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ABSTRACT With the universal use of GPS and rapid increase of spatial Web objects, spatial keyword

query has been widely used in Location-Based Services (LBS). Most of the existing spatial keyword query

processing models only support location proximity and strict text matching which makes the semantically

related objects cannot be provided to users and even may lead to the empty answer problem. In addition,

the current index structures (such as IR-tree, Quadtree) cannot process numerical attributes which are usually

contained in the descriptive information associated to the spatial objects. To deal with these problems, this

paper proposes a spatial keyword query method that can support semantic approximate query processing.

Firstly, the user original query is expanded by Conditional Generative Adversarial Nets (CGAN) method

to generate a series of query keywords that are semantically related to the original query keywords. And

then, a hybrid index structure called AIR-tree is built to facilitate the query matching, which can support the

text semantic matching and process numerical attributes with Skyline method. Experimental analysis and

results demonstrate that the proposedmethod achieves higher execution efficiency and better user satisfaction

compared with the state-of-the-art methods.

INDEX TERMS Spatial keyword query, CGAN, AIR-tree, skyline.

I. INTRODUCTION

With the widespread use of the mobile Internet, more and

more spatial Web objects are emerging on the Internet. A spa-

tial object mainly contains the location information (usually

represented by the latitude and longitude), text information

(e.g., name, facilities, categories, etc.), and numerical infor-

mation (e.g., price, user ratings, etc.). The Location-Based

services (LBS), such as Ctrip, Didi, Foursquare, and Yelp,

become more and more popular as the increasing of spatial

objects, and the spatial keyword query [1]–[4] is an important

supporting technology for LBS. However, the current spatial

keyword query models usually confronted with the follow-

ing problems. First, they mainly focus on retrieving spatial

objects that are matching to the query keywords in terms of

textual similarity, but fail to consider the semantic similarity.

In fact, the spatial objects that are semantically related to but

mismatched to the query keywords may also be accepted by

users. Second, they treat numerical values contained in the
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descriptive information as text keywords, while the numerical

values represent the different meanings compared to the text

keywords and the method for processing the numerical infor-

mation is also very different from that of the text matching

processing.

For example, some LBS systems, such as Airbnb,

TripAdvisor, hotels.com, Craigslist, Yelp, and Zillow, all

have Boolean attributes, categorical attributes, and a large

number of numerical attributes. However, in most cases,

these numerical attributes are generally discretized and

converted into categorical attributes and then be pro-

cessed by the text matching processing method, which may

result in the unsatisfactory of the user’s query needs and

preferences.

Let’s look at an example. Figure 1 contains 9 spatial objects

(represented by circles) and the corresponding location infor-

mation, textual keywords, and numerical attribute values are

listed in Table 1. For a given query q: (<34.2, −81.839>,

<chicken, KFC>, <0.3, 0.2, 0.5>), it consists of three parts.

The first part is the query location, the second is a set of

query keywords, and the third is a set of weights specified by
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TABLE 1. The property of spatial objects and the spatial keyword query in Figure 1.

FIGURE 1. An example of spatial objects and spatial keyword query.

the user on the numerical attributes, which reflects the user’s

concern on the attributes, the larger the weight means the

user cares more about the corresponding attribute. Note that,

the values of numerical attribute of spatial object are different

from the values of weights specified by the query. The former

means the relevance degree of a spatial object to the corre-

sponding attribute while the latter means the user’s concern

degree on the attribute. In general, the lower the values of

numerical attributes means the better the scenario (e.g., low

price, low noise, etc.). The numerical attribute values and the

weights are both normalized into the unit interval [0, 1]. The

query q is represented by a triangle in Figure 1. The purpose

of q is to find the nearest ‘‘KFC’’ restaurant that provides

‘‘chicken’’ with features of ‘‘low price’’, ‘‘low noise’’, and

‘‘uncrowded’’. If we use a strict text matching model, there

would be no answer object. However, ‘‘KFC’’ and ‘‘McDon-

ald’s’’ are similar to each other in semantics, so o2, o4 and o7
can be taken into consideration as the results. Furthermore,

for these three objects, o4 is the closest to q in terms of loca-

tion, o7 is better than o4 in terms of numerical attributes, o7 is

better than o2 in terms of the price attribute, while o2 is better

than o7 in terms of noise and congestion. As we know that the

user cares more about the attributeCongestion, thus the query

result should be o2 rather than o7. Therefore, it can be seen

that the numerical information associated to the spatial object

is also crucial for the spatial keyword query and cannot be

treated as simple text keywords. Inspired by the above obser-

vations, the purpose of this paper is to establish a spatial key-

word query processing model and to build an effective hybrid

index structure to improve query efficiency. This model can

integrate the location proximity, text similarity, semantic

approximation, and user’s satisfaction on numerical attributes

between the spatial objects and query to evaluate the query

results.

The main contributions of this paper are summerized as

follows:

(i) We propose a CGAN-based method to expand the

original query keywords to a series of semantically related

keywords that are used to obtain the semantic approximate

query results, even if the query keywords are very rare.

(ii) We present a Skyline-based numerical attribute pro-

cessing method which can efficiently deal with the numer-

ical attribute values associated to spatial objects and make

the query results satisfy the user’s personalized needs more

closely.

(iii) A new hybrid index structure AIR-tree is constructed.

This index structure can directly obtain the Skyline set of

the corresponding numerical attributes of the intermediate

nodes, and can integrally index the location information, text

information and semantic information.

(iv) Comprehensive experiments are conducted over the

real Point of Interest (POI) datasets to demonstrate the effi-

ciency and effectiveness of our proposed spatial keyword

query model and hybrid index.

The structure of the rest paper is organized as

follows. Section 2 briefly reviews the related work.

Section 3 defines the problem and presents the solution

framework. Section 4 proposes the spatial keyword approxi-

mate query approach while Section 5 describes the AIR-tree

index structure and presents the corresponding algorithms.

Experiments are conducted in Section 6 and the paper is

concluded in Section 7.

