
A Persistent Public Watermarking
of Relational Databases

Raju Halder and Agostino Cortesi

Dipartimento di Informatica
Università Ca’ Foscari di Venezia, Italy

{halder,cortesi}@unive.it

http://www.unive.it

Abstract. In this paper, we propose a novel fragile and robust persistent
watermarking scheme for relational databases that embeds both private
and public watermarks where the former allows the owner to prove his
ownership, while the latter allows any end-user to verify the correctness
and originality of the data in the database without loss of strength and
security. The public watermarking is based on a part of the database
state which remains invariant under processing of the queries associated
with the database, whereas the private watermarking is based on an
appropriate form of the original database state, called abstract database,
and the semantics-based properties of the data which remain invariant
under processing of the associated queries.

Key words: Watermarking, Databases, Abstraction

1 Introduction

Most of the existing watermarking techniques [1, 4, 10, 16] in the literature are
private, meaning that they are based on some private parameters (e.g. a secret
key). Only the authorized people (e.g. database owners) who know these private
parameters are able to verify the watermark and prove their ownership of the
database in case of any illegal redistribution, false ownership claim, theft etc.
However, private watermarking techniques suffer from disclosure of the private
parameters to dishonest people once the watermark is verified in presence of the
public. With access to the private parameters, attackers can easily invalidate
watermark detection either by removing watermarks from the protected data
or by adding a false watermark to the non-watermarked data. In contrast, in
public watermarking techniques [9, 15], any end-user can verify the embedded
watermark as many times as necessary without having any prior knowledge
about any of the private parameters to ensure that they are using correct (not
tampered) data coming from the original source. For instance, when a customer
uses sensitive information such as currency exchange rates or stock prices, it is
very important for him to ensure that the data are correct and coming from the
original source.

2 R. Halder, A. Cortesi

There are many applications that need to provide both private and public
watermarks so that the owner can verify any suspicious database to claim his
ownership, while at the same time any end-user can verify the originality and
integrity of the data without exposing any private parameters. However, the
existing techniques in the literature are unable to provide both.

Digital watermarking for integrity verification is called fragile watermarking
as compared to the robust watermarking for copyright protection [11]. Fragile-
ness of public watermarking must be maintained when any end-user wants to
verify the correctness of the data through it. Since the location of public water-
mark in the host data is public, robustness of it is a prime concern too. However,
there exist no watermarking scheme in the literature that can provide both of
robustness and fragileness.

The watermark verification phase in the existing techniques [4, 10, 15, 16]
completely relies on the content of the database. In other words, the success of
the watermark detection is content dependent. Benign Updates or any other
intensional processing of the database content may damage or distort the em-
bedded watermark that results into an unsuccessful watermark detection. For
instance, suppose a publisher is offering a 20% discount on the price of all articles.
The modification of the price information may make the watermark detection
phase almost infeasible if the price values are marked at bit-level or if any infor-
mation (viz, hash value) is extracted based on this price information and used
in the embedding phase. Therefore, most of the previous techniques are designed
to face V alue Modification Attacks, but are unable to resolve the persistency
of the watermark under intentional allowed modifications.

In our previous work [6], we already introduced the notion of persistent wa-
termark and discussed how to improve the existing techniques in terms of per-
sistency of the watermark that serves as a way to recognize the integrity and
ownership proof of the database bounded with a set of queries Q while allow-
ing the evaluation of the database by queries in Q. In this paper, we go one
step further, and we propose a novel fragile and robust persistent watermark-
ing scheme that embeds both private and public watermarks where the former
allows the owner to prove his ownership, while the latter allows any end-user
to verify the correctness and originality of the data in the database without
loss of strength and security. The public watermarking is based on a part of
the database state which remains invariant under processing of the queries as-
sociated with the database, whereas the private watermarking is based on an
appropriate form of the original database state, called abstract database, and
the semantics-based properties of the data which remain invariant under the
processing of the associated queries.

The structure of the paper is as follows: Section 2 recalls some basic concepts.
In Section 3, we propose a combined persistent public and private watermarking
scheme. In Section 4, we provide a brief discussions about the complexity of
our algorithms and the relations with the existing techniques in the literature.
Finally, we draw our conclusions in Section 5.

A Persistent Public Watermarking of Relational Databases 3

2 Basic Concepts

In this Section some basic concepts are recalled from the literature [5, 6, 8].

Persistent Watermark: Given a database dB and a set of applications inter-
acting with the dB. Let Q be the set of queries issued by these applications. We
denote the database model by a tuple 〈dB,Q〉. We do not make any restrictions
on the operations used in Q (SELECT, UPDATE, DELETE, INSERT).

Let the initial state of dB be d0. For the sake of simplicity, we assume that
there is a unique sequence d1, d2 . . . , dn−1 of valid states of the dB reached when
executing the queries of Q. Let W be the watermark that is embedded in state
d0. The watermark W is persistent w.r.t. Q if we can extract and verify it blindly
from any of the following n− 1 states successfully.

