =

{
 
 
 

 
 
 Δ𝑥2                                             , if |𝒙𝑞 − 𝒙𝑝| ≤ (𝛿 −

Δ𝑥

2
)                         

[
(𝛿 +

Δ𝑥
2 ) − |𝒙𝑞 − 𝒙𝑝| 

Δ𝑥
] Δ𝑥2 , if (𝛿 −

Δ𝑥

2
) < |𝒙𝑞 − 𝒙𝑝| ≤ (𝛿 +

Δ𝑥

2
)

0                                                , if (𝛿 +
Δ𝑥

2
) < |𝒙𝑞 − 𝒙𝑝|                        

 

(8)   

We use a first-order ODE solver for integrating in time. In previous studies, explicit Forward Euler has 

been used for this purpose. However, in explicit schemes, the size of time steps is restricted by stability 

conditions. In problems were the diffusion in the electrolyte is important, the large diffusion coefficient of 

the electrolyte restricts the time step to very small values, and therefore, computations for relatively long 

corrosion times would be very costly with explicit time marching. In this study, we use the implicit 

backward Euler for time integration which is stable for any time step size [51]: 

𝐶𝑝
𝑛+1 − 𝐶𝑝

𝑛

Δ𝑡
= ∑ 𝑘𝑝𝑞(𝑑𝑝

𝑛, 𝑑𝑞
𝑛)
𝐶𝑞
𝑛+1 − 𝐶𝑝

𝑛+1

|𝒙𝑞 − 𝒙𝑝|
2 Δ𝑉𝑝𝑞

𝒙𝑞∈𝐻𝒙𝑝

;     𝑝 = 1,2,… ,𝑁 
(9)   

The subscripts 𝑝 andq refer to the nodal coordinates 𝑥𝑝 and 𝑥𝑞 and the superscripts 𝑛 and 𝑛 + 1 refer to 

the current and next time steps (𝑡𝑛 and 𝑡𝑛+1 = 𝑡 + Δ𝑡) respectively. In Eq. (9) we use 𝑑 at the time step 
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𝑡𝑛, not 𝑡𝑛+1, which means that the phase-change process is explicit, while the transport is solved 

implicitly. 

At each time step, Eq. (9) updates the concentration field, and 𝑑𝑐
𝑛+1 is computed for each node from Eq. 

(5). Then, the following stochastic algorithm is used for breaking mechanical bonds accordingly[29]: 

▪ For each node 𝒙𝑖 compute the probability of bond breaking 𝑃𝑝
𝑛+1 =

1

1−𝑑𝑐
𝑛+1 (

𝐶𝑝
𝑛−𝐶𝑝

𝑛+1

𝐶solid−𝐶sat
); 

▪ For each intact mechanical bond connected to 𝒙𝑖, generate a random number from a uniform 

distribution in (0,1);  

- If this random number is smaller than 𝑃𝑝
𝑛+1, then break this mechanical bond: 𝜇𝑝𝑞

𝑛+1 = 0; 

After bond breaking,  𝑑𝑖
𝑛+1 is updated from: 

𝑑𝑝
𝑛+1 = 1 −

∑ 𝜇𝑝𝑞
𝑛+1

𝒙𝑞∈𝐻𝒙𝑝

∑ 1𝒙𝑞∈𝐻𝒙𝑝

;     𝑝 = 1,2, … ,𝑁 
(10)   

which is the discrete version of Eq. (3). 𝑑𝑝
𝑛+1 is then used to identify the nodal phase at the next time step. 

  

2.2.3. Numerical calibration of micro-dissolvability 

As mentioned in the previous section, micro-dissolvability is numerically calibrated to the anodic current 

density. The following relationship is assumed between 𝑘diss and 𝑖 [32]: 

𝑘diss = (
𝑘diss
trial

𝑖trial
) 𝑖 

(11)   

where 𝑖trial is the current density obtained from a trial PD simulation assuming an activation-controlled 

uniform corrosion with 𝑘diss = 𝑘diss
trial, a trial micro-dissolvability. Activation controlled condition here is 

modeled by setting the 𝐶(𝒙, 𝑡) = 0 everywhere in the electrolyte region [29]. This eliminates the 

dependency of the dissolution rate on the transport in the electrolyte and 𝑘diss
trial becomes the only 

parameter that controls the corrosion rate. Note that the choice of horizon size and spatial discretization 

size in the trial simulation should be the same as the ones in the main simulation. For more details on trial 

simulation please see [29, 30]. The current density from a trial simulation can be computed using 