II. RELATED WORK

The existing spatial keyword query processingmodelsmainly

include Boolean range query, Boolean k nearest neighbor

(kNN) query [5]–[7], top-k range query [8], [9], and top-k

k nearest neighbor query [3], [10], [11] according to the liter-

ature [12]. The basic idea of these approaches is to construct

a result scoring function according to the text similarity and

location proximity between spatial objects and spatial key-

word queries. And then, the text and spatial hybrid index tech-

nology is used to improve query efficiency. The disadvantage

of the Boolean range query is that it cannot control the scale

of query results and does not rank the query results. Boolean k

nearest neighbor query ranks the query results by the distance

between the spatial objects and the query point. Top-k range

query finds the k spatial objects having the highest textual
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relevance to the query keywords and their locations are within

the query region. Top-k nearest neighbor query ranks the top-

k spatial objects according to their location proximity and

text relevancy. More specifically, it retrieves the k objects

having the highest ranking scores which are measured by a

weighted combination of their distances to the query location

and the textual similarity between their textual descriptions

and query keywords. The first two methods need the text

description of spatial objects containing all query keywords,

which may lead to the few/no answer problem, or the query

results are far away from the query point. The latter two

queries do not require the descriptive information of spatial

objects to contain all the query keywords, and the spatial

objects containing only part of the query keywords can also

be treated as the query results. However, top-k range query

ranking method only considers the text relevance of spatial

objects but ignores the location proximity. The top-k nearest

neighbor query considers both the location proximity and

text relevance between spatial objects and query. Collective

Spatial Keyword Query (CSKQ) [13], [14] returns a set of

objects that collectively cover user’s query keywords, those

objects are close to the query location and have small inter-

object distances. Following the CSKQ, the Reverse Collec-

tive Spatial Keyword Query (RCSKQ) [15], [16] returns a

region, in which the query objects are qualified objects with

the highest spatial and textual similarity. Recently, the top-k

kNN, CSKQ, and RCSKQ query models are the most popular

techniques in the current spatial keyword query processing,

and the CSKQ and RCSKQ are the variants of the top-k

nearest neighbor. However, it should be pointed out that the

top-k kNNquery and its variants rarely consider the relevancy

of query keywords and text documents of spatial objects in

semantics. Furthermore, the top-k objects in the answer set

are usually very similar to each other which can neither effec-

tively reflect the features of the entire dataset nor broaden the

user’s perspectives.

To quickly retrieve thematching query results, some hybrid

index structures are developed to assist the online query pro-

cessing. The existing hybrid indexing technologies for spatial

keyword query are mainly include IR-tree [10], [11], [17],

IR2-tree [5], R∗-Tree [18], QuadTree [2], S2I [9] and other

spatial index structures. R-tree [19] is the most basic spatial

index structure, most of the other spatial index structures

are its variants. The text indexing techniques mainly contain

the inverted files, signature files, and bitmaps and they are

focus on the exact text matching for query keywords, which

may result in too few or no results due to the diversity of

text expressions. In response to the above problems, related

studies such as literature [20]–[23] proposed a series of

indexing techniques to deal with spelling errors. However,

these methods did not take the semantic similarity/relevance

between texts into account. Although a few number of recent

works have studied the semantic matching of spatial keyword

queries [24], spatial objects include not only location infor-

mation and text information, but also numerical information

such as price and user rating. As a hybrid index structure

composed of clustering layer and spatial layer, QDR-

Tree [25] needs to convert keywords into bitmap first, and

then uses search scaling to achieve similar keywordmatching.

Such query processing would lead to a low query efficiency

and cannot achieve the goal of semantic approximation query.

Our work is also relevant to the text semantic similar-

ity measuring. Text semantic similarity measuring methods

can be mainly classified into the following three categories:

(i) KB (Knowledge based)-based similarity measure. Text

semantic similarity can be estimated by defining topological

similarity by using ontology to define the distance between

terms/concepts. The methods based on KB, such asWordNet,

Probase, and Wikipedia, were used to split text and then cap-

ture the keyword relationships [26]. However, the keywords

and their relationship measures in WordNet and Wikipedia

are subjective and cannot reflect the relationships between

keywords against the datasets. In addition, the keywords or

concepts uncovered by KB would not be processed. (ii) The

topic model-based similarity measure. The probabilistic topic

model can be used to approximate the semantic processing of

text information, which is a statistical method to analyze the

keywords in a document and discover the topic of these key-

words and the relationships between these topics. There have

been a number of classic thematic Models, such as Latent

Dirichlet Allocation (LDA) [27], Dynamic Topic Model [28],

Dynamic HDP [29], Sequential Topic Models [30]. Topic

model is widely used in text classification, user behavior

analysis, functional area discovery, etc. A lot of work has been

done to apply the topic model on location-based service rec-

ommendation system [31], [32]. Although the topic models

have achieved a certain improvement against the traditional

similarity measuring methods such as Bag of Words (BOW)

and CVM-VSM models [33], the significance of improve-

ment and generalized ability is not enough in processing the

special scenarios (such as short texts). Unfortunately, the text

description of spatial objects is often short text, as [34]

pointed out, the short texts usually do not contain sufficient

statistical information to support traditional topic models for

text processing. (iii) The word-embedding-based similarity

measure. Word-embedding is the collective name for a set of

language modeling and feature learning techniques in natural

language processing (NLP) where words or phrases from

the vocabulary are mapped to dense, distributed, fixed-length

vector representations in a low-dimensional space relative

to the vocabulary size. The popular techniques of word-

embedding mainly contain the Word2Vec [35], [36] (such as

Skip-gram and CBOW), genism, FastText, and GloVe [37].

Word-embedding technique is very successful in NLP. How-

ever, word-embedding techniques such as Word2Vec sup-

poses the nearby/adjacent words/phrases (in a fixed window

size) usually having the strong contextual relations while it

cannot deal with the rare query and the correlations between

keywords cannot be measured accurately. (iv) Conditional

Generative Adversarial Nets (CGAN [38]) based similar-

ity measure. The CGAN was used to generate bid key-

words directly from query in sponsored search ads selection,
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especially for rare queries in [39]. In the query expansion

stage, based on the user query, the sequence-to-sequence

model is used as the generator to generate keywords, and

then the recurrent neural network (RNN) model is used as the

discriminator to play a game against the generator. By train-

ing the generator, the keywords that are semantically related

to the initial query keywords can be generated directly, and

thus the original query can be expanded by these generated

keywords. Inspired by [39], we take advantages of CGAN

in our scenario to expand the query keywords in the spatial

keyword query.