Definition 1 (Persistent Watermark).
Let 〈dB,Q〉 be a database model where Q is the set of queries associated with
the database dB. Suppose the initial state of dB is d0. The processing of the
queries in Q over d0 yield to a set of valid states d1, . . . , dn−1. A watermark W
embedded in state d0 of dB is called persistent w.r.t. Q if

∀i ∈ [1..(n− 1)], verify(d0,W) = verify(di,W)

where verify(d,W) is a boolean function such that the probability of “verify(d,W) =
true” is negligible if and only if W is not the watermark embedded in d.

Static versus Non-static Database States: Consider a database model
〈dB,Q〉 where Q is the set of queries associated with the database dB. For
any state di, i ∈ [0..(n− 1)], we can partition the data cells in di into two parts
w.r.t. Q: Static and Non-Static. Static part contains those data cells of di that
are not affected by the queries in Q at all, whereas the data cells in non-static
part of di may change under processing of the queries in Q.

Let CELLdi be the set of cells in state di of dB. We denote the set of static

cells of di w.r.t. Q by STCQdi ⊆ CELLdi . For each tuple t ∈ di we denote the

static part of it by STCQt ⊆ STC
Q
di

. Thus, STCQdi =
⋃
tj∈di STC

Q
tj .

Now we discuss how to identify the static and non-static part of di w.r.t.
Q. As SELECT and INSERT statements in Q do not affect the existing data
cells of di, they do not take part in determining static/non-static part at all.
However, DELETE statement may delete some data cells form static or non-
static part, resulting into a subset of it. Thus, if STCQdi and (CELLdi −STC

Q
di

)
represent static and non-static part of di w.r.t. Q respectively, a subset of it
remains invariant over all the n valid states d0, d1, . . . , dn−1 under processing
of DELETE statements in Q. The UPDATE statements modify values of the
data cells in non-static part only. Let ATTupdate be the set of attributes of dB
that are targeted by the UPDATE statements. Thus we can identify the set of
cells STCQdi , i ∈ [0..(n − 1)] in state di corresponding to the attributes not in

ATTupdate, which remains invariant over all the n valid states.

4 R. Halder, A. Cortesi

Semantics-based Properties: Given a database state di, i ∈ [0..(n − 1)] of
dB associated with a set of queries Q, we can identify some semantics-based
properties of the data in di w.r.t. Q. These properties include Intra− cell (IC),
Intra− tuple (IT) or Intra− attribute among − tuples (IA) properties.

Intra-cell (IC) property: In this case individual data cells of a database
state represents some specific properties of interests. Let the possible values of a
cell corresponding to a attribute Z be a ≤ Z ≤ b over all the valid states, where
a and b represent integer values. The IC property can be represented by [a, b]
from the domain of intervals.

Intra-tuple (IT) property: An IT property is a property which is extracted
based on inter-relationship between two or more attribute values in the same
tuple. As an example, we may consider inter-relation between two attributes
basic price and total price of a database containing commodity information
where total price includes basic price plus a percentage of VAT of the basic price.
This can be abstracted by a relational abstract domain, like the domain of oc-
tagons [13].

Intra-attribute among-tuples (IA) property: The IA property is obtained
from the set of independent tuples in a relation. Examples of such property are:
(i) in an employee database #male employee = #female employee±1, where #
denotes cardinality of a set, (ii) the average salary of male employees is greater
than the average salary of female employees, (iii) the total number of female
employees is greater than 3, etc. The first two can be abstracted by relational
abstract domain, whereas the last one can be represented by interval [3,+∞].

We denote the set of semantics-based properties obtained this way from state
di w.r.t. Q by PQdi . For each tuple t ∈ di we denote the set of IC, IT properties

by PQt = ICQt ∪ IT
Q
t ⊆ PQdi . Note that IA property can not be determined at

tuple level. Thus, PQdi = {
⋃
tj∈di(IC

Q
tj ∪ IT

Q
tj)} ∪ IAQdi , where IAQdi represents

Intra − attribute among − tuples (IA) property in state di w.r.t. Q. Observe

that PQdi remains invariant over all the n valid states d0, d1, . . . , dn−1.

Abstract Database: In [5, 8], we proposed a sound approximation technique
for database query languages based on the Abstract Interpretation framework
where the values of the concrete database are replaced by abstract values from
abstract domains representing some specific properties of interests, resulting into
an abstract database. We may distinguish partially abstract databases in con-
trast to fully abstract one, as in the former case only a subset of data in the
database is abstracted. The abstract database provides a partial view of the data
by disclosing properties rather than their exact content. Consider the employee
database in Table 1(a) that consists of a single table emp. Table 1(b) depicts a
partially abstract database consisting of emp] which is obtained by abstracting
basic and gross salaries of the employees in emp by elements from the domain
of intervals.