Faraday’s second law: 

𝑖trial =  𝑧𝐹
∑ [𝐶(𝒙𝑗, 0) − 𝐶(𝒙𝑗, 𝑡)]
𝑁
𝑗=1 Δ𝑉𝑗

𝐴𝑡 
 

(12)   

where 𝑧 is the charge number, 𝐹 is the Faraday’s constant, 𝐴 is the corroding area, 𝑡 is the corrosion time, 

𝑁 is the total number of nodes in the domain, and Δ𝑉𝑗 is the nodal volume at 𝒙𝑗. The numerator in Eq. 

(12) gives the total mass loss due to anodic dissolution from the initial time until time 𝑡. Division by 𝐴𝑡 

gives the dissolution mass flux which can be translated into current density by multiplying with 𝑧𝐹. 

Once Eq.(11) is used to define 𝑘diss in Eq.(2) in terms of the current density 𝑖, any type of corrosion can 

be modeled using the particular formula for the current density specific to the local anodic dissolution 

kinetics for that particular corrosion type. This approach was used in  PD corrosion models for predict 

pitting [30, 32, 43], intergranular [31], galvanic [26], and stress-dependent [36, 37] corrosion, with the 

only difference in these models being the different 𝑘diss (from different current densities) formulas. In the 
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present study, we will establish a relationship for 𝑘diss for crevice corrosion damage, based on the 

underlying electro-chemo-physics. 

3. Peridynamic crevice corrosion model 

In this section, we introduce the new PD model for crevice corrosion damage. To this aim, based on the 

underlying electro-chemo-physics of crevice corrosion, we construct a formula for 𝑘diss that effectively 

reproduces the kinetics of anodic dissolution inside crevices.  

Crevice corrosion is known to be driven by the local environmental changes inside the crevice [1]. The 

steps involved in the dominant mechanism are: 1) restricted flow of electrolyte in the crevice results in 

accumulation of dissolved positively charged metal ions, produced by anodic dissolution (even with rates 

as low as the passive current density), or by micro-galvanic corrosion induced by impurities and 

inclusions on the metal surface inside the crevice; 2) electro-neutrality causes migration of chloride (or 

other aggressive anions) from the bulk electrolyte into the crevice; 3) as a result, hydrolysis reaction 

increases, and pH drops; 4) local acidification in the crevice increases the anodic dissolution rate which 

produces more positively charged ions at a faster rate. These steps are then repeated. Fig. 4(a) shows these 

four steps in the crevice corrosion mechanism. This self-accelerating dissolution process is restricted by 

saturation of the electrolyte and salt layer formation that may occur due to the slow mass transfer in the 

crevice (diffusion path is long and narrow). In locations along the crevice where the electrolyte is 

saturated (usually near the closed end), anodic dissolution is controlled by the mass transfer and therefore 

follows a diffusion-controlled regime [1]. 

The self-accelerating dissolution process and its restriction by saturation of the electrolyte, can be 

simplified in the following statement: the local corrosion rate increases as the concentration of dissolved 

metal ion increases, up to saturation of electrolyte. Fig. 4(c) shows this simplified interpretation. 

Consequently, one can describe the local anodic current density 𝑖(𝒙, 𝑡) as a function of the local metal ion 

concentration: 

𝑖(𝒙, 𝑡) =  {
𝑓[𝐶(𝒙, 𝑡)] 𝐶(𝒙, 𝑡) < 𝐶sat

0 𝐶(𝒙, 𝑡) ≥ 𝐶sat
 

(13)   

where 𝑓 is an increasing function of 𝐶. 