To the best of our knowledge, there is no related work

considering the integrated similarities between spatial objects

and query in terms of location proximity, text similarity,

semantic relevance, and user’s satisfaction on numerical

attributes at the same time, and thus there is no hybrid spatial

index structure that supports the above integrated query. The

aim of this paper is to establish a spatial keyword query pro-

cessing model and then proposes a corresponding effective

hybrid index structure to improve the query efficiency. The

model we established can integrate the location proximity,

text semantic similarity, and user’s satisfaction on numerical

attributes between query and spatial objects into a query result

scoring function.

III. PROBLEM DEFINITION AND SOLUTION

In this section, we first define the spatial keyword query

problem and then present the solution framework.

A. PROBLEM DEFINITION

Given a spatial dataset O = {o1, o2, . . . , on}, each spatial

object oi ∈ O is represented by a tuple (λ,K ,A), where oi.λ

is the location information of oi, oi.K is a set of text keywords

associated to oi, and oi.A is a set of numerical attributes of oi.

The value o.ai ∈ oi.A is normalized into the unit interval [0, 1].

We assume that the lower the numerical attribute value means

the closer the scenario to the user preferences (such as the low

noise and low price). On the contrary, if the higher value is

better for some cases (e.g., ambient atmosphere, rating, etc.),

the value of ai should be converted to ai = 1− ai.

The spatial keyword query q is represented by a tuple

(λ,K ,W ), where q.λ is the location information of q, q.K is a

set of query keywords, q.W is a set of weights corresponding

to different numeric attributes, which is specified by the user

according to his/her preferences on the numerical attributes.

The larger the value of weight means the user cares more

about the corresponding attribute. For example, the weight

specified on the attribute Congestion is 0.5 in Introduction

means the user is more concerned about Congestion com-

pared with Noise and Price. Note that, ∀q.w ∈ q.W ,

q.w ≥ 0(i = 1, . . . , |q.W |), and
∑|q.W |

i=1 q.W = 1.

B. SOLUTION FRAMEWORK

The solution proposed in this paper is shown in Figure 2,

which can be divided into offline pre-processing stage and

online processing stage. The construction of AIR-tree hybrid

FIGURE 2. Solution framework.

index structure and the calculation of semantic similarity

are completed in the offline stage while the query result

computation and top-k result retrieval are processed during

the online stage. The online spatial keyword query processing

stage consists of the following two steps,

(i) For the user initial query q = (λ,K ,W ), the orig-

inal query keywords are first expanded to be a set of

semantically related keywords by using CGAN. After this,

the original query q = (λ,K ,W ) is expanded/relaxed to be

q = (λ, K̃ ,W ) with the keywords semantically related to

the original query, where q.K̃ is expanded/relaxed from q.K .

Since the generator of CGAN has been trained in the offline

stage, the relevant keywords can be directly generated by

CGAN, and thus the online query processing efficiency can

be significantly improved.

(ii) For the expanded/relaxed spatial keyword query

q = (λ, K̃ ,W ), AIR-tree which is built during the offline

stage is leveraged to retrieve the top-k spatial objects having

the high location proximity, text semantic similarity, and

user’s satisfaction on numerical attributes to it.

IV. SPATIAL KEYWORD APPROXIMATE

QUERY APPROACH

In this section, we first propose the original query expansion

method by using CGAN, and then describe the measuring

methods for location proximity, text semantic similarity, and

user’s satisfaction on numerical attributes between spatial

objects and query, respectively.

A. QUERY EXPANSION

To realize the spatial keyword approximate query, it should

first expand the original query keywords with the semanti-

cally related keywords. In this section, we propose a CGAN-

based method to expand the original query. It can generated

the semantically related keywords directly from a given query

keyword even if the query keyword is rare. Generative Adver-

sarial Nets (GAN [40]), whose basic idea is derived from the

game theory of two-player game (that is, the sum of interests

of two players is zero, and the gain of one party is the loss of

the other), sets the players as a Generator and a Discriminator

respectively and is trained by adversarial learning to estimate
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FIGURE 3. The structure and processing procedure of CGAN.

the potential distribution of data samples and generate new

data samples. The purpose of the generator is to learn the real

data distribution as much as possible, while the purpose of

the discriminator is to distinguish whether the input data is

from the real data or the generator as accurately as possible.

To win the game, the two players need to constantly optimize

and improve themselves.

Any differentiable function can be utilized to represent the

generator and discriminator of GAN. In this paper, we use

differentiable functions D and G to represent the discrim-

inator and the generator respectively. Their inputs are real

data x and random variable z, respectively. G(z) is a sample

generated byG that obeys the distribution of real data asmuch

as possible. If the input of the discriminator is from real data,

the label is 1. If the input sample is G(z), the label is 0. Here

the goal ofD is to realize the two-class discrimination of data

sources: true (from the distribution of real data x) or false

(from the generator’s pseudo data G(z)). The goal of G is to

make the performance of the generated pseudo data G(z) on

D(G(z)) coincide with that of the real data x on D(x). These

two processes of adversarial and iterative optimization make

the performance ofD andG continuously improve. When the

discriminating ability ofD is improved to a certain extent and

the source of data cannot be correctly identified, it can be

considered that the generator G has learned the distribution

of real data. G and D are both trained simultaneously, as if

they are following the two-player min-max game with value

function V (G,D):

min
G
max
D V (G,D) = Ex∼pdata(x) [logD(x)]

+Ez∼pz(z) [log(1− D(G(z)))] (1)

where, pg is the generator’s distribution over data x, pz(z) is

a prior distribution of z, θg and θd contains the parameters

of the generator and the discriminator, respectively. G(x; θg)

is a mapping to data space, D(x; θd ) is a second mutilayer

perceptron that outputs a single scalar.

