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A personalised approach for identifying disease-relevant

pathways in heterogeneous diseases
Juhi Somani1,2, Siddharth Ramchandran 1,2 and Harri Lähdesmäki1✉

Numerous time-course gene expression datasets have been generated for studying the biological dynamics that drive disease
progression; and nearly as many methods have been proposed to analyse them. However, barely any method exists that can
appropriately model time-course data while accounting for heterogeneity that entails many complex diseases. Most methods
manage to fulfil either one of those qualities, but not both. The lack of appropriate methods hinders our capability of
understanding the disease process and pursuing preventive treatments. We present a method that models time-course data in a
personalised manner using Gaussian processes in order to identify differentially expressed genes (DEGs); and combines the DEG
lists on a pathway-level using a permutation-based empirical hypothesis testing in order to overcome gene-level variability and
inconsistencies prevalent to datasets from heterogenous diseases. Our method can be applied to study the time-course dynamics,
as well as specific time-windows of heterogeneous diseases. We apply our personalised approach on three longitudinal type 1
diabetes (T1D) datasets, where the first two are used to determine perturbations taking place during early prognosis of the disease,
as well as in time-windows before autoantibody positivity and T1D diagnosis; and the third is used to assess the generalisability of
our method. By comparing to non-personalised methods, we demonstrate that our approach is biologically motivated and can
reveal more insights into progression of heterogeneous diseases. With its robust capabilities of identifying disease-relevant
pathways, our approach could be useful for predicting events in the progression of heterogeneous diseases and even for biomarker
identification.
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INTRODUCTION

With the increasing affordability of high-throughput technologies,
such as microarray and RNA sequencing, genome-wide time-
course gene expression data has become one of the most
abundant and routinely analysed type of data1 for studying and
understanding the molecular mechanisms underlying various
complex diseases2. Encapsulating a wealth of information regard-
ing the prolonged or transient expressions of a large set of
activated genes1, time-course data also helps us understand and
model the (multidimensional) dynamics of complex biological
systems or phenomena, such as disease progression1,3,4. It offers
us the possibility of deciphering the underlying pathophysiologies
and systematic evolutions of human diseases3. A prominent goal
in such studies has been to identify genes whose expression levels
systematically differ between a case (e.g., disease) and a control
(e.g., healthy) group, and can be classified as biomarkers for
diagnosis and prognosis of the disease.
For over a decade, various methods have been introduced for

modelling time-course data to identify differentially expressed
genes (DEGs). Nonetheless, modelling, interpreting and validating
the gene expression patterns are continually met with major
challenges. The challenges can be largely classified into two
categories: (i) robustly modelling the dynamics of time-course
data and (ii) accounting for the heterogeneity of complex
diseases.
Many methods have been proposed that deal with the most

prominent limitations of modelling gene expression time-course
data. Some such limitations include non-uniform sampling1,5, too
few sampling times, missing time points, few or no replicates5,

autocorrelation between successive time points5,6, and high-
dimensionality with small sample sizes4. Some methods simplify
the modelling task by disregarding the dynamic nature and
making the expression profiles “coarse-grained”4, such as cross-
sectional analysis (i.e., direct time point-wise comparison of
samples) 7 and simplification strategies4,8,9. However, these
methods are suboptimal. Interpolation methods, such as linear10

and B-spline (cubic spline)7,11,12, have been one of the first
methods to be attempted for modelling the dynamics of
longitudinal data and using them for estimating gene expression
levels at unobserved time points5,6,7. Even though they incorpo-
rate the continuous nature of the data, they may be subject to
issues, such as overfitting. In fact, B-spline-based methods require
more than ten time points to produce reliable results5,6, which
makes it unsuitable for applications in many biological studies4.
Recently, linear mixed models (LMMs) and Gaussian processes

(GPs) have become popular choices for time-course data
modelling due to their ability of modelling the correlational
structure of the data13,14,15; efficiently handling biological
replicates, while accounting for subject-specific variability; includ-
ing time-invariant and time-varying covariates; and determining
the trends over time, as well as taking into account the correlation
that exists between successive measurements16. Moreover, GP
models offer a robust way of estimating missing or unobserved
values by providing confidence intervals along the estimated
curves of gene expression16. GP models can be used to identify
differential expression between multiple conditions17 or handle
general experimental designs18. They can also be designed to be
robust to outliers and employ flexible model basis19. GPs capture
the underlying true signal and embedded noise in a time-course
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gene-expression data in a non-linear manner, without imposing
strong modelling assumptions. In addition to answering whether a
gene is differentially expressed across the whole time-course, GP
models have also been successfully applied for determining
specific time-windows when a gene is DE even when no or few
observations are made in that time-window19,20,21.
The traditional applications of these methods detect genes that

exhibit different expression levels between a case and a control
group (DEGs) across the whole study population. Unfortunately, in
the case of heterogeneous data from complex diseases, only a few
genes are usually found to be DE across all or most cases because
different genes with similar functionalities may be found to be
perturbed across cases, thus justifying the gene-level variability at
a functional or pathway-level2. In fact, gene-level results from
similar studies of heterogeneous diseases, such as cancers22,23,
asthma, Huntington’s diseases2, rheumatoid arthritis, type 2
diabetes, schizophrenia24, and Parkinson’s disease2,24, have often
been found to be inconsistent. They show distressingly little
overlap between similar studies of the same disease2,22,25,26. Due
to these challenges, many methods that summarise the results on
a pathway-level have been developed, where the genes are
unified under biological themes that aid in a functional under-
standing of the results. This can be further improved by
developing personalised approaches for identifying enriched or
disrupted pathways in complex diseases. Here, personalised
approach refers to such methods that do not assume that
changes are consistent across all study subjects but instead they
identify biomarkers for each subject, e.g., by analysing each case-
control pair separately; and a pathway is an overarching term for a
group of genes unified under biological themes and are also
referred to as gene sets in Subramanian et al.25.
Menche et al.2 introduced a framework for personalised gene

expression analysis, where personalised perturbation profiles
(PEEPs) are constructed per case subject by calculating a z-score
with reference to the control group and considering any gene
with a z-score above an optimised threshold to be part of the
PEEP. Using a combinatorial model on the PEEPs, they strive to
identify a single pool of disease-associated genes that can be used
to accurately predict the disease status of each subject. The
method of Menche et al.2 thus accounts for heterogeneity.
However, it is not directly suitable for modelling time-course data.
Pathway (gene set) enrichment analyses, such as Fisher’s exact

test and GSEA25, are commonly applied to the gene-level results in
order to obtain an understanding of the results at the level of
biological processes. Several specialised methods have also been
proposed for pathway-level analysis with two groups, such as
module map22, CORGs27, Pathifier23, SPCA28, and PARADIGM29.
However, only a few can be applied directly to time-course
experiments. One such method is the unified statistical model for
analysing time-course experiments at the pathway-level using linear
mixed effects models30. This method directly identifies significant
pathways expressed over time by using random effects to model
the heterogeneous correlations between the genes in the pathway,
as well as other fixed and random effects. Unfortunately, these
methods do not apply a personalised approach for the modelling.
In this paper, we propose a method that models the time-