Using Eqs. (11) and (13), and knowing that the PD corrosion model provides the evolution of metal ion 

concentration in the electrolyte, we define 𝑘diss to be a metal ion concentration-dependent quantity:  

𝑘diss(𝒙S, 𝒙L, 𝑡) =  {
(
𝑘diss
trial

𝑖trial
)𝑓[𝐶(𝒙L, 𝑡)] 𝐶(𝒙L, 𝑡) < 𝐶sat

0 𝐶(𝒙L, 𝑡) ≥ 𝐶sat

 

(14)   

where 𝒙S and 𝒙L are respectively the solid and the liquid ends of an interfacial bond. For any specific 

corrosion system, i.e. metal and environment, 𝐶sat and the function 𝑓(𝐶) need to be determined. 𝐶sat is a 

quantity that can be found in the literature. 𝑓(𝐶) however, is a new concept and no standard methods for 

obtaining it exist. Inspired by [25], the approach that we use in this work to obtain 𝑓(𝐶) is the following: 

1) Find the relationship between anodic current density and pH at a given potential: 𝑖(pH), using  

polarization curves measured  at different pH values. 

2) Substitute the pH in the relationship, with mathematical models and/or empirical equations that 

calculate the pH in terms of concentration of metal ions: pH(𝐶). 
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This two-step process is the same as the one plotted in Fig. 4(b). In the example in Section 5, we show 

how perform this procedure for a specific case. 

  
Fig. 4. Self-accelerating anodic dissolution mechanism in crevice corrosion: (a) the 4-step 

cycle, where [M+𝑧] is the concentration of positively charged metal ions, i.e. 𝐶, and [Cl−] 
denotes the concentration of chloride; (b) 3-step equivalent cycle with a concentration 

dependent pH, and a pH-dependent current density; (c) a 2-step simplified version with a 

concentration-dependent current density.  

 

4. Modified PD formulation for using discretization grids with extreme aspect ratios 

The extreme aspect ratio of the geometry in crevices (long and narrow) present a significant 

computational challenge: if the same spacing is used in a uniform domain discretization, the 

computational cost may be too large; therefore, a discretization that matches the geometry aspect ratio 

(large spacing along the long direction, and small spacing along the short direction) is desirable. Using 

such a grid with the standard PD formulation (with spherical horizon) would not work, since we may 

leave covering nodes only in the dense direction, and no nodes in the coarse direction.  Note also that to 

reduce grid dependency and have an acceptable accuracy in the quadrature used for computing the PD 

integral, grid spacing should not be larger than ¼ or, at most, 1/3 of the horizon size [52]. On the other 

hand, it is well understood that the horizon size should be smaller than the smallest geometrical feature of 

the domain to prevent undesired/unrealistic nonlocal effects [53]. For crevice corrosion, using the 

spherical horizon, this means that 𝛿 has to be several times smaller than the gap size. 

To resolve this issue, we introduce the PD formulation for non-spherical horizons (or non-circular in 2D) 

so that it can work with grids that have extremely different grid densities in different directions. 

Note that, for noncircular horizon,  𝑘(𝒙, 𝒙′, 𝑡) in Eq. (1) cannot be computed from Eq. (2), because that 

relationship is obtained by a calibration process that assumed a spherical/circular horizon. We propose the 

following modification to Eq. (2) for noncircular horizons: 
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𝑘𝜃(𝒙, �̂�, 𝑡) =  {

𝑘L
𝜃(𝐷, 𝛿𝜃) , 𝑑(𝒙, 𝑡) = 1  and  𝑑(�̂�, 𝑡) = 1

0                , 𝑑(𝒙, 𝑡) < 1  and  𝑑(�̂�, 𝑡) < 1

𝑘diss
𝜃          , 𝑑(𝒙, 𝑡) = 1  xor  𝑑(�̂�, 𝑡) = 1

 

 

(15)   

where 𝛿𝜃 is the nonlocality range along the bond direction that makes an angle 𝜃 with the 𝑥-axis (polar 

angle). In 3D, the direction is given by the spherical coordinates, and in 1D, 𝛿𝜃 has only two values along 

the positive and the negative coordinate directions.  𝑘L(𝐷, 𝛿𝜃) is computed from Eq. (16) which is 

obtained by replacing 𝛿 in Eq. (6) with 𝛿𝜃. This makes the micro-diffusivity a direction dependent 

quantity, in order to match a given direction-independent diffusivity constant D:  

𝑘L(𝐷, 𝛿𝜃) =  

{
  
 

  
 

𝐷

𝛿𝜃
          , 1D

4𝐷

𝜋𝛿𝜃
2          , 2D

9𝐷

𝜋𝛿𝜃
3         , 3D

 

(16)   

 

We now show that the new formulation is consistent with classical isotropic diffusion for the 2D case. 