Conditional Generative Adversarial Nets (CGAN [38])

is expanded by adding some extra information y to GAN,

where y can be any kind of additional information, such as

category labels or data from other models. The structure of

CGAN is shown in Figure 3.We can perform the conditioning

by feeding y into both the discriminator and generator as

additional input layer. In the generator, the prior input noise

pz(z) and y are combined in joint hidden representation, and

the adversarial training framework allows for considerable

flexibility in how this hidden representation is composed. In

the discriminator, x and y are presented as inputs added to a

discriminative function. The objective function of CGAN can

be defined as follows:

min
G
max
D V (G,D) = Ex∼pdata(x) [logD(x|y)]

+Ez∼pz(z) [log(1− D(G(z|y)))] (2)

Inspired by the QE-CGAN framework which is proposed

in literature [39] to generate bid keywords directly from query

in sponsored search ads selection, we use a CGAN-based

method to generate a set of keywords that are semantically

related to the original query keywords. The CGAN-based

method can capture the implicit or latent correlations between

keywords that occurred very few times in the learning sam-

ples (such as query history and text documents), while the

existing similarity measuring methods (e.g., TFIDF, PMI,

LDA, etc) are lack for discovering such relationships between

the low frequent occurrence keywords due to their statistic

computation nature. In the query extension (query-keyword

matching) stage, based on the user query, the sequence-to-

sequence model is used as the generator to generate key-

words, and then the RNN model is used as the discriminator

to play a game against the generator. The policy gradient [41]

is used to train the model. After training, given a user query,

the generator can use different noise vectors that match

many queries to generate a set of keywords semantically

related to the original query keywords. That is, the semantic

related keywords can be generated directly from a given

query by training the generator, which can efficiently improve

the online query expansion performance. The framework of

CGAN-based method we proposed is shown in Figure 4.

The framework consists of a generator G and a discrim-

inator D. Generator G(z|q; θg) is a sequence-to-sequence

model, which is a bi-directional Gated Recurrent Unit

(GRU [42]) parameterized by θg. Discriminator D(k|q; θd )

is a parallelized RNN model, which is a one-directional

GRU parameterized by θd . The objective function of CGAN-

based method, which reflects the adversarial game between

G and D, is written as follows:

min
G
max
D V (G,D) = E(q,k)∼pdata(q,k) [logD(k|q)]

+Ez∼pz(z) [log(1− D(G(z|q)|q))] (3)

For the given spatial keyword query in the Introduction,

the original query keywords <chicken, KFC> is expanded

to be the <chicken, KFC, McDonald’s> by using the

CGAN-based method.

To further demonstrate the reasonability and superiority of

CGAN-based query expansion method, we compare it with

the well-known Word2Vec-based word embedding method

which is also effective for measuring the semantic relevancy

between terms. Table 2 shows an example of the semantic
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FIGURE 4. The framework of CGAN-based method.

TABLE 2. The keywords generated by Word2Vec-based word embedding method vs. CGAN-based query expansion/relaxation method.

related keywords generated by using CGAN-based method

(resp. Word2Vec-based word embedding method) for the

given input keywords. It can be seen that the expanded key-

words generated by CGAN are more reasonable for the given

input keywords than that of Word2Vec-based method. For

example, the generated keywords ‘‘health & medical, hair

salons, nail salons, hair removal, skin care, local services’’

are very close to the corresponding given keyword ‘‘beauty

& spas’’ in terms of semantics. This is because Word2Vec

ignores the relationship between those phrases that appear

less frequently and highly depends on the sliding window.

When the sliding window is not large enough, the correla-

tion between the words at the beginning and the end of the

sentence would be ignored. Besides, due to the low volume

of rare queries, it is difficult to accumulate enough terms to

use statistical methods to achieve query keyword matching.

In contrast, as we described above CGAN can effectively

deal with the rare query and directly generate the relevant

keywords because of its working theory.

B. QUERY RESULT EVALUATION

For a given spatial keyword query q = (λ,K ,W ), we first

expand the query keywords q.K to be the expanded/relaxed

query keywords q.K̃ by using CGAN-based method, and

then we evaluate the query results to the expanded/relaxed

query q = (λ, K̃ ,W ) from location proximity, text semantic

similarity, and user’s satisfaction on numerical attributes,

respectively.

1) LOCATION PROXIMITY

Given a query q and a spatial object o, the location proximity

between q and o can be computed as follows:

Sspatial(q, o) = 1−
dist(q.λ, o.λ)

MaxDist
(4)
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TABLE 3. The location proximity and text semantic similarity between the
query q and spatial objects.

where, dist(q.λ, o.λ) is the Euclidean distance between o

and q, MaxDist is the maximum distance in the dataset

D of all spatial objects. The Euclidean distance between

objects oi and oj is generally calculated as dist(oi, oj) =
∑m

k=1 d(o
(k)
i , o

(k)
j ), where m is the spatial dimensions of the

spatial objects.

2) TEXT SEMANTIC SIMILARITY

We propose a two-step method for measuring the text seman-

tic similarity between the set of text keywords o.K asso-

ciated to a spatial object o and the set of query keywords

q.K of q. The first step is to transform o.K and the set of

keywords q.K̃ (which is expanded/relaxed from q.K ) into the

vectors, which are represented by Vo.K and Vq.K̃ respectively.

Note that, we suppose M be the set of distinct keywords

contained in the text information associated to all spatial

objects in O and q.K̃ . We also assume m is the number

of keywords in M , that is, m = |M |. We let 1 be an

fixed order on the keywords appearing in M . M [i] refers to

the (i + 1)-th keyword of M based on the order 1, where

i = {0, . . . ,m − 1}. If M [i] appears among the keywords

of document then M [i] = 1, otherwise it is 0. The second

step leverages the Cosine similarity method to calculate the

similarity between Vo.K and Vq.K̃ . The calculation method is

defined as follows:

Stext (q, o) =

∑n
i=1 Vo.K [i] · Vq.K̃ [i]

√

∑n
i=1(Vo.K [i])

2 ·
√

∑n
i=1(Vq.K̃ [i])

2
(5)

Table 3 shows the location proximity and text semantic

similarity between the query q shown in Introduction and the

spatial objects oi(i = 1, . . . , 9) (listed in Table 1) calculated

by using our location proximity and text semantic similarity

measuring methods.

Clearly, the candidate query results would contain the

semantically related spatial objects to the original query since

the query keywords of the original query has been expanded

by adding the relevant keywords.

3) USER’S SATISFACTION ON NUMERICAL ATTRIBUTE

To measure the user’s satisfaction on numerical attributes

between the query q and a spatial object o, this paper proposes

a skyline-based method.