course data in a personalised manner using Gaussian processes
and combines the lists of DEGs on a pathway-level. Our method
assumes an experimental design where each case subject is
matched with a carefully chosen control subject, and the method
uses a robust yet efficient method to detect DE genes for each
individual with respect to the matched control. Individual-specific
gene-level results are summarised at pathway-level using a
permutation-based empirical hypothesis testing that is tailored
for personalised DE analysis. To study expression changes
associated with particular time periods, such as time before
disease onset, we also extend the method to detect DEGs in
specific time-windows. This method can be applied to longitudinal

case-control data from different technologies, such as gene
expression microarray, RNA sequencing and polymerase chain
reaction (PCR), and to a variety of omics data types. To our
knowledge, there are no competing methods to our proposed
method.
We applied this method to largely two type 1 diabetes (T1D)

microarray datasets from Kallionpää et al.31. There is growing
evidence that T1D is a genetically heterogeneous disease32–34.
Therefore, in order to gain a robust understanding of the
molecular mechanisms underlying this complex and heteroge-
neous disease, one needs to apply a personalised approach on a
pathway-level like the one presented here. We report disruptions
in pathways during the early progression of T1D (time-course
analysis), as well as in the 6 months windows before seroconver-
sion (autoantibody positivity) and clinical diagnosis of T1D.
Seroconversion is the time of autoantibody presentation in T1D
susceptible individuals and represents the earliest (currently
known) signs of disease progression. However, clinical diagnosis
of T1D is established at a very late stage of the disease when
insulitis has persisted over a long period of time35,36; ~80–90% of
β-cells have been destroyed; and hyperglycaemia is achieved31,35.
Therefore, identifying relevant perturbations at different stages of
the disease can help in monitoring and perhaps predicting the
significant events in the disease progression. Our personalised
approach was able to identify various disease-relevant and
interesting pathways from all three analyses, including those that
illustrate the intrinsic mechanisms of disease progression. We also
compared the results of the proposed personalised approach with
those of a population-wide method, the original results from
Kallionpää et al.31 and also a third T1D dataset from Ferreira
et al.37. This method can be applied to other heterogeneous
diseases with a similar experimental design and also extended to
non-paired case-control datasets.

RESULTS

Overview of our personalised GP regression and pathway
detection method

In this paper, we present a personalised approach for identifying
enriched pathways given time-course observations from multiple
two-sample (matched case-control) pairs. We apply our method
on gene expression microarray datasets with varying number of
case/control observations per pair and uneven sampling times. We
performed three types of analyses using Datasets 1 and 2
described in section on Data: early disease progression time-
course (TC) analysis across the whole study period, time-series
analysis within a window before seroconversion (WSC), and time-
series analysis within a window before T1D diagnosis (WT1D). We
compared the results obtained using our proposed personalised
approach in each of the three analyses with those obtained using
a combined (non-personalised) method. Fig. 1 gives a high-level
overview of our analyses and highlights the differences between
the two approaches discussed in this paper.
In our personalised approach, we examine each feature (i.e.,

probe-set or gene) from each case-control pair separately by fitting
two models, joint and separate. In the jointmodel, a GP regression is
fit to all samples from a case-control pair together (corresponds to
the null hypothesis), whereas in the separate model, GP regressions
are fit to cases and controls separately (corresponds to the
alternative hypothesis). We identified the DE features for each
case-control pair separately by quantifying the fitting of each model
using BF-scores and KL-scores in time-course and time-window
analyses, respectively (see Eqs. (6) and (13)). A feature was classified
as DE when, in TC analysis, the BF-score was above 4 and, in time-
window analyses, the KL-score was above 250. In case of probe-sets,
we mapped the DE probe-sets from each pair to their correspond-
ing gene names and performed pathway-level analysis on DE
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genes. Subsequently, we proceeded to obtain an enrichment score
(over all case-control pairs) for each pathway from MSigDB25,38

using the metric in Eq. (15). This was followed by a permutation test
for identifying a set of enriched pathways.
Our personalised approach is significantly different from the

combined method where we compute the associated BF-scores
and KL-scores per feature by pooling together all the cases and all
the controls to form a set of combined cases and controls
(assuming gene expression difference is homogeneous across the
whole study population). The enriched pathways are then
identified using a standard one-sided Fisher’s exact test.
A detailed description of the personalised and combined

methods can be found in Methods section.

Data

In this study, two T1D time-course gene expression datasets,
(Datasets 1 and 2) published by Kallionpää et al.31, were primarily

analysed to understand pathway-level disruptions in T1D (TC,
WSC, and WT1D analyses). We also perform TC analysis using our
personalised approach on a different T1D dataset, (Dataset 3)
published by Ferreira et al.37, to assess the generalisability of our
method and results. All three datasets were generated by
hybridising total mRNA extracted from venous blood cells on
microarrays (Affymetrix U219 arrays in Kallionpää et al.31 and
Affymetrix Human Gene 1.1 ST arrays in Ferreira et al.37).
Kallionpää et al.31 matched each case individual to a healthy
control individual based on confounding factors, such as date and
place of birth, gender and HLA risk class, and hybridised samples
in batches based the pairing. Similarly, we paired cases and
controls from Ferreira et al.37 based on time of birth, gender and
sampling ages. The raw datasets were downloaded from public
databases (see section on Data availability) and preprocessed
using affy-packages and oligo-packages in R. More details are
given in the Supplementary Notes and the respective articles.

Fig. 1 A schematic overview of our personalised approach as well as the combined method (a population-wide approach). a Summary of
the analyses performed and approaches used in this study as well as a depiction of the separate and jointmodels used for GP modelling in the
analyses. Here, m is the number of case-control pairs. b A schematic illustration of identifying differentially expressed genes (DEGs) and
significant pathways using the personalised approach and the combined method. In the personalised approach, the DEGs are identified
independently for each case-control pair and summarized on a pathway-level, whereas in the combined method, DEGs are identified by
comparing all cases to all controls.

J. Somani et al.

3

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2020)    17 



Dataset 1 comprised of 80 samples from six case-control pairs
(43 case and 37 control samples) chosen from the sample series of
seroconverted progressors, such that each pair was sampled before
and after seroconversion of the case. Dataset 2 comprised of
188 samples from 15 case-control pairs (103 case and 85 control
samples) chosen from the sample series of T1D progressors, such
that each pair was sampled starting after seroconversion and till at
least one month before T1D diagnosis of the case. Therefore,
Dataset 1 was used for the early disease progression time-course
(TC) and window before seroconversion (WSC) analyses; whereas,
Dataset 2 was used for the window before T1D (WT1D) analysis.
Dataset 3 comprised of 126 samples from 9 case-control pairs
(79 case and 47 control samples), such that each pair was sampled
before and after seroconversion of the case and each individual
was sampled at least at three time points. All individuals chosen in
each dataset consisted of 3 to 12 longitudinal samples each.
For pathway information, we used the Molecular Signatures

Database (MSigDB, v6.1), which is a collection of annotated gene
sets25,38. We performed pathway-level analyses using 16808 (of
17786) pathways from the collection.