Similar proofs can be carried out for the 1D and 3D cases as well. 

In [54], the calibration of 𝑘 in PD diffusion with spherical horizons is carried out by finding 𝑘 such that 

the classical flux (𝒒classic) and the peridynamics flux (𝒒Peri) are equal for a linear concentration (constant 

flux) profile. Below, we follow similar steps to show that Eq. (16) is a valid calibration of 𝑘 for PD 

diffusion equation with arbitrary (non-spherical) horizon.  

For homogeneous isotropic diffusion the classical flux is given by:  

𝒒classic = −𝐷𝛁𝐶 = −𝐷 (
𝜕𝐶

𝜕𝑥
𝒆𝒊 +

𝜕𝐶

𝜕𝑦
𝒆𝒋) 

(17)   

where 𝛁 denotes the gradient operator, and 𝒆𝒊 and 𝒆𝒋 are the unit vectors in 𝑥 and 𝑦 Cartesian directions. 

According to [54], PD flux can be defined by: 

𝒒peri = −∫ 𝑘
𝐶(𝒙, 𝑡) − 𝐶(𝒙, 𝑡)

|�̂� − 𝒙|
𝒆�̂� d𝑉�̂�

ℋ𝑥
+

 
(18)   

where ℋ𝑥
+ is the part of the horizon with 𝐶(�̂�, 𝑡) > 𝐶(𝒙, 𝑡), and 𝒆�̂� is the unit vector along the bond �̂� −

𝒙.  

We consider a linear profile for 𝐶(𝒙, 𝑡), and an arbitrary-shape horizon for the PD integral (see Fig. 5). 
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Fig. 5. A linear concentration profile (a constant flux) and its projections into 𝑥 and 𝑦 

coordinates; an elliptical PD horizon as an example for demonstration of a non-spherical 

horizon; and the direction-dependent nonlocality range (𝛿𝜃). 

By projecting the linear concentration gradient into the Cartesian coordinates as shown in the Fig. 5, the 

PD flux can be expressed as: 

𝒒peri = −𝒆𝒊 ∫∫ 𝑘
𝐶(𝒙, 𝑡) − 𝐶(𝒙, 𝑡)

|�̂� − 𝑥|
cos2𝜃  𝑟d𝑟d𝜃

𝛿𝜃

0

𝜋
2

−
𝜋
2

− 𝒆𝒋∫∫ 𝑘
𝐶(�̂�, 𝑡) − 𝐶(𝒙, 𝑡)

|�̂� − 𝑦|
sin2𝜃  𝑟d𝑟d𝜃

𝛿𝜃

0

𝜋

0

 

(19)   

We substitute 𝑘, with the formula given by Eq.(16):  

𝒒peri = −𝒆𝒊 ∫∫
4𝐷

𝜋𝛿𝜃
2

𝐶(�̂�, 𝑡) − 𝐶(𝒙, 𝑡)

|�̂� − 𝑥|
cos2𝜃  𝑟d𝑟d𝜃

𝛿𝜃

0

𝜋
2

−
𝜋
2

− 𝒆𝒋∫∫
4𝐷

𝜋𝛿𝜃
2

𝐶(𝒙, 𝑡) − 𝐶(𝒙, 𝑡)

|�̂� − 𝑦|
sin2𝜃  𝑟d𝑟d𝜃

𝛿𝜃

0

𝜋

0

 

(20)   

Given that 𝐶(𝒙, 𝑡) profile is linear, one can write: 

𝒒peri = −𝐷
𝜕𝐶

𝜕𝑥
𝒆𝒊 ∫∫

4

𝜋𝛿𝜃
2 cos

2𝜃  𝑟d𝑟d𝜃

𝛿𝜃

0

𝜋
2

−
𝜋
2

− 𝐷
𝜕𝐶

𝜕𝑦
𝒆𝒋∫∫

4

𝜋𝛿𝜃
2 sin

2𝜃  𝑟d𝑟d𝜃

𝛿𝜃

0

𝜋

0

= −𝐷 (
𝜕𝐶

𝜕𝑥
𝒆𝒊 +

𝜕𝐶

𝜕𝑦
𝒆𝒋) = 𝒒classic 

(21)   
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As shown above, using the proposed direction dependent micro-diffusivity in Eq. (16) recovers the 

classical flux for isotropic diffusion in 2D. This formulation works for any horizon shape. The elliptical 

horizon in Fig. 5, is just an example for demonstration. 