Given a set of tuples, the basic idea of Skyline is to calcu-

late the dominance relationship between them. The Skyline

set is a collection of tuples that are not subject to any other

tuples in the dataset [43]. If q is better than p in at least one

dimension and is not worse than p in all other dimensions,

then q is said to dominate p. Furthermore, if a pair of tuples

p and q do not dominate each other, then both tuples p

and q should be in Skyline. For example, the low prices,

high levels, and more parking positions are the good choice

if a user looking for a resort considers price, hotel level,

and the number of parking positions. Therefore, if p is in

Skyline, there is no other q that is not in Skyline with lower

price, higher level and more parking positions than p. Clearly,

Skyline method has great advantages in finding good query

results. This paper will take advantage of the Skyline query

method to find the query results in order to satisfy the user

preferences on numerical attributes more closely.

Suppose the relation D has n tuples with m attributes

A = {A1,A2, . . . ,Am}, t[Ai] is the value of the tuple t on

the attribute Ai. Assume that for each attribute, the value in

the dominance relationship has a total ordering of preferences

(eg., a > b indicates that a is better than b). A tuple t ∈ D

dominates another tuple t ′ ∈ D, denoted by t ≺ t ′, if and

only if ∀A ∈ A, t[A] ≥ t ′[A] and ∃A ∈ A, t[A] ≺ t ′[A].

In addition, if a tuple t ∈ D is incomparable to another tuple

t ′ ∈ D, it is represented as t ∼ t ′ if and only if t ′ and t do not

domainate each other.

Skyline S is a collection of tuples in D that are not

dominated by other tuples. For the objects o2, o4, o7
in Figure 1, their numerical properties can be represented

as {0.2, 0.6, 0.4}, {0.5, 0.3, 0.6}, {0.3, 0.3, 0.5}, respectively.

It is clear to see that the first attribute and the third attribute of

o7 are better than o4, and the second attribute of o7 is equal

to the second attribute of o4. Thus, o4 is dominated by o7.

Comparing o2 and o7, we can see that the first attribute and

the third attribute of o2 are better than o7 while the second

attribute of o2 is inferior to o7, which leads to o2 and o7
are incomparable. Thus, o2 and o7 should be both added

into S.

After this, the user’s satisfaction on numerical attributes

between the spatial object o and query q can be computed as

follows:

S2(q, o) = 1−

|q.Wi|
∑

i=0

(q.Wi · o.ai) (6)

For instance, if a user specifies q.W1 to be 0.3, q.W2 to be

0.2 and q.W3 to be 0.5, then S2(q, o2) = 1− (0.3∗0.2+0.2∗

0.6+0.5∗0.4) = 0.62, S2(q, o7) = 1−(0.3∗0.3+0.2∗0.3+

0.5 ∗ 0.5) = 0.6. Clearly, the best answer is o2. In contrast,

if another user specifies q.W1 to be 0.53, q.W2 to be 0.37 and

q.W3 to be 0.1, then S2(q, o2) = 0.632, S2(q, o7) = 0.68, and

thus the best answer would be o7.

4) INTEGRATED QUERY RESULT SCORING FUNCTION

Based on the location proximity and text semantic similarity

between the spatial object and query and the user satisfaction

on numerical attributes as well, we can build the integrated

scoring function for a set of spatial objects and the query q as
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follows:

score(q, o) = β · S1 + (1− β) · S2 (7)

where β is an adjustment parameter, and its value is set to

0.7 (the discussion will be shown in Section 6 in detail). The

factor S1 is shown as follows:

S1(q, o) = α · Sspatial(q, o)+ (1− α) · Stext (q, o) (8)

where α is an adjustment parameter which is usually set to

0.5 in past researches. In this paper, we also follow this setting

for the consistency.

V. HYBRID INDEX AND QUERY ALGORITHM

In this section, we propose the hybrid index structure and

present the corresponding implementation algorithms.

A. HYBRID INDEX STRUCTURE

To facilitate the query matching procedure by simultaneously

considering the location proximity, text semantic similarity,

and user’s satisfaction on numerical attributes, we propose a

hybrid index structure which consists of the semantic layer

and AIR-tree index layer.

1) THE SEMANTIC LAYER

CGAN is leveraged to expand the original query keywords.

To make the expansion as good as possible, we used the

same model settings as in [39]. For the generator of CGAN,

we used a two-layer bi-directional GRU with the hidden size

of 500. We also applied a dropout rate of 0.1 as regularization

which helps reduce overfitting, that is, reducing performance

on the training set, but improving performance on the testing

set. During the decoding phase, we connected our network

to a V -dimensional Softmax layer, where V is the overall

vocabulary size for queries and keywords. We only keep

tokens that appear more than 50 times to obtain a final

dictionary size of 30,000 in order to reduce computation.

The discriminator which is a single layer one-directional

GRU with the hidden size of 150. As shown in Figure 4,

the query q and the keyword k are a sequence of tokens

q1, q2, . . . , qn and k1, k2, . . . , kn′ , respectively. In the encod-

ing process, the standard RNN encoder model computes the

thought vector by iterating ht = σh(Whqt+Uhht−1), where ht
is the hidden layer vector,Wh and Uh are parameter matrices,

and σh is the activation function. Note that, the input is a

noise vector z conditioned on the query q, we compute the

thought vector S using S = σz(Uhht + Uzz) after parallelly

connecting z and q, where Uz is the parameter matrix and

σz is the activation function. In the decoding process, the

RNN decoder model computes the conditional probability

p(k1, k2, . . . , kn′ |z, q1, q2, . . . , qn) with a standard language

model, in which the initial hidden state is set to the thought

vector S. For the discriminator, we use a parallelized RNN

model. In this model, query is fed into one RNN structure

and keyword is fed into another RNN structure as shown

in Figure 4. The thought vectors of these two RNNs are then

fully connected to a hidden layer, and the hidden layer pro-

duces the final prediction (1/0) output. Pre-training has shown

some benefits for the training process [44]. Therefore, we first

pre-trained our sequence-to-sequence generator model for

2 epochs by the Adam optimizer [45] with the learning rate

of 1e-4. Besides, the pre-training also helped us produce

the initial word embedding for the follow-up GAN training.

Furthermore, after the pre-training process, we would freeze

the word embedding weights as in [39].

2) AIR-TREE INDEX LAYER

We build a new hybrid index structure (AIR-tree), which adds

an AttrFile file to each node (including intermediate node and

leaf node) based on IR-tree. Each node of AIR-tree records

the spatial information of all objects in the sub-tree rooted

at the current node, the text information summary (the set of

keywords extracted from the text document associated to the

node), numerical attribute information and pointers.