Identifying differentially expressed genes

Differentially expressed genes (DEGs) were identified in a
direction-agnostic manner for pathway-level evaluation in all
three analyses using both the personalised and combined
approaches. In Datasets 1 and 2, the personalised approach
resulted in an average of 895, 1127 and 1677 genes DE in the TC,
WSC and WT1D analyses, respectively. On average, 14% (TC: 13%,
WSC: 13%, WT1D: 17%; obtained by dividing the average number
of overlapping DEGs between all pairs with the average number of
DEGs in each pair) of the DEGs overlapped between DEG lists of
each case-control pair in the three analyses, thereby demonstrat-
ing heterogeneity among case-control pairs. The combined
method resulted in 436, 234, and 563 genes as DE in the TC,
WSC and WT1D analyses, respectively. The overlap of DEGs
between the two approaches was significant in all analyses (p-
value < 0.05 using Fisher’s exact test).
The personalised approach accounts for the heterogeneity

between the pairs in time-course and time-window analyses.
Firstly, if probe-sets are used, the differential expression of a gene
in a case-control pair could be attributed to any of its probe-sets
regardless of the probe-set expressed in other pairs. Secondly, the
dynamics of gene expression and even the direction of regulation
of a DEG is allowed to vary from one case-control pair to another.
Although unclear, certain genes may be behaving inconsistently
across individuals due to the presence of certain other genes; or
any deviation, regardless of the direction, could result in disease-
associated perturbation possibly because of the mechanism of
regulating the pathway2. Thirdly, even a gene that is not
differentially regulated in most of the case-control pairs can be
relevant on the pathway-level. Finally, the GP modelling was able
to robustly interpolate over unobserved time points (see sections
on robustness analysis in Methods and Supplementary Methods),
which was especially important in time-window analyses where
sometimes only a few or no samples were available for
determining differential expression, as can be seen in Figs. 2a
and b, as well as Supplementary Figs. 1 and 2.
The combined method, on the other hand, is more stringent

when identifying DEGs in time-course and time-window analyses.
For a gene to be identified as DE using this method, a feature is
usually required to be DE in almost all of the pairs. Furthermore, if
a gene exhibits different temporal expression dynamics or is
regulated in opposite directions in different pairs, this model is
unlikely to identify it as differentially expressed.
To illustrate the above-mentioned traits, the expression of the

genes encoding the only two autoantigens that were differentially
expressed in the TC and WSC analyses, PTPRN2 and HSPD1, from

T1D pathway are shown in Figs. 2a and b. PTPRN2 encodes a major
islet autoantigen in T1D, which plays an important role in insulin
secretion in response to glucose stimuli by accumulating normal
levels of insulin-containing vesicles and preventing its degrada-
tion39. HSPD1 is considered a pro-apoptotic or anti-apoptotic
regulator of apoptosis, depending on the circumstances40, whose
high-levels have been associated with diabetes, as well as
increased expression of inflammatory genes and release of pro-
inflammatory cytokines41,42. In the TC analysis of Dataset 1 using
the personalised approach, case-control pairs 2, 7, 9, and 10
differentially downregulated only the PTPRN2 gene; pair 3
downregulated only the HSPD1 gene; and pair 8 downregulated
HSPD1, but upregulated PTPRN2. Here, the pairs regulating HSPD1
differentially express different probe-sets of the gene, whereas all
pairs regulating PTPRN2 differentially express the same probe-set.
However, pair 8 upregulated PTPRN2 when other pairs down-
regulated it. Coincidentally, pair 8 is the only pair that expressed
both PTPRN2 and HSPD1 in this data and it downregulated HSPD1
while upregulating PTPRN2, which may indicate correlation
between the two. On the other hand, the combined method
found significance only in the PTPRN2 gene since 5 of 6 case-
control pairs differentially expressed the same probe-set. More-
over, Supplementary Figs. 1 and 2 show two examples, HLA_DPB1
(probe-set: 11760799_x_at) and IRF5 (probe-set: 11726687_a_at),
where the case-control pairs regulate the genes in inconsistent
directions. Here, the combined method identifies HLA_DPB1 as DE,
whereas IRF5 is classified as insignificant. The personalised
approach, however, identifies both of these genes as significant
in all pairs.

Combined method vs. personalised approach

Using the combined method, 52, 10, and 80 pathways were found
to be significantly enriched with FDR < 0.1 in the TC and WSC
analyses of Dataset 1 and WT1D analysis of Dataset 2, respectively.
Similarly, 124, 307, and 2550 pathways were found to be
significantly enriched with FDR < 0.1 in the TC, WSC and WT1D
analyses, respectively, using the personalised approach (Table 1,
Supplementary Data). Of these, 12, 1, and 38 enriched pathways
overlapped between the two approaches in the TC, WSC and WT1D
analyses, respectively, which was found to be a significant amount
(Fisher’s combined p-value < 0.0001 obtained from p-values deter-
mined using Fisher’s exact test) (Table 2). Nonetheless, the
combined method was unable to identify most of the immunolo-
gically interesting and disease-relevant pathways in all three
analyses that were identified using the personalised approach.
Among the overlapping pathways, the most disease-relevant

pathways were those related to MHC classes I and II protein
complexes, protein antigen binding and receptor activity. Where
the personalised approach identified the relevance of these
pathways in all three analyses, the combined method identified
them as significant only in the TC analysis. Moreover, the
combined method failed to identify the overarching pathway,
‘antigen processing and presentation’, as significant, which was
found to be significant in all three analyses using the personalised
approach. In addition, other interesting and relevant pathways
that were identified by the personalised approach were not found
using the combined method in any of the analyses.
In particular, the combined method was also unable to identify

one of the most basic pathways related to immunological
diseases, ‘immune response’, or any of its related pathways in
any of the analyses. In fact, the ‘Type 1 diabetes’ pathway was also
not found as significant in any of the analyses using the combined
method. On the contrary, the personalised approach found the
‘immune response’ pathway as highly significant in all three
analyses and many related pathways in at least one analysis. It also
identified the T1D pathway as highly enriched in all three
analyses.
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Enriched pathways identified by the personalised approach

While analysing Datasets 1 and 2, several disease-relevant and
intriguing pathways were identified as enriched using the
personalised approach in either all three analyses, only two
analyses or uniquely in one analysis. In order to establish

relevance of these results, they were cross-validated with the
results from Kallionpää et al.31. The differentially expressed lists of
genes from the analyses in the article corresponding to our TC,
WSC and WT1D analyses were subjected to a Fisher’s exact test
using the pathways from the MSigDB25,38 to ensure comparability.