A Persistent Public Watermarking of Relational Databases 5

Table 1: Concrete and corresponding partially abstract employee database
(a) The concrete table emp

eID Name Basic Sal
(euro)

Gross Sal
(euro)

Age DNo

E001 Bob 1000 1900 48 2
E002 Alice 900 1685 29 1
E003 Matteo 1200 2270 58 2
E004 Tom 600 1190 30 2
E005 Marry 1350 2542.5 55 1

(b) The abstract table emp]

eID] Name] Basic Sal] (euro) Gross Sal] (euro) Age] DNo]

E001 Bob [1000, 1300] [1900, 2470] 48 2
E002 Alice [900, 1170] [1685, 2190.5] 29 1
E003 Matteo [1200, 1560] [2270, 2951] 58 2
E004 Tom [600, 780] [1190, 1547] 30 2
E005 Marry [1350, 1755] [2542.5, 3305.25] 55 1

Definition 2 (Abstract Database). Let dB be a database. The database dB] =
α(dB) where α is the abstraction function, is said to be an abstract version of
dB if there exist a representation function γ, called concretization function such
that for each tuple 〈x1, x2, . . . , xn〉 ∈ dB there exist a tuple 〈y1, y2, . . . , yn〉 ∈ dB]
such that ∀i ∈ [1 . . . n], xi ∈ γ(yi) ∨ xi ∈ id(yi).

Watermarking based on partially abstract databases which are obtained by
abstracting the data cells in non-static part (CELLd−STCQd) only, results into
a content-independent persistent watermark. This is because although the exact
values in (CELLd − STCQd) may change under processing of the queries in Q,
their properties represented by abstract values remain invariant.

3 Persistent public/private watermarking

In the rest of the paper, we do not restrict ourself to any particular data type
of the attributes. Attributes of any type including numeric, boolean, character,
or any other can play roles in the public as well as private watermarking phase.
Consider a database dB(PK,A0, A1, A2, . . . , Aβ−1) in state d associated with
a set of queries Q, where PK is the primary key. We divide the attribute set
{A0, A1, A2, . . . , Aβ−1} into two parts w.r.t. Q: Static attribute set AQstatic =
{As0, As1, . . . , Asp−1} and Non-static attribute set AQvar = {Av0, Av1, . . . , Avq−1},
where p + q = β. The set of static data cells STCQd corresponds to static at-

tribute set AQstatic, whereas the set of non-static data cells (CELLd − STCQd)
corresponds to non-static attribute set AQvar. Although the primary key PK may

be static in nature, we exclude it from the set AQstatic and mention it separately
in the rest of the paper. Of course, any change on the values of the primary key
will be detected in the verification phase.

Public watermark is embedded into a known location of the host data with
known methods to guarantee its public detectability. We identify most significant

6 R. Halder, A. Cortesi

bit (MSB) positions of the data cells in STCQd as the location for public water-
mark. We avoid non-static data cells because their values keep changing under
processing of the queries in Q. This ensures the persistency of the public water-
mark. Since the public watermark in the host data is visible to all end-users, it is
highly possible that attackers try to remove or distort it. We achieve robustness
of the public watermark by choosing only the most significant bit positions of
the host data as the location for public watermark: any major malicious change
of the static portion of the database will be detected in the verification phase.
Moreover, our scheme is designed to be fragile by using a cryptographic hash
value of each tuple so as to detect and locate any modification when attackers
try to modify the data in the database while keeping the watermark untouched.

The private watermarking is based on two invariants of the database
states: semantics-based properties and partially abstract database, so as to main-
tain the persistency of the watermark under processing of the queries associated
with the database. The security of private watermarking relies on the secret key
as well as the level of abstraction used. Attackers do not know which proper-
ties are used to abstract the database. In addition, private watermarking is also
based on MSBs of the attribute values. We assume the secret key to be large
enough to thwart Brute force attack.

It is worthwhile to mention that, unlike existing techniques [1, 16, 9, 2], the
verification phase of the proposed scheme is deterministic. Since the watermark-
ing does not introduce any distortion to the underlying data, it is distortion-free.
However, in our scheme we do not allow any schema transformations.

3.1 Public Watermarking

The overall architecture of the public watermarking phase is depicted in Fig-
ure 1. It consists of a single procedure, called GenPublicKey. The inputs of
GenPublicKey are the database dB(PK,A0, A1, A2, . . . , Aβ−1) in state d as-
sociated with a set of queries Q, the signature S of the database owner which
is known to all end-users, and a parameter ξ representing the number of most
significant bits (MSBs) available in attributes. The procedure generates a table
B(PK, b0, . . . , bp−1) where PK is the primary key, p is the number of attributes

in AQstatic and ∀j ∈ [0..(p − 1)]: bj contains either 1 or 0. The binary table B
is treated as public key and made available to all end-users. Later, when any
end-user wants to verify the source of a suspicious database, he uses B as the
public key to generate and verify the embedded signature S.

The algorithm of GenPublicKey is depicted in Figure 2. Let us describe it
in details.

Let |S| be the length of the signature S in binary form. We divide S into m
blocks {S0, S1, . . . , Sm−1} each of length p, where p is the number of attributes

in AQstatic and m = d |S|p e. If the length of the last block is less than p, we append
0s to make it of length p.

For each tuple t ∈ d, the algorithm generates an hash value h in binary form
of length p from its primary key and its static part STCQt = {t.As0, . . . , t.Asp−1}.

A Persistent Public Watermarking of Relational Databases 7

Performed by: Database Owner

GenPublicKey

Original Database DB(PK,A0, . . . , A 1β −)

in state d associated with Q

Signature S

Public Key B(PK,b0, . . . , bp-1) in binary form

Parameter ξξξξ

Fig. 1: Overall architecture of Public Watermarking Phase

We exclude the dynamic part of the tuples in computing hash because it keeps
changing under processing of the queries. While computing hash, we assume that
it is almost infeasible to generate same hash value from two different messages.