Note that the non-spherical horizon in this study does not lead to anisotropic behavior as it may in other 

studies (e.g., [55]). The reason is that 𝑘L
𝜃 here is calibrated for an isotropic classical model. From a 

physical point of view, the direction dependent micro-diffusivity in Eq. (16) has a lower value in 

directions where 𝛿𝜃 is larger, and a higher value in directions where 𝛿𝜃 is smaller. This leads to a 

balanced transport in all directions (at the continuum level), and isotropy is maintained. 

Now we derive the direction-dependent micro-dissolvability 𝑘diss
𝜃  in Eq. (15) for a non-spherical horizon. 

Assume PD diffusion with a spherical horizon of radius 𝛿ref. Given Eqs.(6) and (16), one can write 𝑘L
𝜃 =

𝑘L (
𝛿ref

𝛿𝜃
)
𝑛

 where 𝑛 = 1,2,3 for 1D, 2D ,and 3D, respectively. This means that one can use a 𝑘 that is 

calibrated for the spherical horizon with 𝛿 = 𝛿ref, in a model with non-spherical horizon, by multiplying 

the flow density in Eq. (1) by (
𝛿ref

𝛿𝜃
)
𝑛

. This implies that we can write: 

𝑘diss
𝜃 = 𝑘diss (

𝛿ref
𝛿𝜃
)
𝑛

 
(22)   

where 𝑘diss is a micro-dissolvability calibrated for a spherical horizon with the radius 𝛿ref (see Section 

2.2.3 for calibration of 𝑘diss). 

Note that Eq. (6), and consequently Eq. (16) and Eq. (22), are derived for the particular kernel used in the 

PD integral in Eq. (1). If the PD diffusion equation uses another kernel (e.g. see [52, 56]), one needs to 

modify all derivations accordingly. 

For the crevice corrosion simulation presented in the next section, we use an elliptical horizon with the 

long axis aligned with the crevice length direction, and the short axis along the crevice gap direction. This 

will allow us to choose coarse grid spacing in the crevice length direction and dense grid spacing in the 

crevice gap direction.  

5. Model Validation 

Here we validate the PD crevice corrosion model described in Section 3 against the experimental results 

shown in [57]. 

5.1. Brief description of experimental setup 

In an experiment reported in [57], two washers were held together using a nut and bolt fastener (see Fig. 

6(a)). The washers, bolt, and nut were all made of Nickel alloy 625. The bolted washers were immersed in 

ASTM artificial ocean water at room temperature, and potentiostatic tests were carried out at 200 mV (vs 

SCE). The experimental study focused on the crevice corrosion propagation between the washers [57]. 
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Fig. 6. Schematics of the 3D actual geometry (a); a zoom-in for the crevice cross-section in 

(b); and the 2D domain used in the simulation in (c).  

 

5.2. Model input data and the calibration of concentration-dependent 𝒌𝐝𝐢𝐬𝐬 

The input data for our PD model of crevice corrosion are discussed next. Molar concentration of the 

pristine metal can be approximated by dividing the alloy’s mass density over its molar mass:  𝐶solid =

140 M. Saturation concentration of the alloy in the electrolyte used here is reported to be 𝐶sat = 5.6 M 

[25]. The diffusion coefficient of metal ions in the electrolyte used in the experiment is 𝐷 =

720 μm2/s [57]. To find the concentration-dependent 𝑘diss formula for this metal-electrolyte system, one 

first needs to determine the anodic current density as a function of metal ions’ concentration. To this aim, 

we follow the procedure described in Section 3. From published polarization curves carried out at 

different pH levels [25], we read the current density values associated with different pH values at E=200 

mV (SCE). Using Matlab’s curve fitting toolbox, we fit an exponential function to these data points. Fig. 

7 shows the experimental data points read from [25] and the fitted function. 