As shown in Figure 5, the information associated to each

node of AIR-tree is divided into three parts: the first two parts

are two pointers, the first of which points to the inverted file

(InvFile) containing all the keywords associated to the node

and the second of which points to the numerical attribute file

(AttrFile). The third part is the collection of entities in the

node (i.e., Entries in R-tree).

Each intermediate/non-leaf node and leaf node may con-

tain multiple entries. For a leaf node, each of its entries con-

sists of a quad, in the form of <O,Rect,O.tid,O.aid>, where

O represents a spatial object, Rect represents the minimum

bounding rectangle (MBR) of the object, O.tid is the textual

information identifier of the object, andO.aid is the identifier

of the numerical attribute tuple of the object. For non-leaf

nodes, each item among them is also composed of a quad

which is represented as <pN ,Rect,N .pid,N .aid>, where pN

is the address of the child node N in the node, and Rect

refers to the MBR of all child nodes of the node, N .pid is

the document identifier of the node (the document contains

the information of all the child nodes under the node), and

N .aid is the numerical attribute identifier of the node which

contains the Skyline generated over the numerical attribute

tuples contained in its child nodes.

During the online query processing stage, the AIR-tree

index structure is leveraged by Algorithm 2 to perform

the top-k query over the spatial dataset by simultaneously

considering the location information, text information, and

numerical attributes associated to the spatial objects. Firstly,

the location proximity and text semantic similarity between

the query and spatial objects is calculated by Equation (7).

Secondly, the user’s satisfaction on numerical attributes and

the integrated ranking score are calculated. Lastly, the query

results are sorted according to the integrated ranking score in

descending order.

B. ALGORITHM

This section presents two algorithms, the Algorithm 1 is

used for generating Skyline collection over the numerical
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FIGURE 5. AIR-tree index structure.

Algorithm 1 The Algorithm for Generating Skyline Col-

lection for Numerical Attribute Tuples

Input: numerical attribute tuple list listattr

Output: Skyline of listattr

1 sort listattr by the first attribute in ascending order.

2 for each tuple in listattr do

3 let i = 0

4 while i < tuple.size() do

5 /* compare tuple[i] to the i-th element of other

tuple tuple1[i] in listattr*/

6 if tuple[i] ≤ tuple1[i] then

7 listattr .remove(tuple1)/*remove other tuple

tuple1 from listattr*/

8 i += 1

9 else

10 listattr .remove(tuple)

11 return Skyline of listattr

attribute tuples associated to the spatial objects and the

Algorithm 2 aims to find the top-k results by using the

AIR-tree index.

Algorithm 1 is used in the process of building the AIR-tree.

The AttrFile corresponding to the intermediate node of

AIR-tree is the Skyline collection of numerical attribute

tuples of its child nodes. For a given numerical attribute tuple

list listattr , we first sort it by the value of the first attribute

in ascending order. For a given tuple, if its value on each

attribute is larger than the other tuples, it is removed from the

listattr until such tuples do not exist. The Skyline can support

the personalized querying according to user preferences and

ultimately provide data items independent of other data items.

During the query processing, the score S2 of the numerical

properties of each intermediate node is determined by its

Skyline and user-specified weights, which determines which

branch to be chosen to speed up the lookup.

The time complexity of the Algorithm 1 is O(mnlog(n)),

where m = tuple.size(), n = listattr .size(). It is acceptable

because the AIR-tree is built in the offline pre-processing

stage and it can be updated periodically.

Algorithm 2 The Algorithm of Top-k Query by Using

AIR-Tree

Input: Dataset O, expanded/relaxed query q(λ, K̃ ,W ),

the number of results k , adjusting parameters α,

β, hybrid index structure AIR-tree

Output: Candidate set list result .

1 result ← ∅, max heap heap← ∅, score = 0

2 heap.add(root)/*root is the root of AIR-tree*/

3 while heap 6= ∅ and result.size()<k do

4 N=heap.poll()

5 if N is an object then

6 S1(q,N ) = α ·Sspatial(q,N )+ (1−α) ·Stext (q,N )

7 S2(q,N ) = 1−
∑|q.Wi|

i=0 (q.Wi · N .ai)

8 score(q,N ) = β · S1 + (1− β) · S2.

9 result .add(N )

10 else

11 for entry e in N do

12 heapEntry.add(e)

13 if q.K̃ == heapEntry.getId().getKeyword()

then

14 calculates the S1 of the coupling

correlation between the location

information and the text information by

Equation (8).

15 calculates the S2 by using Equation (6)

after obtaining the value of numerical

attributes by heapEntry.getId().getAttr().

16 score = β · S1 + (1− β) · S2.

17 heap.add(heapEntry) /*The heap will be

sorted by score.*/

18 return top-k result

For the expanded/relaxed query q(λ, K̃ ,W ), where q.λ

is the location information of the query, q.K̃ is the set of

query keywords (which is expanded/relaxed from q.K ), q.W

is the set of weights on numerical attributes specified by the

user. The function of Algorithm 2 is to efficiently search the

top-k results that most satisfy user’s needs and preferences.

Algorithm 2 works as follows. First, the root node root is

added to the maximum heap heap. Second, for each object
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TABLE 4. The statics of the training set.

N in the heap, if N is a spatial object, that is, root is a

leaf node, then N is added to result and the score of S1, S2
and integrated score score are calculated. Otherwise, N is an

intermediate node. For each entity e in N , determine whether

it contains the query keyword. If not, this branch is no longer

traversed. Otherwise, S2 is calculated using Equation (6) after

obtaining the Skyline of its numerical attribute (Line 15).

The value of S1 and score are calculated by Equation (8)

(Line 14) and Equation (7) (Line 16), respectively, then e

is added to heap and iterates until the heap is empty or the

size of result is greater than k . Lastly, the top-k result set is

returned.

The time complexity of the Algorithm 2 is O(kn), where

n = heap.size() and k is the number of results.

VI. EXPERIMENT

In this section, we systematically introduce the experiment

settings and report the experimental results.