The HASH function we might use takes a parameter p and generates a bi-
nary hash value of length p: we can use Merkle-Damg̊ard’s Meta method [12]
where the length of the initial hash value and the length of each block of the
binary string obtained from “t.PK||t.As0|| . . . ||t.Asp−1” (where || stands for con-
catenation operation) is considered to be p.

Algo: GenPublicKey

Input: Database dB(PK,A0, A1, A2, . . . , Aβ−1) in state d associated with a set of
queries Q, Owner’s signature S, Parameter ξ representing the no. of MSBs
available in attributes.

Output: A publicly available binary table B(PK, b0, . . . , bp−1).

1. Identify AQstatic = {As0, As1, . . . , Asp−1}
2. Compute m = d |S|

p
e, where |S| denotes length of signature S in binary form

and p=no. of attributes in AQstatic
3. Split the signature S into m blocks {S0, S2, . . . , Sm−1} where |Si| = p
4. FOR each tuples t ∈ d DO
5. h = HASH(t.PK||t.As0|| . . . ||t.Asp−1, p)
6. i = PRSG(t.PK)%m
7. w = h⊗ Si
8. Generate a binary tuple r in B(PK, b0, . . . , bp−1) with r.PK = t.PK
9. FOR j = 0 . . . p− 1 DO
10. k = HASH(t.PK||t.Asj)%ξ
11. r.bj= kth MSB of t.Asj ⊗ w[j]
12. END FOR
13. END FOR
14. Return B

Fig. 2: Algorithm for Signature Embedding and Public Key Generation

Using pseudorandom sequence generator PRSG (e.g. Linear Feedback Shift
Register [7]) seeded by tuple’s primary key, we identify which group the tuple

8 R. Halder, A. Cortesi

belongs to. If the tuple t belongs to ith group, we compute w = h⊗Si where h is
the binary hash value of length p and Si is the ith block of the binary signature S.
In other words, we embed ith block Si of signature S into all tuples that belong to
ith group. This ensures the existence of the signature during verification phase if
there exist at least one marked tuple in each group after processing of DELETE
operations. Observe that w is of length p.

Corresponding to tuple t, we now create a binary tuple r inB(PK, b0, . . . , bp−1)
whose primary key is same as that of t, i.e. r.PK = t.PK. For each static at-
tribute Asj ∈ A

Q
static where j = 0, . . . , (p − 1), we obtain a MSB bit position k

in the corresponding data cell t.Asj by computing k = HASH(t.PK||t.Asj)%ξ
where ξ is the number of MSBs available in Asj . The value of the jth attribute

bj of r is, thus, r.bj= kth MSB of t.Asj ⊗ w[j].
We perform similar operations for all tuples in state d of dB, and finally

we get a binary table B(PK, b0, . . . , bp−1) consisting of a set of binary tuples
generated this way. This binary table B is then made publicly available and
treated as public key which is later used by any end-user to verify the embedded
signature S.

Signature Verification Figure 3 depicts the overall architecture of signature
verification phase performed by end-users. The procedure PublicVerify takes
a suspicious database dB(PK, A0, . . ., Aβ−1) in a different state d′ as input,
and generates an intermediate binary table B′(PK, a0, . . ., ap−1). Based on this
intermediate binary table B′(PK, a0, . . ., ap−1) and the public key B(PK, b0,
. . ., bp−1) which is generated by the database owner in watermarking phase, the
procedure ExtractSig extracts a signature S′. Finally, MatchSig compares
S′ with the original signature S. If it matches, the verification claim is true,
otherwise false.

Performed by: End-Users

PublicVerify

Suspicious Database DB(PK,A0, . . . , A 1β −)

in state d’ associated with Q

Signature S’

An intermediate table in binary

form B’(PK,a0, . . . , ap-1)

ExtractSig Public Key B(PK,b0, . . . , bp-1)

in binary form

MatchSig Original Signature S
Signature

Verification Claim

as True or False

Parameter ξξξξ

Fig. 3: Overall architecture of publicly Signature Verification phase

The algorithms of the procedures PublicVerify and ExtractSig are de-
picted in Figure 4 and 5 respectively. For each tuple t′ ∈ d′, the algorithm

A Persistent Public Watermarking of Relational Databases 9

PublicVerify generates a binary tuple r′ in B′(PK, a1, . . ., ap−1) whose pri-
mary key is equal to the primary key of t′, i.e. r′.PK = t′.PK. The binary values
of the attributes aj , j ∈ [0..(p − 1)] in r′ are obtained as follows: (i) Compute
binary hash value h of length p from the primary key t′.PK and static part
STCQt′ = {t′.As0, . . ., t′.Asp−1} in similar way as in algorithm GenPublicKey,

(ii) Extract kth MSB from t′.Asj in similar way as in algorithm GenPublicKey,

(iii) Compute aj = kth MSB of t′.Asj ⊗h[j], where h[j] represents jth bit of h.
In this way, the algorithm generates a set of binary tuples from the tuples in
state d′, and collection of these binary tuples forms the table B′.