 
Fig. 7. Anodic current density in logarithmic scale in terms of pH value at 200 mV (SCE). 

Data points are collected from polarization curves given in [25]. 

The fitted function gives 𝑖 (A/cm2) as a function of pH: 

log(𝑖) = 1.151exp(−723pH) − 7.647 (23)   
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In the same study [25], pH is provided in terms of metal ions concentration from electrochemical and 

phenomenological relationships between species. Fitting a function to such data points provides pH as a 

function of 𝐶(M) (see Fig. 8): 

 

 
Fig. 8. pH in terms of dissolved metal concentration from [25], and the fitted function  

  

pH = 7.405exp(−0.08036 𝐶) − 6.498 (24)   

Where 𝐶 is in mol/m3.Substituting pH in Eq. (23) with the function in Eq. (24), we find: 

𝑖(𝐶) = 101.151exp{−723[7.405exp(−0.08036 𝐶)−6.498]}−3.647 (25)   

where 𝑖 is in A/m2.  

As discussed in the procedure explain in Section 2.2.3, we calibrate 𝑘diss to 𝑖 by using a trial simulation 

of a uniform corrosion that assumes a trial micro-dissolvability. The trial simulation using a spherical 

horizon with 𝛿 = 4 μm and uniform grid spacing Δ𝑥 = Δ𝑦 = 1 μm with 𝑘diss
trial = 0.04 μm−1 results in 

𝑖trial = 2.22 × 104 A/m2. Using Eq. (14) gives: 

𝑘diss(𝒙S, 𝒙L, 𝑡)

=  {
(1.8 × 10−6) × 101.151exp{−723[7.405exp(−0.08036 𝐶(𝒙L,𝑡))−6.498]}−3.647 𝐶(𝒙L, 𝑡) < 𝐶sat

0 𝐶(𝒙L, 𝑡) ≥ 𝐶sat
 

(26)   

Note that in this example we used the pH-dependent polarization curves and the pH-concentration 

relationships because they were available to us from literature. One can use (or propose) any other 

experimental/analytical method that provides a reasonable relationship between anodic current density 

and metal ions concentration to construct the concentration-dependent current density. For example, if 

data on corrosion rate in terms of chloride concentration is available, one can use the principle of 

electroneutrality to approximate the corresponding metal ions concentration (at a given chloride 

concentration) and find 𝑖(𝐶). 
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5.3. Computational model setup 

We use a 2D peridynamic model of transverse cross-section of the washers to simulate the crevice 

corrosion in the system described in [57] (see Fig. 6). The crevice between the washers is measured to be 

a wedge-shape of length 1.27 cm and with a gap size of 10 μm at the closed end and 50 μm at the mouth. 

We use the symmetry of the geometry (washers are identical) to define the domain as one-half of the 

system: one washer and a wedge crevice on the top with the length 1.27 cm and half of the original gap 

size (5 μm at the end and 25 μm at mouth). Fig. 6 shows how the 2D domain is chosen from the actual 

3D geometry, and Fig. 9 shows the initial and boundary conditions used in the simulation. 

   
Fig. 9. Geometry of the 2D computational model, with the initial and boundary conditions 

used. 

For the boundary conditions, we set 𝐶 = 0 for a 𝛿-thick layer at the crevice mouth to represent the 

connection to the bulk dilute electrolyte. The thickness is required because of the special way that 

nonlocal boundary conditions are defined in PD problems. Details on nonlocal boundary conditions are 

available in [58, 59]. The rest of the boundaries (including the symmetry line) are free boundaries and the 

no-flux conditions is naturally satisfied.  

The initial condition 𝐶 = 𝐶solid is imposed over the washer region and 𝐶 = 0 over the electrolyte region, 

except for a small area of length 500 μm at the crevice closed end where we impose 𝐶 = 0.99𝐶sat. The 

nearly saturated electrolyte near the end causes a local spike in current density according to Eq. (26) near 

the closed end. This end-condition acts as corrosion initiation at the tip of the crevice which could occur 

from microgalvanic dissolution of or around metallic inclusions on the surface, or due to passive film 

breakdown caused by other reasons. The length 500 μm is simply selected because it was approximately 

the minimum amount that could kick off the self-acceleration mechanism. The 500 μm was found by 

trying several different lengths from 100 and 1000 μm. Using lengths smaller than 500 μm, caused the 

metal-ion concentration to diffuse out quickly before they could accumulate enough to result in an anodic 

current density high enough to sustain the self-accelerating cycle illustrated in Fig. 4.   