Fig. 2 Gene expression plots of two genes visualising the GP model fittings of the separate and jointmodels for the six case-control pairs
from Dataset 1. a Gene expression plots for PTPRN2. All profiles belong to the same probe-set as all pairs, including the combined method,
which identified the same probe-set to have the largest BF-score for PTPRN2. b Gene expression plots for HSPD1. The probe-set information is
marked for each pair since the profiles identified different probe-sets to have the largest BF-score for HSPD1. Shaded area around each GP
regression represents the 90% confidence interval of the fitting. A red border around a plot signifies differential expression (DE) in the time-
course analysis and an orange shaded window signifies DE in the time-window analysis. Here, pairs from Dataset 1 are prefixed with ‘SC-’.
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Their gene-level results identified 386, 432, and 824 pathways as
enriched in the TC, WSC, and WT1D analyses, respectively (Table
1). These pathways overlapped significantly (p-values < 0.0001
using Fisher’s exact test) with the enriched pathways found by the
personalised approach in all analyses, as well as the enriched
pathways identified in the TC analysis using the combined
method (p-value < 0.01), but overlapped insignificantly with the
results from time-window analyses using the combined method
(Table 2). Essentially, Kallionpää et al.31 were able to identify many
of the significant pathways identified using the personalised
approach. However, they mostly identified only the overarching
pathways, but not the related pathways with more specialised
functions. In some cases, they identified the significance of certain
pathways in different analyses than the personalised approach.
For instance, the T1D, as well as MHC classes I and II related
pathways were found enriched (FDR < 0.05) in only the WT1D
analysis, whereas our method found it in all three analyses. The
interesting pathways discussed below that were identified using
the personalised approach is illustrated in Fig. 3 and those
identified by Kallionpää et al.31 and the combined method are
highlighted with different colours.
The personalised approach identified significant (FDR < 0.05)

pathways related to immune response, interferon-γ (IFNγ) signal-
ling, regulation of inflammatory process to antigenic stimulus,
chemokine mediated signalling, and detection of other organism,
in all three analyses suggesting their relevance at all stages of the
disease (see Supplementary Data). Of these, Kallionpää et al.31

only identified immune response and IFNγ signalling related
pathways as enriched (FDR < 0.05) in all analyses and detection of
other organism pathway was found enriched (FDR < 0.05) in only
the WT1D analysis.
Multiple interesting overarching pathways were identified as

enriched by the personalised approach uniquely in the time-
windows right before seroconversion and T1D diagnosis, which
were also found by Kallionpää et al.31 in at least one of the
analyses. These include the pathways related to cytokine
mediated signalling, TNF signalling, regulation of dendritic cell
(DC) differentiation, and DC maturation. However, in contrast to
Kallionpää et al.31 results, the personalised approach was also
able to highlight specific cytokine pathways that could be
involved in the cytokine mediated signalling, as well as possible
pathways necessary to regulate/conduct the immune response.

In particular, IL-2 and IL-10 related pathways were enriched
along with immunoglobulin production, and leucocyte mediated
immunity.
Intriguingly, the personalised methods found several pathways

that were uniquely enriched during the early prognosis of T1D and
in the 6 months window before T1D diagnosis. While IFNγ
signalling was found significant at all stages of the disease,
interferon-α (IFNα) and interferon-β (IFNβ) signalling were
enriched only in the TC and WT1D analyses using the personalised
approach, whereas Kallionpää et al.31 associate their relevance at
all stages. In addition, we found other T1D-associated pathways,
such as PD1 signalling, IL-1 receptor binding, regulation of IL-4
production and positive regulation of B cell mediated immunity,
to be enriched in the TC and WT1D analyses. However, Kallionpää
et al.31 were unable to detect them.
Furthermore, distinct disease-relevant pathways were deter-

mined as uniquely enriched before seroconversion, before T1D
diagnosis or during the early stages of T1D progression using only
the personalised approach. Specifically, pathways related to
natural killer cell-mediated cytotoxicity and Fas signalling were
found to be uniquely significant during the early stages of T1D
progression and before seroconversion, respectively. Most strik-
ingly, pathways regulating the production of multiple different
pro-inflammatory and anti-inflammatory cytokines, such as Inter-
leukin-1, -1β, -2, -4, -5, -6, -10, -12, -21, -22, as well as the related
overarching pathways, were found enriched in the 6 months
before clinical onset of T1D, where more than half of the cytokine
pathways were unique to this time-window.
For assessing the generalisability of the results from our

personalised approach, we performed TC analysis also on third
independent dataset, namely Dataset 3, and performed Spear-
man’s rank correlation test between the FDR values of all
pathways obtained from analysing Datasets 1 and 3. The Spear-
man’s rank correlation value (ρ) for all pathways was 0.203, which
was found to be highly statistically significant with p-value <
10−15. The same correlation test performed on the 32 disease-
relevant pathways (highlighted in Supplementary Data) found
enriched in TC analysis using Dataset 1 resulted in ρ= 0.604,
which was also found highly statistically significant with p-value <
10−3. Most importantly, many of the disease-relevant pathways
found enriched in the TC analysis using Dataset 1 were found
enriched using Dataset 3 as well; including the T1D pathway; and
pathways related to immune response; interferon-α, -β and -γ
signalling; antigen processing and presentation; cytokine-
mediated signalling; and IL-1 and IL-4 production.

Type 1 diabetes pathway

The type 1 diabetes pathway was found enriched in all three
analyses of Datasets 1 and 2, as well as TC analysis of Dataset 3
using the personalised approach. However, the combined method
did not find it significant in any of the analyses and Kallionpää
et al.31 found its significance only in the late stages of the disease,

Table 2. Number of enriched pathways overlapping between different approaches in the TC, WSC and WT1D analyses (rows marked as ‘count’). A p-

value, determined using Fisher’s exact test, is also given for each overlap to show its significance (rows marked as ‘p-value’), where NS refers to ‘not

significant’ p-values (i.e., p-value > 0.05). Fisher’s combined p-value over all analyses per comparison is given in the last column.

Overlaps/analyses TC WSC WT1D Fisher’s combined p-value

Combined method vs. personalised approach Count 12 1 38 <0.0001

p-value <0.0001 NS <0.0001

Kallionpää et al. vs. personalised approach Count 29 60 507 <0.0001

p-value <0.0001 <0.0001 <0.0001

Kallionpää et al. vs. combined method Count 5 0 5 NS

p-value <0.01 NS NS

Table 1. Number of pathways identified as enriched (FDR < 0.1) in TC,

WSC and WT1D analyses using the personalised approach, combined

method and gene-level results from Kallionpää et al.31.

Approaches/Analyses TC WSC WT1D

Combined method 52 10 80

Personalised approach 124 307 2550

Kallionpää et al. 386 432 824

J. Somani et al.

6

npj Systems Biology and Applications (2020)    17 Published in partnership with the Systems Biology Institute



i.e., window before clinical onset of T1D. Fig. 4 shows the genes
that were identified as differentially expressed (BF-score > 4) in
each analysis per case-control pair (coloured dots) of Datasets 1
and 2. These figures clearly illustrate that only a small fraction of
the pathway’s genes are differentially expressed (DE) in most of
the case-control pairs and only a subset of these genes are DE in
each child. Moreover, the subset of DE genes varies from one pair
to another. It is not clearly understood how the presence of
certain genes influence that of the other genes, therefore it is not
easy to predict which genes in a pathway are selectively or
necessarily expressed. When the T1D pathway genes were
functionally divided into 3 main sub-processes: release and
presentation of autoantigens; activation of CD4+, CD8+ T cells
and macrophages; and apoptosis of β-cells, it was noticed that at
least one gene from each sub-process was identified as DE in each
pair. Some pairs did not differentially express any of the (auto)
antigen encoding genes, which could indicate an environmental
source of (auto)antigens instead of genetic. Similar phenomena
may be expected from most other pathways. As an additional
example, IFNγ signalling pathway has been depicted in Supple-
mentary Figs. 3 and 4.
The combined method identified only those genes as DE that

were DE in almost all the pairs (Fig. 4). Therefore, for a pathway to
be recognised as enriched using the combined method, a
significant number of the genes in the pathway would need to
be DE in most of the pairs, which may not be how heterogeneous
diseases, such as T1D, affect pathways.