A. EXPERIMENT SETTING

We use two public Location-Based Social Networks (LBSNs)

datasets, Yelp reviews dataset1 and Foursquare dataset,2 as

the training data to train CGAN model. We reserve the text

and user review information and extract the <query, key-

word> pairs from these information. The size of <query,

keyword> pairs is approximate to 8 million. We did token

normalization (e.g., converting to lower-cased tokens, drop-

ping special characters, etc.) and represented each query (and

keyword) as a sequence of uni-gram terms, which yields

a dictionary size of 7,175,000 for queries and 849,600 for

keywords. The average length of queries and keywords is

4.37 and 3.94 tokens, respectively. We summarize the statis-

tics of the training set in Table 4.

We then use the trained CGAN model to expand the user

original query keywords on the following two datasets. The

first is a real POI dataset captured from Yelp, a famous

business review website in the United States, which contains

business information, user evaluation, check-in time, and

other information of restaurants, shopping centers, hotels,

and other fields. These real POI data are processed into

174,567 POIs so that each POI has an ID, location infor-

mation (in the form of longitude and latitude), text informa-

tion, and numerical attributes. We took location information

as spatial information, user comment information and POI

category as text information, and randomly generated 5 ran-

dom numbers between 0 and 1 as numerical attribute val-

ues. The second dataset comes from Foursquare. After data

cleaning, the dataset contains 215,614 spatial objects. Each

1https://www.yelp.com/dataset
2https://foursquare.com/

TABLE 5. The characteristics of the test dataset.

TABLE 6. Default values for parameters.

spatial object contains latitude and longitude information,

keyword information such as steak, pizza, coffee, and four

numerical attributes including price, environment, service,

and rating. The characteristics of the test datasets are shown

in Table 5.

All experiments are implemented in Java. The computer

is configured with 3.7GHZ CPU i7-8700k and Ubuntu

18.04.1 with 32GB RAM. The default values for the param-

eters are given in Table 6.

B. BASELINE COMPARISON METHODS

To give a comprehensive comparison, we implement two

baseline spatial keyword query indexing algorithms, the one

is IR-tree [17] and the other is IRS-tree [46] which can deal

with the numerical attributes.

1) IR-TREE

It is an efficient hybrid index structure that can simultane-

ously handle both the textual and spatial information, which

facilitates four major tasks in document searches, namely,

spatial filtering, textual filtering, relevance computation and

document ranking in a fully integrated manner. Besides, IR-

tree allows searches to adopt different weights on textual

and spatial relevance of documents at the run time and thus

caters for awide variety of applications. However, it just treats

the numerical values as the textual keywords, which usually

makes the query results unsatisfactory to the user’s needs and

preferences.

2) IRS-TREE

It is a hybrid index structure with Synopses’ inverted R-tree,

which can effectively handle a group of generic location-

aware rank query (GLRQ) to return k objects satisfying the

predicate ranked according to the ranking function and enable

pruning of search space according to the satisfiability of the

predicate. However, the query algorithm based on IRS-tree

requires a precise range of numerical attributes, which may

result in too few or no answer problem. In addition, users may

not present an appropriate precise query range on numerical

attributes.
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FIGURE 6. The impact of k value on query execution time.

C. EXPERIMENTAL RESULTS AND ANALYSIS

This section mainly tests the efficiency and effectiveness of

our proposed spatial keyword querymodel and corresponding

hybrid index. We also compared our method with baseline

methods described above over the same datasets.

1) THE EXPERIMENTS ON QUERY EFFICIENCY

Our main purpose in this group of experiments is to evaluate

the impact of the number of query results k , the dataset size

|D|, the number of numerical attributes |o.A|, and the number

of query keywords |q.K | on the query efficiency (i.e., query

execution time).

a: THE IMPACT OF K ON QUERY EXECUTION TIME

The query execution time of ourmethod and the two baselines

on two datasets are evaluated by changing the number of

query results from 5 to 60with the interval of 5 and the experi-

mental result is shown in Figure 6. Note that, in the following

figures ‘‘F/Y_index structure’’ represents the experiment of

each index on Foursquare/Yelp dataset, respectively.

It can be seen that the query efficiency of all methods

becomes worth as the increase of the values of k . This is

because the larger the value of k , the more candidate objects

are indexed, so the longer the query execution time. It also

can be seen that the query execution time of IR-tree is the

shortest compared with the AIR-tree and IRS-tree, because it

does not consider the numerical attributes and the semantic

information, result in a great reduce of query execution time.

AIR-tree is worse than IR-tree since it needs to calculate

the user’s satisfaction on numerical attributes. The query

efficiency of AIR-tree is improved by 12.09% compared with

IRS-tree index structure on the both two datasets.

b: THE IMPACT OF |D| ON QUERY EXECUTION TIME

This experiment aims to compare the query efficiency of

different query algorithms by choosing the number of POIs

from 10,000 to 80,000 with the interval of 10,000. The exper-

imental results are shown in Figure 7.

From Figure 7, it can be observed that the query exe-

cution time increases dramatically as the size of dataset

increases, which is due to the larger dataset, the more objects

FIGURE 7. The impact of |D| value on query execution time.

FIGURE 8. The impact of |o.A| value on query execution time.

that need to be indexed, and thus it may take more time

to process the numerical attributes. It also can be seen

that AIR-tree has a much shorter query response time than

IRS-tree because IRS-tree strictly restricts the precise range

of numeric attributes, which leads to a rapid increase in

query computation time while the Skyline method used

in AIR-tree’s numerical query can achieve fuzzy query to

reduce query response time greatly.

c: THE IMPACT OF |o.A| ON QUERY EXECUTION TIME

This experiment aims to test the query efficiency of differ-

ent query algorithms by varying the number of numerical

attributes from 1 to 10.

The experimental result of Figure 8 shows that the query

execution time increases with the number of numerical

attributes increasing. This is because AIR-tree index struc-

ture requires to calculate the user’s satisfaction on numerical

attributes. Clearly, the more number of numerical attributes,

the more time would be consumed. IRS-tree index structure

is more time-consuming than AIR-tree for it considers the

precise range of numerical attributes when dealing with the

numerical attributes.

d: THE IMPACT OF |q.K | ON QUERY EXECUTION TIME

This experiment aims to test the impact of the number of

query keywords on query execution time of different query

algorithms by varying it from 1 to 8. The experimental results

are shown in Figure 9.
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FIGURE 9. The impact of |q.K | value on query execution time.

FIGURE 10. The impact of |D| on the index building.