As noticed from the dimensions shown in Fig. 9, the crevice length is two orders of magnitude longer 

than the gap. We use the PD formulation from Section 4 with an elliptical horizon so that grid spacing 

along the length can be selected to be 25 times larger than the spacing in the gap direction. We choose the 

elliptical horizon with 𝛿0 = 100 μm and 𝛿𝜋/2 = 4 μm (subscripts are the values for the polar angle 𝜃) 

along the major and minor axes, respectively, and set grid spacings Δ𝑥 = 25μm and Δ𝑦 = 1 μm to 

discretize the domain. A measure of grid density inside the horizon for PD with spherical horizon and 
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uniform grid spacing is the m-factor defined by /Δ𝑥 . Note that this choice of horizon and grid spacing 

results in an m-factor of 4 in both directions: 𝛿0 Δ𝑥⁄ = 𝛿𝜋
2
Δ𝑦⁄ = 4. 𝛿ref and Δ𝑥 in the calibration 

simulation are 4 μm and 1 μm respectively.  

Note that 𝑘𝑖𝑗 in the Backward Euler scheme (Eq. (9)), is obtained from Eq. (26) with 𝐶𝑛+1. This leads to 

a nonlinear system of equations in terms of 𝐶𝑛+1. We use a modified Polak-Ribiere nonlinear Conjugate 

Gradient method [60] to solve the nonlinear system at each time step. The total simulated corrosion time 

is 72 hours, and the time step is Δ𝑡 = 5 s.  

For the computer simulation, we coded the model into an in-house Fortran 90 program with OpenACC 

enabled GPU parallel computation. The simulation was performed on a Linux cluster with one Intel Xeon 

Gold 6248 processor (2.50 GHz, and 27.5 MB Cache) and one Tesla V100 GPU. The simulation took 

about 30 hours to finish. 

5.4. Simulation results and discussion 

Fig. 10 shows the PD simulation results in several snapshots in comparison with the corresponding 

experimental observations (at same times and using the same geometrical scales). The experimental 

graphs (left column) show the corrosion profiles at different times obtained by Optical Profilometry, 

scanning the depth along a radial line on the washer surface [57]. The PD simulation results (right 

column) show the evolution of damage and of the metal ion concentration in the crevice. The PD 

snapshots use the same length scales as the ones employed for the experimental results from [52]. The 

window frame shown on the top simulation snapshot represents the corresponding window used for the 

experimental results shown in the left column. The PD simulation is also provided in Video 1 (see 

Supplementary Materials). 

As observed, the complex evolution of corrosion damage is predicted very well by the PD model. 

Damage starts at the closed end and moves towards the mouth as time passes, affecting only a superficial 

layer of material. Progression of the active site toward the mouth stops after about 30 hours. The 

dissolution then localizes at a critical distance from the mouth, being controlled, autonomously, by the 

diffusion conditions near the crevice mouth, where dilute electrolyte enforces conditions that are well-

approximated by the boundary condition we imposed in the model at that end (see Fig. 9). This stagnation 

of the active site leads to deep carving into the washer near the crevice mouth. This observation is 

consistent with other studies on crevice corrosion in Nickel Alloy 625 washers [61-63].  

The PD model presented here helps us explain the underlying mechanism in crevice corrosion. According 

to the simulation results, the accumulated ions at the closed end locally increase the current density, 

which produces more dissolved metal ions; the closed end quickly saturates locally, due to the slow 

diffusion rate along the almost one-dimensional (narrow and long) path towards the crevice mouth; the 

current density peak starts to travel to towards the mouth, along with the location in the electrolyte 

between the saturated and the dilute regions, where the concentration is high enough (to cause a large 

current) to lead to dissolution but smaller than 𝐶sat; as the solution saturates, the solid does not passivate 

but saturation induces diffusion controlled corrosion with a significantly lower diffusion/dissolution rate; 

corrosion damage slows down in the vertical direction, into the washer; as the current peak keeps moves 

towards the mouth, it reaches a location at a critical distance from the mouth where the diffusion rate is 