DISCUSSION

The results of this paper demonstrate that a personalised
approach of identifying differentially expressed genes (DEGs)
and summarising them on a pathway-level can reveal more
insight into the progression of heterogeneous diseases, such as
type 1 diabetes (T1D), than commonly used non-personalised
approaches that assume differences between cases and controls
to be consistent across the whole study population, such as the

combined method presented in this paper. Even though a
significant number of pathways identified by the two approaches
overlapped, the combined method was unable to identify the
significance of most of the disease-relevant and interesting
pathways that were identified by the personalised approach in
all the analyses. The combined model identified DEGs in a strict
manner that may also be biologically unrealistic, which probably
impeded its ability to pinpoint most of the disease-relevant and
intriguing pathways.
For validation, the results from the personalised approach

(Datasets 1 and 2) were compared to that of the results from
Kallionpää et al.31, who analysed the same datasets using a rank
product algorithm introduced by Breitling et al.43 for identifying
DEGs, which cannot account for neither the dynamics of the time-
course data nor the heterogeneity. Moreover, they estimated
unobserved values in time-window analyses via linear inter-/
extrapolation, where we applied Gaussian process modelling,
which is known to be more robust. Significant number of
pathways identified as enriched by the personalised approach
overlapped with the Kallionpää et al.31 results. However, while
Kallionpää et al.31 identified mostly the overarching pathways as
enriched, the personalised approach recognised significance of
the overarching pathways, as well as more specialised pathways
that illustrate the intrinsic mechanisms by which the disease
develops. Also, the analysis of Dataset 3 using our personalised
approach demonstrated the generalisability of our pathway-level
results concerning other T1D datasets.
Below, we discuss some of the interesting pathways found

enriched by the personalised approach and explore their
relevance in terms of T1D, as well as the stages of the disease
they were found enriched in.
Considering that T1D is a complex autoimmune disease

characterised by insulitis, the chronic inflammation of the
pancreatic islets of Langerhans caused by autoreactive CD4+
and CD8+ T cells35,36,44,45, pathways related to immune response
are expected to be enriched along with the T1D pathway. While
these particular pathways were not found enriched using the
combined model, it did identify interesting and relevant pathways
in the TC analysis that largely fall under, but not include, the
overarching ‘antigen processing and presentation’ pathway. These
were the pathways involving MHC class protein and dendritic cell
(DC) maturation. Even though these pathways are highly relevant
in the context of the disease, they mostly represent only the
initiating events in the development of the disease: release of
autoantigens; their uptake by antigen presenting cells (APCs), such
as DCs, for antigen presentation in a complex with MHC class
proteins44; and migration of DCs to pancreatic lymph nodes (pLN)
to activate β-cell specific autoreactive T cells35,44, known as DC
maturation46. Meanwhile, other important and disease-relevant
pathways are underrepresented using the combined model.
The personalised approach also finds the above-mentioned

pathways enriched in its analyses, including immune response
related and T1D pathways, along with many other disease-
relevant pathways. In all the analyses, our approach identifies the
pathways related to IFNγ signalling and chemokine-mediated
signalling as enriched. IFNγ is produced by autoreactive CD4+ and
CD8+ T cells47 and is believed to play a key role in driving the
autoimmune pathogenesis of T1D35,44,45,47–50, even though it is
not considered solely a pro-inflammatory cytokine47. IFNγ also
results in local upregulation of chemotactic cues that induce
immune cell migration to the islets, for instance via chemokine
mediated signalling, where β-cells produce certain chemokines
that can accelerate or block T1D progression35. Fascinatingly, our
approach also identified a pathway, ‘detection of other organism’,
which connotes an existing postulation that environmental
factors, such as microbial infections, can trigger the disease
process leading to T1D in genetically susceptible
individuals35,44,51.

Fig. 3 Venn diagram illustrating disease-relevant pathways
specific to a certain analysis or overlapping between analyses
using the personalised approach. Here, pathways in blue text refer
to those found enriched by the personalised approach, combined
method as well as Kallionpää et al.31; green text refer to those found
enriched by the personalised approach and Kallionpää et al.31; and
red text refer to those found enriched by only the personalised
approach. Full lists of enriched pathways are found in
Supplementary Data.
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One of the most interesting questions that are asked in T1D
studies is regarding the changes that transpire in the time-window
leading up to life-changing events, such as seroconversion and
clinical onset of T1D. Using the personalised approach, multiple
immunologically relevant pathways were revealed to be uniquely
enriched in both the time-windows of interest, such as TNF
signalling, where TNF-α has been linked to the development of
T1D35,44,48,50,52; DC differentiation and maturation46,48; and
cytokine-mediated signalling35,44,45, which acts like an all-encom-
passing, but vague, pathway for all cytokines. The method was
able to determine additional relevant pathways in these two time-
windows that were not identifiable by Kallionpää et al.31 results:
immunoglobulin production, as well as IL-2 and IL-10 regulating
pathways. In fact, it is the increase in production of islet

autoantibodies or immunoglobulin that marks the seroconversion
event in the life of an individual susceptible to T1D31. Meanwhile,
enrichment of IL-2 and IL-10 signalling pathways before serocon-
version indicates the possible anti-inflammatory processes that
occur to resist the progression of the disease. IL-10 is an anti-
inflammatory cytokine secreted primarily by Tregs and β-cell
autoantigen recognising CD4+ T cells45. It inhibits the production
of multiple pro-inflammatory cytokines, including IFNγ, TNF-α, IL-5,
IL-1β, etc.50, and is only marginally less prevalent in T1D patients
studied at the time of diagnosis than in healthy subjects45. IL-2 is a
cytokine that can lead to prevention or pathogenesis of the
disease depending on its own concentration, the concentrations
of other local cytokines53–55 and polymorphisms in the genes of its
pathway45. In low dose, IL-2 signalling is believed to rescue insulin