Algo: PublicVerify

Input: Database dB(PK,A0, A1, A2, . . . , Aβ−1) in state d′ associated with Q, Pa-
rameter ξ, Public key B(PK, b0, . . . , bp−1), Owner’s Signature S.

Output: Signature Verification Claim as True or False.

1. Identify AQstatic = {As0, As1, . . . , Asp−1}
2. FOR each tuples t′ ∈ d′ Do
3. h = HASH(t′.PK||t′.As0|| . . . ||t′.Asp−1, p)
4. Construct a tuple r′ in B′(PK, a0, . . . , ap−1) such that r′.PK = t′.PK
5. FOR j = 0 . . . p− 1 DO
6. k = HASH(t′.PK, t′.Asj) % ξ

7. r′.aj= kth MSB in t′.Asj ⊗ h[j]
8. END FOR
9. END FOR
10. S′=ExtractSig(B, B′)
11. Return MatchSig(S, S′)

Fig. 4: Algorithm to Extract and verify Signature

Procedure PublicVerify then calls another procedure ExtractSig, and
passes the binary table B′ and the public key B (generated by the owner in
watermarking phase). ExtractSig finds the pairs of tuples (r, r′) where r ∈ B
and r′ ∈ B′ such that their primary keys are same i.e. r.PK = r′.PK. It then
performs attribute-wise XOR i.e. r.bj ⊗ r′.aj for all j ∈ [0..(p − 1)], excluding
the primary key attribute, and concatenate them to obtain a binary string str.
If the tuple r and r′ belongs to ith group which is determined from the pseudo
random sequence generator PRSG seeded by r.PK or r′.PK, the corresponding
str denotes ith block S′i of a signature S′. This way we can collect all strings str
from the tuples belonging to the ith group and put them into the buffer buff[i].
If no tampering occurred, all strings in buff[i] will be same and represent S′i.
However, when data is tampered, some strings str in buff[i] may be different
from the others. In such case, function MajorityV ote() returns the string with
maximum match. In this way, we can determine S′0, . . . , S

′
m−1 by extracting str

from the tuples belonging to m different groups. By concatenating them, finally
we get a signature S′. The procedure MatchSig returns true when S′ matches
with the original signature S, otherwise it returns False.

10 R. Halder, A. Cortesi

Algo: ExtractSig

Input: Public key B(PK, b0, . . . , bp−1) and Binary table B′(PK, a0, . . . , ap−1)
Output: Signature S′.

1. Find binary tuple r ∈ B and r′ ∈ B′ such that r.PK == r′.PK
2. FOR all pair (r, r′) DO
3. str = NULL
4. For j = 0 . . . p− 1 DO
5. Perform str = str||r.bj ⊗ r′.aj
6. i = PRSG(r.PK)%m
7. buff[i]← str
8. END FOR
9. FOR i = 0 . . . m− 1 DO
10. S′i=MajorityV ote(buff[i])
11. END FOR
12. Return S′ = S′0||S′1|| . . . ||S′i|| . . . ||S′m−1

Fig. 5: Algorithm to Extract Signature

Example 1. Consider the employee database of Table 1(a) where eID is the
primary key. Suppose the set of queries Q associated with the database are only
able to increase the basic and gross salary of employees by at most 30%. As only
the basic and gross salary can possibly be modified by the queries, we get AQstatic
= {Name, Age, Dno} and AQvar={Basic Sal, Gross Sal}.

Let the signature of the database owner be S = “RAJU” which is public and
known to all end-users. By concatenating the ASCII codes of the characters in S,
we get the binary representation of S as 01010010010000010100101001010101.
Since |S| = 32 and the number of static attributes in AQstatic is p=3, we divide

S into m = d |S|p e = d 323 e = 11 blocks each of length 3, i.e. 010 100 100 100 000
101 001 010 010 101 010. Since the last block contains only 2 bit, we append a
0 to make it of length 3.

Consider the tuple t = 〈E001, Bob, 1000, 1900, 48, 2〉. The primary key of t

is t.eID = E001 and the static part of t is STCQt = 〈t.Name, t.Age, t.Dno〉 =
〈Bob, 48, 2〉. By following Step 5 of the algorithm GenPublicKey, let the hypo-
thetical binary hash value of length p = 3 be h = HASH(E001||Bob||48||2, 3) =

001, obtained from its primary key t.eID and its static part STCQt . Based on
the random value generated from PRSG seeded by t.eID (Step 6), suppose we
determine that t belongs to the second group i.e. i = 2. Therefore, we compute
w = h⊗ S2 = 001⊗ 100 = 101 in Step 7.

In Step 8, corresponding to t we create a binary tuple r in B(PK, b0, b1,
b2) with r.PK = t.eID = E001. Suppose in Step 10, for each of the three static
attribute values t.Name = “Bob”, t.Age = “48” and t.Dno = “2” we get the
value of k as 2, 3 and 1 respectively (assuming ξ equal to 4). Let 0, 1 and 1 be the
2nd MSB of “Bob”, the 3rd MSB of “48” and the 1st MSB of “2” respectively.
Therefore in Step 11, we compute r.b0 = 0 ⊗ 1 = 1, r.b1 = 1 ⊗ 0 = 1 and
r.b2 = 1⊗1 = 0. This way we get the binary tuple r = 〈E001, 1, 1, 0〉. We do the
same for other tuples in state d, and finally we obtain a binary table B which is
then made publicly available.