high enough to prevent further saturation (as the shorter distance to the mouth results in a higher diffusion 

flux), and the dissolution rate and diffusion rate become balanced; when this process reaches semi-steady 

state transport, the peak current density location with high 𝐶 < 𝐶sat stops from translating to the left, and 

stabilizes , causing a deep attack in that particular region. Note that all this complex behavior is obtained  
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Fig. 10. Comparison of experimental results (left column, from [57]; note that each panel is 

from distinct washers coming from distinct experiments) and PD simulation results for crevice 

corrosion. The time and length scales for simulation and experiments are identical. The colors 

in the metal region (see Fig. 9) show the evolution of the nodal damage index, while those in 

the electrolyte region (see Fig. 9) indicate the metal ion concentration in the crevice. 
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autonomously by the PD model that only uses a simple concentration-dependent 𝑘diss. The PD crevice 

corrosion model introduced here is the first computational model to validate experimental results on 

crevice corrosion damage evolution with such details. 

As seen from the results in Fig. 10, the deep trenches carved in the crevice corrosion process can serve as 

initiation points for cracks in SCC. Given the easy and accuracy with which PD can model fracture, a 

uniquely valuable advantage of PD corrosion models is that one can now easily simulate SCC by simply 

coupling the corrosion damage model to a PD fracture model as done in, for example, [37], where pit-to-

crack transition in a turbine steel was accurately predicted using a 3D PD model. 

We note that the model introduced is not only capable of qualitative match with experiments, but also 

quantitative. As seen from Fig. 10, the evolution of the corrosion damage front and the depth of the local 

attack found by the PD model are very similar to those from experiments. Please note that the panels 

showing the experimental data are showing the corrosion front for different washers used in distinct tests. 

Some small differences between the simulation results and the experiments are in terms of surface 

roughness at the main damage site. This can be attributed to the stricter boundary condition (fixed 

location where 𝐶 = 0 is set) imposed in the model at the crevice mouth than likely exists in reality, and to 

the presence of microstructural heterogeneities in the metal that were not considered in the current PD 

model but could be added by using explicit representation of grain and grain boundaries (e.g. [31]). To 

reduce the likely high computational cost of such a model, an alternative would be to incorporate 

microstructural influences using the ideas from the intermediate homogenization (IH) PD modeling [64, 

65]. Another small difference between the simulation and the experiment is the location of the deep attack 

(critical distance). Note that the experiments in [57], in addition to the variability between different 

washers used in distinct tests, show a considerable degree of variability for this critical distance along 

different radial directions of the same washer in the same experiment (see Figure. 70 in [57]). There are 

several reasons for this variability, including imperfection on the shape of the washers, the pressure 

between them, slight asymmetries, etc. On the other hand, the model used here has many simplifications 

and assumptions, including that a two-dimensional approximation was used to simulate the actual 3D 

crevice problem. While a 3D PD simulation can be attempted, an axisymmetric PD corrosion formulation 

could offer similar results at a fraction of the cost. This is planned for the future.  

6. Conclusions 

A new peridynamic (PD) model for crevice corrosion damage was introduced and validated against 

experimental results from the published literature. We simplified the self-accelerating anodic dissolution 

kinetics in crevice corrosion to a metal-ion concentration dependent current density relationship. This 

relationship defines the local micro-dissolvability for interfacial PD transport bonds that carry anodic 

dissolution micro-fluxes. To be able to compute efficiently problems defined over domains with extreme 

aspect ratios, discretizations with similar aspect ratios are desired, but they were not possible in the 

standard PD formulation. To solve this problem, we presented a generalized version of the PD 

formulation that allows horizons with arbitrary shapes, which allows discretizations with highly different 

grid spacings in different directions. This plays a crucial role in efficiently simulating crevice corrosion, 

since crevices are often long but very narrow (with differences of two-three orders of magnitude between 

their length and gap). The model was validated against an experiment from literature on crevice corrosion 

between two washers of nickel alloy 625. We found the concentration-dependent current density from 

experimental polarization curves and analytical/empirical relationships. A PD model with the simple 

concentration-dependent dissolution formulation is able to predict the kinetics of anodic dissolution and 

damage evolution inside the crevice in great detail.   
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