Fig. 4 A comparative visualisation of the DEGs between the two approaches for the T1D pathway in all three analyses. a DEGs from T1D
pathway in the TC analysis using Dataset 1, (b) DEGs from T1D pathway in the WSC analysis using Dataset 1 and (c) DEGs from T1D pathway in
the WT1D analysis using Dataset 2. A coloured dot signifies that the gene is DE in the corresponding case-control pair. Here, the HLA genes
from MHC classes I and II are not marked individually, but grouped into their two major classes for convenience; and a class is shown as DE in
a case-control pair when at least one probe-set from any HLA gene of the class was found DE in that pair. Also, pairs from Dataset 1 and
Dataset 2 are prefixed with ‘SC-’ and ‘T1D-’, respectively.
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secretion54,55. However, it may result in accelerated autoimmune
tissue destruction in the time-window before diagnosis due to the
enriched regulation of IL-1 signalling in that time-window as it
enhances IL-2 production50,54.
Our results identify increased number of pathways enriched in

the window before T1D onset as compared to the window before
seroconversion, demonstrating the mayhem that precedes a
clinical diagnosis. Especially, the number of cytokine regulating
pathways were increased manifold, where more than half were
unique to this time-window. Along with anti-inflammatory
cytokines, such as IL-10 and IL-448,50,56, many pro-inflammatory
cytokine regulating pathways were enriched, such as IL-1, IL-1β,
IL-550, IL-648,50, IL-1246, IL-2135,44,57, IL-2250, IFNγ, TNF-α. In the
absence of IFNγ and TNF-α, cytokines IL-2, IL-1β and IL-6 are
considered anti-inflammatory35,44,48,50,54,55, but in their presence,
these cytokines aggravate the inflammatory disease pattern,
which is probably the case in the time-window before T1D
diagnosis.
Some of the pathways that were found enriched in the time-

window before T1D diagnosis were also found enriched during
the early stages of T1D progression using the personalised
approach, possibly indicating that key players from late stages of
the disease may already be detected at the early stages. These
included both pro-inflammatory and anti-inflammatory pathways,
such as those of IL-1 and IL-4, as well as IFNα and PD-1 signalling.
IL-1 is a pro-inflammatory cytokine that enhances the production
of IL-2, encourages B cell proliferation, and increases immunoglo-
bulin production50,54; whereas IL-4 is an anti-inflammatory Th2
cytokine that inhibits autoimmunity by downregulating the
production of pro-inflammatory cytokines, such as IL-1, IL-6, and
TNF-α48,50,56. Through mice studies, IFNα and PD-1 signalling
pathways have been established as important contributors to T1D
pathogenesis from an early stage of the disease46,58–60. Where
upregulation of IFNα in pLN is an initiator of the pathogenesis59,
upregulation of programmed cell death protein 1 (PD-1) signalling
prevents T1D and promotes self-tolerance by suppressing the
expansion and infiltration of autoreactive T cells in the
pancreas46,60,61. In fact, blocking IFNα signalling before clinical
T1D onset has been shown to prevent β-cell apoptosis or even
abort T1D progression58. In addition, PD-1 pathway has been
proposed as a target for a new therapy for preventing and
modulating autoimmunity61.
Fascinatingly, natural killer (NK) cell mediated cytotoxicity

pathway was found to be uniquely enriched during the early
stages of T1D. NK cells are believed to be involved in multiple
steps of the immune-mediated attack causing T1D as they are
known to interact with antigen-presenting T cells, secrete pro-
inflammatory cytokines and induce apoptosis in the target
cells62,63. Similarly, Fas signalling pathway was found to be
uniquely enriched before seroconversion. Since it is one of the
pathways mediated by autoreactive CD8+ T cells that is directly
involved in the destruction of β-cells35,44,46, it demonstrates that β-
cell killing can be observed much before the clinical onset of T1D.
Even though the personalised approach is able to identify many

immunologically-relevant and disease-relevant pathways, it has
scope for further development. The current implementation
assumes Gaussian distributed data; it may be possible to improve
the accuracy of differential gene expression detection for datasets
that have notably non-Gaussian characteristics either by using a
different likelihood model or by performing appropriate transfor-
mations. In addition, the proposed approach has been imple-
mented for a matched case-control setting. However, with small
modifications to the model, it could be extended to a non-
matched case-control setting, where each case is compared to all
the controls in the dataset.

METHODS

Gaussian process regression
A Gaussian process is a generalisation of the Gaussian distribution. It can
be seen as defining a distribution over functions and inference taking
place directly in the space of functions64. We denote X ¼
xt1 ; xt2 ; ¼ ; xtNð ÞT 2 RN as a vector of noisy measurements for a particular
probe-set, which were measured at N time points, T = (t1, t2,…, tN). The GP
is defined as

f ðtÞ � GPðμðtÞ; kðt; t0ÞÞ; (1)

which represents a distribution over function samples f(T) = (f(t1), f(t2),…, f
(tN)). Here, μ(t) is the mean which we assume as zero and kðt; t0Þ is a
positive semi-definite kernel function, which has kernel parameters θ, i.e.,
kðt; t0jθÞ. We assume additive Gaussian observation noise ϵ, where
Gaussian observation is defined as

x ¼ f ðtÞ þ ϵ; (2)

where ϵ � Nð0; σ2
ϵ
Þ. Gaussian process regression modelling involves

placing a Gaussian prior, f ðTÞ � N ð0;KT;TðθÞÞ over the true model, where
the elements of the covariance matrix are defined by the kernel
½KT;TðθÞ�i;j ¼ kðti ; tj jθÞ. Here, we use the popular squared exponential
kernel, which is defined as

kðti ; tj jθÞ ¼ σ2se exp �
ðti � tjÞ

2

2‘2se

 !

; (3)

where ℓse is the length-scale parameter that controls the smoothness and
σ2se is the signal variance of the kernel. Hence, the kernel parameters are
θ ¼ ð‘se; σ2seÞ.
Given the observed data X, the measurement time points T and test

time points T*, we obtain the posterior distribution f ðT�ÞjX � Nðμ�; Σ�Þ
defined by

μ� ¼ KT� ;TðKT;T þ σ2
ϵ
IÞ
�1
X

Σ� ¼ KT�;T� � KT� ;TðKT;T þ σ2
ϵ
IÞ
�1
KT;T� ; (4)

where we denote KT,T = KT,T(θ) for brevity and KT� ;T ¼ KT;T�
T encodes the

cross-correlations between measured and test time points.

Prior specification
The gene expression data is first centred to zero by subtracting the mean
of the data for GP fitting. This is done independently for the case, control
and pooled (case and control) data. For the length-scale (ℓse) parameter of
the squared exponential kernel, we specify a Gaussian prior (μ= 30, σ2=
6). We chose the value of μ to correspond to 30 weeks which results in a
small probability of short length-scales and provides a reasonable range of
feasible length-scales. The magnitude (σ2se) parameter is assigned a square
root student-t prior (μ= 0, σ2= 1, and ν= 20). The noise variance
parameter is assigned a scaled inverse chi-square prior (σ2= 0.01 and
ν= 1) to restrict it to smaller magnitudes. We use the same (hyper)
parameter priors for the case, control, as well as joint GPs.