A Persistent Public Watermarking of Relational Databases 11

Now we illustrate the verification phase. Consider the tuple t′=〈E001, Bob,
1000, 1900, 48, 2〉. In Step 3 of the algorithm PublicVerify, we compute a binary
hash value h of length p = 3 in similar way, and we obtain h = 001. We now
construct a binary tuple r′ in B′(PK, a0, a1, a2) as follows: (i) r′.PK = t′.eID =
E001, (ii) for attribute values “Bob”, “48” and “2”, we get MSB position k as
2, 3 and 1 respectively. Thus, a0=0 ⊗ 0 = 0, a1=1 ⊗ 0 = 1 and a2=1 ⊗ 1 = 0,
and the binary tuple r′ in B′(PK, a0, a1, a2) is 〈E001, 0, 1, 0〉.

When we call the procedure ExtractSig, it finds two binary tuples r =
〈E001, 1, 1, 0〉 ∈ B and r′ = 〈E001, 0, 1, 0〉 ∈ B′, and it generates the string
str = 1 ⊗ 0||1 ⊗ 1||0 ⊗ 0 = 100. Since the tuples r and r′ belong to the 2nd

group which is determined from the pseudorandom sequence generator seeded
by r.PK = E001, we get that the string str = 100 represents the 2nd block
S′2 of a signature S′. In similar way we can extract all 11 blocks S′0, . . . , S

′
10 of

S′ from the tuples in d′ belonging to 11 different groups, and by concatenating
them we get 010100100100000101001010010101010 which is same as the original
signature S = “RAJU”.

3.2 Private Watermarking

The private watermarking algorithm PrivateWatermark is depicted in Figure
6. The inputs of the algorithm are the original database dB(PK, A0, A1, . . .,
Aβ−1) in state d bounded with a set of queries Q, a secret key K, and the
abstract function α. It generates a private binary watermark PW whose schema
is PW (PK, c0, . . ., cβ−1, p0, p1, p2).

The algorithm generates a partially abstract database state d] from the
original state d by abstracting the data cells belonging to the non-static part
(CELLd − STCQd) only. For each tuple t] ∈ d], the algorithm generates a tuple
r in PW (PK, c0, . . . , cβ−1, p0, p1, p2) whose primary key is equal to the primary
key of t] just to identify the tuples in PW uniquely and to perform matching
in the verification phase. Note that as the primary key attribute is static in
nature we never abstract its values. The algorithm, then, adds three values for
the attributes p0, p1 and p2 in r that correspond to the encoded values of IC,
IT properties for t] and encoded value of IA property for the whole database
state d], where gpencode represents an encoding function (e.g. minimal perfect
hash function). Gi represents a pseudorandom sequence generator that returns
ith random value val when it is seeded by the attribute values of t] including
its primary key, and the secret key K. For all i from 0 to β − 1, val chooses an
attribute randomly in t] excluding the primary key and consider its MSB as the
binary value for ci in r. While computing the seed value for Gi or extracting
MSBs, if there is any problem with abstract form of the values we can use its
encoded form too. For instance, we can encode any interval by using the Chinese
Remainder Theorem [14].

Observe that since the binary tuples in PW are constructed from semantics-
based properties and partially abstract database information, the private water-
mark PW is invariant under processing of the queries in Q. The inputs of the
verification algorithm are the database in state d′ bounded with Q, the secret

12 R. Halder, A. Cortesi

Algo: PrivateWatermark

Input: Database dB(PK,A0, . . . , Aβ−1) in state d bounded with a set of queries
Q, Secret key K, Abstraction function α.

Output: A private binary watermark PW (PK, c0, . . . , cβ−1, p0, p1, p2).

1. Obtain Partially Abstract Database dB](PK], A]0, . . . , A
]
β−1) in state d] by

abstracting non-static part (CELLd − STCQd) only

2. Determine IAQ
d]

3. FOR each tuple t] ∈ d] DO

4. Construct tuple r in PW with primary key r.PK = t].PK]

5. Determine ICQ
t]

, ITQ
t]

6. r.p0 = gpencode(IC
Q

t]
)

7. r.p1 = gpencode(IT
Q

t]
)

8. r.p2 = gpencode(IA
Q

d]
)

9. FOR (i=0; i< β; i=i+1) DO

10. val= Gi(K ◦ t].PK] ◦ t].A]0 ◦ . . . ◦ t].A
]
β−1)

11. j = val%(no. of attributes in t])

12. r.ci= (MSB of jth attribute in t])

13. delete the jth attribute from t]

14. END FOR
15. END FOR
16. Return PW ;

Fig. 6: Private Watermarking Algorithm

key K, the abstract function α, and the output is a binary table PW ′. We use
a boolean function match(PW,PW ′) to compare PW ′ with the original private
watermark PW which is obtained in the private watermarking phase. Note that
the function match(PW,PW ′) compares tuple by tuple taking into account the
primary key of the tuples in PW and PW ′. As tuples may be deleted from
or added to the initial state d and yield to a different state d′, only those tu-
ples whose primary keys are common in both PW and PW ′ are compared. If
match(PW,PW ′) = True, then the claim of the ownership is true, otherwise it
is false. Observe that the verification phase is deterministic rather than proba-
bilistic [9], as we compare and verify tuples in PW ′ against the tuples in PW
with the same primary key only, and the binary values of the attributes in PW
are invariant. Observe that there is an obvious tradeoff between the level of ab-
straction of the non-static part and the strength of the robustness of the private
watermarking.