From Figure 9, it can be clearly seen that the query execu-

tion time increases in direct proportion to the number of query

keywords. The reason is that no matter what kind of index

structure, when the number of query keywords increases,

more keywords that are semantically related to query key-

words would be expanded into the collection of query key-

words, so that the more objects containing query keywords

need to be indexed, which result in the query response time

increasing rapidly. IR-tree performs better than the others

due to its simple index structure which does not need to

consider processing much additional information (such as

semantic information and numerical information). It should

be noticed that the processing cost of IRS-tree index increases

rapidly with the growth of |q.K |, since IRS-tree needs to scan

more groups of objects containing the query keywords in the

text document and falling into the precise query range of

numerical attributes.

e: THE IMPACT OF |D| ON INDEX BUILDING

This experiment aims to test the impact of dataset size on

the AIR-tree hybrid index building by varying the size of the

dataset. The experimental results shown in Figure 10.

From Figure 10, it can be seen that the time cost for

building the AIR-tree index is proportional to the size of

dataset. IR-tree is the most efficient because it does not

need to build AttrFile and synopses compared with AIR-tree

and IRS-tree index structures, respectively. Despite taking

the information of semantic information as well as numeric

FIGURE 11. The impact of value β on accuracy.

attribute information into account, AIR-tree is more efficient

than IRS-tree in construction cost. The reason is that IRS-

tree requires the synopses tree to be combined with other

indexes to complete the query and it also needs to consider

more numerical attributes’ precise range when dealing with

numerical attributes, which makes it take the longest time to

be built.

2) THE EXPERIMENTS ON ACCURACY

The purpose of this group of experiments is to evaluate the

impact of parameters β and k on accuracy of different query

algorithms.

Since AIR-tree is a high-dimensional approximate query

index, some semantically related results without exactly text

matching would be obtained for a given query q. Therefore,

we need to evaluate the accuracy of the query results. We

use the users satisfaction to measure the accuracy of differ-

ent query algorithms: First, we randomly picked 10 spatial

objects from the dataset as the test queries. And then, for each

query, the IR-tree, AIR-tree, and IRS-Tree indexes are used to

retrieve the top-10 most relevant objects, respectively. In this

way, each query qi corresponds to a target setHi of 30 objects

which likely to contain a good mix of relevant and irrelevant

objects to qi (if there are duplicates, remove the duplicates

and add new objects randomly). Next, for each qi, we asked

10 teachers, 30 graduate students, and 60 undergraduates to

identify the top-10 objects from Hi that they thought were

most relevant to qi. Here, I (qi) represents the top-10 objects

labeled by users for query qi as the ground truth, and R(qi)

refers to the top-10 objects retrieved by IR-tree, AIR-tree, and

IRS-tree, respectively. Thus, the accuracy can be defined as

follows:

accuracy =
|I (qi)|

⋂

R(qi)|

10
(9)

a: THE IMPACT OF β ON ACCURACY

Since Equation (7) is only used by our AIR-tree based query

evaluation, we just test the impact of parameter β on the accu-

racy for our method over the two datasets. Figure 11 shows

the accuracy of our method for different values of β.

It can be seen that the accuracy reaches the peak at β = 0.7

for both Yelp and Foursquare datasets and the corresponding
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TABLE 7. The accuracy of top-10 spatial object results.

FIGURE 12. The effect of k value on accuracy.

accuracy are 0.78 and 0.74 respectively, which demonstrates

that our method considers the user’s satisfaction on numerical

attributes is very helpful for improving the accuracy. Further-

more, we can also observe that the accuracy corresponding to

β = 1 (i.e., the query algorithm only consider the location

proximity and text semantic similarity when evaluating the

query results) is better than that corresponding to β = 0

(i.e., the query algorithm only consider the user’s satisfaction

on numerical attributes when evaluating the query results),

which indicates that the combination of location proximity

and text semantic similarity is more important than the user’s

satisfaction on numerical attributes for evaluating the query

results and this is reasonable in reality.

b: THE IMPACT OF k ON ACCURACY

The performance of the AIR-tree against the baselines is

reported in terms of accuracy for top-10 objects in Table 7.

We also test the accuracy of the top-k (k = 1, 2, . . . , 10)

spatial objects in Figure 12 (the parameter β is fixed

to be 0.7).

As shown in Figure 12, AIR-tree index structure pro-

posed in this paper outperforms all baselines on the two

datasets.When k ranged from 1 to 10, the average accuracy of

AIR, IRS and IR is 0.4225, 0.3345 and 0.2760, respectively,

so AIR-tree improves the averaged accuracy by 14.65% and

8.80% compared with IR-tree and IRS-tree, respectively. The

significant improvement of AIR-tree indicates that it can

well satisfy the user’s needs in personality and semantic for

the top-k results. This is because we integrally consider the

location proximity, text semantic similarity, and user’s satis-

faction on numerical attributes and integrate these aspects to

build a hybrid index structure. Moreover, AIR-tree not only

reduces the burden on the user to specify the exact query

range of numerical attributes, but also improves the perfor-

mance compared with IRS-tree. The result of IR-tree is the

worst on accuracy because it does not consider the semantic

approximation and user’s satisfaction on numerical attributes.

Although IRS-tree can process the numerical attribute values,

it does not consider the semantic relevancy of query results

and user’s preferences on numerical attributes. It also can be

seen that the accuracy of each algorithm gradually improves

with the increases of k . This is because some relevant objects

that not ranked in front of the result list would not be provided

by the algorithm when k is small, while they would be in the

result set when k is large, so that the overlap between the set

of objects obtained by the algorithm and the set of objects

marked by the user would grow as k increases.

VII. CONCLUSION

This paper proposes a spatial keyword querying approach

by using CGAN and Skyline to realize the approximation

and personalization of query results. The experimental results

on real datasets reveal that the proposed algorithm not only

supports the exact matching of spatial keywords but also

supports the semantic approximation query, and can deal with

the numerical attributes in the text information as well, which

can satisfy the user’s needs and preferences more closely.

In future work, CGAN will be further optimized in the

pre-training stage by incorporating more context information

such as social network into the model to obtain a better ability

to expand query keywords. The concept of diversificationwill

be introduced and studied tomake the query results satisfy the

user’s query requirements and preferences more efficiently.

The weights between spatial location proximity and text sim-

ilarity will also be inferred based on user’s preferences.
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