Marginal likelihood estimation using central composite design
The choice of hyperparameters has a significant effect on the resulting
kernel with respect to smoothness and magnitude of the kernel.
Computing the exact marginal likelihood (ML) is computationally
intractable due to the marginalisation over the hyperparameters. Another
approach to solving this problem, would be to simply maximise the ML
with respect to the hyperparameters. Such an approximation is known as
type II maximum likelihood (ML-II) and can lead to overfitting64 as it may
underestimate/ignore uncertainty of hyperparameters, especially for small
sample sizes common in biomedical studies. In fact, in our analysis, the ML-
II approach failed to generate satisfactory estimates in many instances and
hence was unsuitable for our purposes. To overcome this problem and to
ensure appropriate modelling of kernel hyperparameters, we make use of
a form of numerical integration approximation, called central composite
design (CCD), for posterior prediction as proposed in Rue et al.65 and
Vanhatalo et al.66, to approximate the exact marginal likelihood. CCD
assumes a split-Gaussian posterior for log-transformed hyperparameters
and defines a set of R points fθrg

R
r¼1 (fractional factorial design, the mode,

and so-called star points along whitened axes) that allow for estimating
the curvature of the posterior distribution around its mode (see refs. 65,66).
We estimate the ML by using the R CCD points that are located around the
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high-probability region of the posterior (which is the integrand in the ML
integral) but by replacing the split-Gaussian approximation used for
posterior predictions with the exact product of likelihood and prior. In
other words, we take the weighted sum of the posterior probability
evaluated at the R points of the hyperparameter, which are weighted by
the integration weights. For a model M with data X, the estimated ML is
given by

pðXjMÞ ¼

Z

pðXjM;θÞpðθjMÞdθ � Σ
R
r¼1pðXjM;θrÞpðθr jMÞΔr ; (5)

where pðXjM;θrÞ ¼ N ð0;KT;TðθrÞ þ σ2
ϵ
IÞ and Δr is rth integration weight

that corresponds to the volume of hyperparameter space allocated to the
rth point. The obtained estimated ML for each model is then used to
compute a Bayes factor score, which is used for model selection and for
identifying differentially expressed genes (DEGs) as discussed below.

Personalised approach to identifying DEGs in time-course analysis
using ML ratio
To identify if a feature (i.e., probe-set or gene) is differentially expressed
(DE) between a matched case-control pair, we fit a joint and separate
model to the expression data and identify which model better explains the
observed data. The joint model involves fitting a Gaussian process over all
the data points (i.e., case and control data), whereas the separate model
involves independently fitting a GP to only the data points corresponding
to the cases and fitting another GP to only the data points corresponding
to the control. After the fitting, model selection is performed to choose
between the joint and separate model. If the joint model is chosen, we
conclude that the case and control expressions for the specific feature
comes from the same process and hence is not differentially expressed.
Alternatively, if the separate model is chosen, we conclude that the case
and control expressions for the corresponding feature comes from
different processes and hence is differentially expressed. Assume two
independent models, MA and MB, which are fit to the case and control
time-course of a particular feature, xA and xB, respectively. Also, let a joint
model, MS, be fit to the pooled data xS= (xA; xB). A standard statistical test
would compare models MA and MB (separate models) against the joint
model, MS. Hence, the null hypothesis would correspond to no differential
expression and the alternate hypothesis would correspond to the presence
of differential expression19.
To perform model selection, we compute a Bayes factor score for each

feature and case-control pair separately. This is calculated as the log ratio
of the marginal likelihoods of the separate and joint models,

BF-score ¼ log
pðxAjMAÞpðxBjMBÞ

pðxSjMSÞ
: (6)

This gives us a score for quantifying the differential expression of each
feature. We use a threshold of 4 (≈54.598 in the linear scale) to identify DE
features, which corresponds to strong evidence for rejecting the null
hypothesis as stated in Kass et al.67.
In case of probe-set data, we now map the probe-sets to their

corresponding gene names. If multiple probe-sets map to the same gene
name, we choose the probe-set with largest BF-score to represent the
gene. This is done independently for each case-control pair, which allows
the flexibility of choosing different probe-sets between pairs to represent
the same gene.

Personalised approach to identifying DEGs in time-window
analyses using KL divergence
In addition to the TC analysis, we also detect disrupted pathways within
certain time-windows. This approach could potentially be used to identify
the pathways that are affected before a significant event in the prognosis
of a disease (e.g., seroconversion and clinical onset of T1D) and hence, can
have applications in predictive medicine. The size of the time-window can
be chosen as any appropriate duration. Here, we chose to detect
significant genes by comparing the expression levels of features between
each case-control pair in a 26 week (approx. 6 months) time-window prior
to the seroconversion event and clinical disease onset. We compute the
posterior mean and variance of the latent variables of the Gaussian
processes within the chosen time-window, as described in Eq. (4), using
the representative points of the hyperparameters. We then compute the
weighted sum for the predictive mean and variance weighted on the
approximative posterior and the integration weights, and approximate the

posterior distribution as

pðf ðT�ÞjX;MÞ � N ðf ðT�Þjμpred;ΣpredÞ;

μpred ¼
P

R

r¼1
μr�qðθr jMÞΔr

Σpred ¼
P

R

r¼1
Σ
r
�qðθr jMÞΔr

(7)

where μr� and Σ
r
� are calculated, as in Eq. (4), evaluated with

hyperparameter value θr; q(θr∣M) is the split-Gaussian approximative
posterior; and T* defines a time discretisation for the 26 week time interval
(we use 26 time points, i.e., a resolution of one week). Comparisons for the
time-window predictions between separate (comprising of separate GP
fittings for the cases and controls) and joint (single GP fitting the pooled
case and control data points) models can be made by comparing the
distributions using the Kullback–Leibler (KL) divergence68. The
Kullback–Leibler divergence for any two distributions, P and Q, can be
defined as

DKLðPjjQÞ ¼

Z 1

�1
pðxÞlog

pðxÞ

qðxÞ
dx; (8)

where p and q are the corresponding densities. To examine the expression
level of a probe-set in the time-window, we compare the predictive
distributions (Eq. (7)) for the joint model against the separate model in the
time-window, by calculating a continuous score obtained using the
symmetric KL divergence,

1

2
DKLðPjjQÞ þ

1

2
DKLðQjjPÞ: (9)

Therefore, to compute the symmetric KL divergence between the separate
and joint model, we assume two multivariate normal distributions: one for
the separate model, represented by M0 (previously denoted by MA and
MB); and one for the joint model, represented by M1 (previously denoted
by MS) with dimension equal to twice the number of weeks in the time-
window. In M0 , let μcase� and Σcase

� be the predictive mean and covariance
matrix (from Eq. (7)) for the case GP with the test points taken weekly from
the first to the last week of the combined data points. Similarly, for the
control GP (of M0) and joint GP (of M1), we have μcontrol� and Σcontrol

� , as
well as μjoint� and Σjoint

� , respectively. The predictive distribution of M0 can
be written as

M0 ¼ N μ0� ¼
μcase�

μcontrol�

� �

;Σ0
� ¼

Σcase
� 0

0 Σcontrol
�

� �� �

:

(10)

Similarly, the predictive distribution of M1 can be written as

M1 ¼ N μ1� ¼
μjoint�

μjoint�

" #

; Σ1
� ¼

Σjoint
� 0

0 Σjoint
�

" # !