Example 2. Consider the database consisting of table emp with eID as the pri-
mary key in Table 1(a) where we determine that AQstatic = {Name, Age, Dno}
and AQvar = {Basic Sal, Gross Sal} w.r.t. the queries that are only able to
increase the basic and gross salary of employees by at most 30%.

The partially abstract table emp] is shown in Table 1(b) where data cells
corresponding to the non-static attribute set AQvar are abstracted by elements
from the domain of intervals. Consider an abstract tuple t], say, 〈E002, Alice,

A Persistent Public Watermarking of Relational Databases 13

[900, 1170], [1685, 2190.5], 29, 1〉 in emp]. Corresponding to t] we create a tuple
r in watermark table PW (PK, c0, . . ., cβ−1, p0, p1, p2) with r.PK = E002.

In t], the abstract values of the basic and gross salary are [900, 1170] and
[1685, 2190.5] respectively. These abstract values represent IC properties for t].
The relation between two attributes Basic Sal] and Gross Sal] can be repre-

sented, for instance, by the following inequation: Gross Sal] ≥ (165×Basic Sal])
100 +

200, assuming that Gross Sal] includes Basic Sal], 65% of the Basic Sal] as
PF,HRA etc and minimum of 200 euro as incentive. Thus, the IT property can
be obtained by abstracting the above relation by the elements from the domain
of polyhedra [3] i.e. by the linear equation just mentioned. The IA property may
be: “The number of employees in every department is more than 2”. This can
also be represented by [3,+∞] in the domain of intervals. Suppose after encod-
ing these three properties, we obtain the encoded values k1, k2, k3. Therefore,
the values of the attributes p0, p1, p2 in r will be k1, k2, k3 respectively.

Suppose the random selection of the attributes in t] based on the random
value generated by the pseudorandom sequence generator yields to the selection
order as follows: 〈[1685, 2190.5], 1, 29, [900, 1170], Alice〉. We choose MSB from
these attribute values in this order. Note that for abstract values (represented
by intervals) we may extract MSB from its encoded values obtained by using
Chinese Remainder Theorem. Let the extracted MSBs be 0, 1, 1, 0, 1 respectively.
Thus the tuple r in PW would be 〈E002, 0, 1, 1, 0, 1, k1, k2, k3〉.

After performing similar operations for all the tuples, the watermark PW is
generated.

4 Discussions

The time complexity to generate the public key B depends only on the number
of tuples in the original database linearly, whereas the time complexity to gen-
erate the private watermark PW depends on the the number of tuples in the
original database as well as the complexity of the abstraction operation used
in private watermarking phase. That is, the time complexity of the algorithms
GenPublicKey and PrivateWatermark are O(η) and O(η× µ) respectively,
where η is the number of tuples in the original database and µ is the complexity
of the abstraction operation applied to tuples’ values.

Given a database dB(PK, A0, A1, A2, . . ., Aβ−1), the number of attributes

in public watermark B is p+ 1, where p is the cardinality of AQstatic. Suppose η
is the number of tuples in the original database state. The total number of cells
in public watermark B is, thus, (p + 1) × η. If σ is the number of bits required
to represent the primary key, the total number of bits in B is (σ+ p)× η. Thus,
the space complexity can be represented by O(η).

Similarly we can show that the total number of bits in the private watermark
PW is (ν + β)× η where ν is the total number of bits required to represent the
primary key and the three semantics-based properties p0, p1, p2, and η is the
number of tuples in the original database state. Thus, in this case also the space
complexity can be represented by O(η).

14 R. Halder, A. Cortesi

Before concluding, let us briefly discuss the properties of our proposal and
relate them with the existing techniques in the literature.

Our proposed public and private watermarking scheme has the following
properties: (i) It is blind, (ii) It does not introduce any distortions to the un-
derlying data, and thus never degrades the usability of the data in the database,
(iii) It preserves the persistency of both public and private watermarks, (iv)
Public watermarking is robust as well as fragile, (v) There is no need of recom-
putation when tuples are updated by the queries associated with the database.
(vi) The verification phase is deterministic rather than probabilistic and can,
thus, reduce false positive and false negative.

Although the public watermarking algorithm of [9] is robust, it is not fragile:
attackers can easily tamper the data by keeping the MSBs unchanged. Observe
that our scheme uses cryptographic hash value obtained from the static part of
each tuple. Any modification of the static part, thus, reflects to the hash value
and makes the signature extraction from that tuple unsuccessful. In other words,
any modification is narrowed down to each tuple.

The watermark embedding phase in [4, 10, 15, 16] is content-dependent. Any
intentional processing of the database content may damage or distort the existing
watermark, resulting the persistency of it into a risk. Our scheme is designed in
such a way to preserve the persistency of the watermark by exploiting invariants
of the database state.

The watermark detection algorithm of [1, 2, 9, 16] is parameterized with a
threshold value. The lower the value of the threshold, the higher is the probability
of a successful verification. We strictly improve on these techniques by exploiting
invariants of the database state and by keeping the identity of the binary tuples
in public key B and in private watermark PW . This makes the verification phase
in both cases deterministic.

5 Conclusions

In this paper, we proposed a novel persistent watermarking scheme that embeds
both private and public watermarks. Public watermarking is based on static
data cells, whereas private watermarking is based on partially abstract database
and semantics-based properties of the data. This ensures the persistency of both
watermarks under processing of the queries associated with the database. We use
cryptographic hash function and most significant bit positions for the location
of public watermark to defeat any malicious attempt by the attackers.

Acknowledgement Work partially supported by Italian MIUR COFIN’07
project “SOFT” and by RAS project TESLA - Tecniche di enforcement per
la sicurezza dei linguaggi e delle applicazioni.

References

1. Agrawal, R. and Haas, P. J. and Kiernan, J.: Watermarking relational data: frame-
work, algorithms and analysis. The VLDB Journal 12(2), 157–169 (2003)

A Persistent Public Watermarking of Relational Databases 15

2. Bhattacharya, S., Cortesi, A.: A generic distortion free watermarking technique
for relational databases. In: Proceedings of the 5th International Conference on
Information Systems Security. pp. 252–264. Springer LNCS 5905, Kolkata, India
(2009)

3. Chen, L., Miné, A., Cousot, P.: A sound floating-point polyhedra abstract domain.
In: Proceedings of the 6th Asian Symposium on Programming Languages and
Systems (APLAS ’08). pp. 3–18. Springer-Verlag LNCS, Bangalore, India (2008)

4. Guo, H., Li, Y., Liua, A., Jajodia, S.: A fragile watermarking scheme for detecting
malicious modifications of database relations. Information Sciences 176, 1350–1378
(2006)

5. Halder, R., Cortesi, A.: Abstract interpretation for sound approximation of
database query languages. In: Proceedings of the IEEE 7th International Confer-
ence on INFOrmatics and Systems (INFOS2010), Advances in Data Engineering
and Management Track. pp. 53–59. IEEE Catalog Number: IEEE CFP1006J-CDR,
Cairo, Egypt (28–30 March 2010)

6. Halder, R., Cortesi, A.: Persistent watermarking of relational databases. In: Pro-
ceedings of the IEEE International Conference on Advances in Communication,
Network, and Computing (CNC’10). IEEE CS, Calicut, India (4–5 Oct 2010)

7. Halder, R., Dasgupta, P., Naskar, S., Sarma, S.S.: An internet-based ip protection
scheme for circuit designs using linear feedback shift register (lfsr)-based locking.
In: Proceedings of the 22nd ACM/IEEE Annual Symposium on Integrated Circuits
and System Design(SBCCI’09). ACM Press, Natal, Brazil (31st Aug–3rd Sep 2009)

8. Halder, R., Cortesi, A.: Observation-based fine grained access control for relational
databases. In: Proceedings of the 5th International Conference on Software and
Data Technologies (ICSOFT10). pp. 254–265. INSTICC, Athens, Greece (22–24
July 2010)

9. Li, Y., Deng, R.H.: Publicly verifiable ownership protection for relational
databases. In: Proceedings of the ACM Symposium on Information, computer and
communications security (ASIACCS ’06). pp. 78–89. ACM, Taiwan (2006)

10. Li, Y., Guo, H., Jajodia, S.: Tamper detection and localization for categorical data
using fragile watermarks. In: Proceedings of the 4th ACM workshop on Digital
rights management (DRM ’04). pp. 73–82. ACM, Washington DC (2004)

11. Lin, E., Delp, E.: A review of fragile image watermarks. In: Proceedings of the
Multimedia and Security Workshop (ACM Multimedia ’99). pp. 25–29. Orlando
(1999)

12. Menezes, A.J., Vanstone, S.A., Oorschot, P.C.V.: Handbook of Applied Cryptog-
raphy. CRC Press, Inc., Boca Raton, FL, USA (1996)

13. Miné, A.: The octagon abstract domain. Higher Order Symbol. Comput. 19(1),
31–100 (2006)

14. Rivest, R., Adleman, L., Dertouzos, M.: On data banks and privacy homomor-
phisms. In: Foundations of Secure Computation. pp. 169–180. Academic Press,
New York (1978)

15. Tsai, M.H., Tseng, H.Y., Lai, C.Y.: A database watermarking technique for temper
detection. In: Proceedings of the 2006 Joint Conference on Information Sciences
(JCIS 2006). Atlantis Press, Kaohsiung, Taiwan, ROC (October 8-11 2006)

16. Zhang, Y., Niu, X., Zhao, D., Li, J., Liu, S.: Relational databases watermark tech-
nique based on content characteristic. In: First International Conference on Inno-
vative Computing, Information and Control (ICICIC ’06). pp. 677–680. IEEE CS,
Beijing, China (16 October 2006)