:

(11)

The Kullback-Leibler divergence for any two multivariate normal distribu-
tions, say M0 and M1 , can be computed directly from the formula69

DKL M0jjM1ð Þ ¼
1

2
trðΣ1

�
�1
Σ0
�Þ þ ðμ1� � μ0�Þ

T
Σ1�1

� ðμ1� � μcontrol0 Þ � k þ ln
detΣ1

�

detΣ0
�

� �� �

;

(12)

where μ0� and Σ0
� are the parameters of M0 , and μcontrol� and Σ1

� are the
parameters of M1 . Also, k is the dimension of the multivariate Gaussian,
which in our case is 2 × 26 (weeks); trð�Þ and det refer to the trace and
determinant of the matrix, respectively.
The symmetric KL divergence gives a KL-score for each feature. The KL-

score can be written as:

KL-score ¼
1

2
DKL M0jjM1ð Þ þ DKL M1jjM0ð Þð Þ: (13)

KL-scores do not have a similar interpretation as the Bayes factor.
Therefore, we empirically set a threshold to identify differential expression
prior to an event by taking the mode of the KL-scores of the features (from
all case-control pairs) that have a BF-score in the range of +/− 1 of the
chosen BF-score threshold (in our case, BF-scores in the range 3 to 5 as the
threshold is set to 4). The objective of this is to find an appropriate KL-score
threshold from the features that are borderline DE (or not) according to the
BF-scores computed in the TC analysis. Note, however, that a specific value
for the threshold is not critical as the pathway-level enrichment analysis
automatically balances liberal or stringent threshold values.
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In case of probe-set data, we now map the DE probe-sets to their
corresponding gene names. However, in the case of multiple probe-sets
mapping to the same gene name, we choose the probe-set with the
largest KL-score to represent the gene.

Pathway analysis for personalised differential gene expression
results
We propose an empirical hypothesis testing method that can identify
statistically enriched pathways from DE genes (DEGs) that are identified for
all case-control pairs separately. We define an overall enrichment score for
each pathway using the DEGs from each case-control pair and a statistic
we call adjusted geometric mean. Our enrichment analysis uses the number
of DEGs from each case-control pair that overlap a given pathway. To
account for the fact that a higher number of DEGs in a case-control pair
leads to a higher probability of overlap with a pathway, we divide the raw
number of DEGs from a case-control pair in a pathway by the total number
of DEGs in that case-control pair. Thus, we compute the scaled pathway
overlap fi,j for the jth case-control pair and ith pathway as

f i;j ¼
overlapi;j

diff: exp:genesj
þ α; (14)

where overlapi,j refers to the number of DEGs in the jth case-control pair
belonging to the ith pathway, diff.exp.genesj refers to the number of DEGs
in the jth case-control pair (assumed to be larger than 0 for all j), and α is a
small constant (α= 10−6 in our analyses). Assuming m case-control pairs,
we define adjusted geometric mean of the ith pathway as

adj:geo:meani ¼
Y

m

j¼1

f i;j

 !1
m

: (15)

The adjusted geometric mean ensures that no case-control pair dominates
the overall enrichment score and helps to take into account the different
number of DEGs from each case-control pair.
After the adjusted geometric mean scores for each pathway are

computed, we identify the statistically enriched pathways by performing
a permutation test and obtain p-values for each pathway. Let S 2 RG´m

denote a matrix that stores the BF-scores or KL-scores from Eqs. (6) and
(13) (where G corresponds to the total number of features and m is the
number of case-control pairs) such that Sg,j contains the BF-scores or KL-
scores for the gth feature and the jth case-control pair. Our permutation
strategy reorders the feature labels of the rows, which retains the possible
correlations among the scores for the features across the case-control
pairs. In other words, we fix the matrix S and shuffle just the associated
features such that each row is randomly assigned a feature. In case of
probe-set data, after the reordering (shuffling), the probe-sets are again
assigned to gene names and the enrichment scores (adjusted geometric
mean scores) are computed. This process of feature label shuffling and
computing enrichment scores is repeated 100,000 times to get the
permutation distribution that is used to compute the p-values. A lower
number of permutations (30,000) was used for Ferreira et al.37] dataset,
which was also sufficient. The permutation distribution acts as the null
distribution from which we empirically compute the p-value for a pathway.
After this, multiple testing correction is performed on the p-values using

the Benjamini–Hochberg procedure70.

The combined method
We compare our personalised pathway enrichment results with two
standard approaches. In the first comparison, we imitate the standard
approach of performing DE analysis at the population level and pathway
analysis to act as a comparison with our personalised approach. We pool
the gene expressions from all the cases and all the controls to obtain a
single case-control set of readings, and then compute a single list of
differentially expressed features. In this combined method, we again fit
two different models (i.e., the separate and joint models). In case of probe-
set data, the DE probe-sets are mapped to their corresponding gene
names. To evaluate the enrichment of each pathway, we perform one-
sided Fisher’s exact test and compute p-values71.
In the second comparison, we compare our personalised approach to

the results published in Kallionpää et al.31 that correspond to our TC, WSC,
and WT1D analyses. Briefly, Kallionpää et al.31 used the rank-product
method43 to identify DEGs. The rank-product algorithm is a rank-statistics
based technique for identifying DEGs, where a truly significant gene is
expected to appear at the top of independently ranked lists of genes per

replicate experiment (e.g., per case) in increasing or decreasing order and
score a small geometric mean rank. It is a technique derived from
biological reasoning. However, it does not account for the heterogeneity of
the disease and it is not suitable for the dynamic analysis of time-course
data. For TC analysis, expression values were first normalised for each case-
control pair using the z-score and case-wise minimum, as well as maximum
values are used to identify downregulated or upregulated features. For
time-window analyses, in each window (WSC or WT1D), per feature fold
changes between cases and matched controls were calculated using linear
inter-/extrapolation and then used for rank-product analysis. See
Kallionpää et al.31 for further details. In order to keep the pathway-level
results from Kallionpää et al.31 and our approaches comparable, we
performed one-sided Fisher’s exact test on the gene-level results from all
three analyses presented in Kallionpää et al.31 using the pathway
information from MSigDB25,38.

Robustness analysis of the Gaussian process models
We performed multiple analyses to demonstrate the robustness of our
personalised approach. Detailed methodology and results of these
analyses are given in the Supplementary Methods. Briefly, we performed
a leave-one-out cross validation analysis to show robustness and efficiency
of our GP model in estimating the dynamics of time-course data and
predicting unobserved values, i.e., time-course behaviour. In another
analysis, we added noise to Dataset 1 and performed pathway-level
inference on the noisy data to demonstrate the robustness of our method
to noisy data (noise was added to the original gene expression data, which
already contained noise (Supplementary Fig. 5), thus making the
generated data even noisier than the original data). By performing
correlation tests of the results from these analyses to those from the
original analyses, we established our approach to be robust.

Computational complexity
Time complexity of GP modelling scales as O(N3), where N is the number of
time points for a probe-set (for a single case-control pair). This is usually
non-problematic as most time-course gene expression datasets have small
sample sizes.
Our personalised approach largely takes ~3 h to calculate the differential

expression scores for all the probe-sets and ~8 h to generate the
permutation distribution. Further details can be found in the Supplemen-
tary Methods.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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