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Autism spectrum disorder is a neuro-developmental disorder that affects the social 

abilities of the patients. Yet, the gold standard of autism diagnosis is the autism diagnostic 

observation schedule (ADOS). In this study, we are implementing a computer-aided 

diagnosis system that utilizes structural MRI (sMRI) and resting-state functional MRI 

(fMRI) to demonstrate that both anatomical abnormalities and functional connectivity 

abnormalities have high prediction ability of autism. The proposed system studies how 

the anatomical and functional connectivity metrics provide an overall diagnosis of whether 

the subject is autistic or not and are correlated with ADOS scores. The system provides a 

personalized report per subject to show what areas are more affected by autism-related 

impairment. Our system achieved accuracies of 75% when using fMRI data only, 79% 

when using sMRI data only, and 81% when fusing both together. Such a system achieves 

an important next step towards delineating the neurocircuits responsible for the autism 

diagnosis and hence may provide better options for physicians in devising personalized 

treatment plans.

Keywords: structural magnetic resonance imaging, functional magnetic resonance imaging, autism, personalized 

diagnosis, Computer-Added Diagnostics (CAD) systems, machine learning

INTRODUCTION

Autism spectrum disorder (ASD) is a neuro-developmental disorder that has three main 
associated  characteristics (1): i) social functioning disorders, ii) communication impairments, 
and iii) restricted and repetitive behaviors (RRBs). In many previous research projects, correlation 
was reported between autism and both anatomical abnormalities and functional activation 
abnormalities. For studying anatomical abnormalities, the most commonly used imaging modality 
is structural MRI (sMRI) (2), while functional MRI (fMRI) is the most commonly used modality 
for studying brain activation (3).
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The relationships between MRI parameters and the autism 
diagnosis play a key role in defining the impaired neurocircuits 
in an individual ASD subject. When studying anatomical sMRI, 
there are two main categories of features, and each study either 
uses features driven from one of them or a combination of 
both i) shape features and ii) volumetric features. With regard 
to volumetric analysis, Courchesne et al. (4) conducted a study 
on 60 autistic and 52 typically developed individuals (ages 
between 2 and 16 years) to explore the anatomical abnormalities 
in cerebral and cerebellar volume of autistic brains with 50% 
of the autistic participants being aged 5 or more years and 50% 
between 2 and 4 years old. In the age group between 2 and 4 years 
old, 90% of the participants were found to have brain volumes 
larger than normal. This result reinforced the hypothesis that 
the brain volume in autistic infants was larger in size than in 
typically developed infants. This hypothesis was also supported 
by results in the study of Hazlett et al. (5), where 51 autistic and 
25 typically developed individuals (ages between 1.5 and 3 years) 
were examined and it was found that the cerebellar white matter 
volume in autistic subjects between 2 and 4 years old were larger 
than normal size. Geschwind and Levitt (6) also emphasized the 
same assumption during infancy interval, but found additionally 
that the cerebral hemisphere can remain enlarged during 
adulthood. Meanwhile, other investigators (7–9) suggested that 
the main areas of the brain with enlarged white matter and 
gray matter were the frontal, temporal, and parietal lobes (ages 
between 2 and 12 years). A voxel-based morphometry (VBM) 
study was conducted by Toal et al. (10) to study the brain anatomy 
of both autistic and typically developed adults (mean age is 32 
years with 9 years standard deviation), and found that the brain 
of the autistic individuals had significant increased gray matter 
involving both the frontal and temporal lobes.

Instead of studying the cortical volume (CV) as a single 
parameter, and based on the fact that CV is the product of 
two parameters, cortical thickness (CT) and surface area (SA), 
Ecker et al. (11) analyzed these three parameters together in 
order to attain a more insightful observation about anatomical 
abnormalities in the autistic brains (age mean is 26 years with 
7 years standard deviation). This study observed differences in 
the three parameters (CV, CT, and SA) between the two groups 
with the CT in autistic subjects being significantly larger than 
that in typically developed individuals in the frontal lobe regions, 
while SA in the orbitofrontal cortex and posterior cingulum in 
autistic subjects was less than that in the typically developed. 
Using the same three parameters, a more comprehensive 
study by Haar et  al. (12) was conducted (ages between 6 and 
65 years). While more detailed results were obtained from this 
study, the results were still in line with previous studies and 
anatomical hypotheses. Specifically, in autistic individuals, 
larger ventricular volumes, smaller corpus callosum volume 
(central segment only), and several cortical areas with increased 
thickness were detected. Another approach for studying 
anatomical abnormalities in autistic subjects was to study the 
longitudinal changes in CT (13) (ages between 3 and 36 years), 
which allows the identification of specific regional differences 
in the CT. In their study, Zielinski et al. (13) discovered that the 
most significant differences in CT between autistic and typically 

developed individuals of the same mean age was in the bilateral 
inferior frontal gyrus, pars opercularis, pars triangularis, right 
caudal middle frontal, and left rostral middle frontal regions. 
Other studies addressed different brain regions. For example, 
autistic subjects displayed larger amygdala than normal 
subjects (14). Waiter et al. (15) (age mean is 15.4 years with 
2.24 years standard deviation) examined the areas believed to 
be responsible for the social cognitive functions: in particular,  
1) facial recognition (right fusiform gyrus), 2) perception 
and eye gaze (superior temporal gyrus), and 3) mental state 
attribution (anterior cingulate and superior temporal sulcus). In 
these areas, a significant increase in gray matter was observed. 
Another VBM study was performed by Salmond et al. (16) (ages 
between 8 and 18 years) to examine the cerebellum, fusiform 
gyrus, and frontal cortex. Similarly, increased gray matter 
volume was observed in the regions of the cerebellum in the 
participants located near the high functioning end of the autism 
spectrum, which is consistent with the anatomical hypothesis 
that it relates increased brain size to autism.

Another major approach explored for discriminating between 
autistic and typically normal developed brains was shape-based 
analysis of sMRI. As a quantitative measure for shape analysis, 
the gyrification index (GI) (17) was used by Hardan et al. (18) 
(age mean is 12.7 years with 2.2 years standard deviation). GI 
is a measure of cortical folding that is calculated as the ratio 
between total contour length and outer contour length from 
coronal sMRI slices. The GI in the left frontal area was noticed to 
be larger in autistic children and adolescents than corresponding 
typically developed children and adolescents. In this study, the 
GI decreased with age in autistic subjects but not in typically 
developed subjects. In line with the increased GI finding 
reported by Hardan et al. (18), Wallace et al. (19) (age mean 
is 16.7 years with 2.8 years standard deviation) also reported 
increased gyrification in the bilateral posterior cortices in autistic 
subjects. Furthermore, a positive correlation between vocabulary 
knowledge and gyrification in the left inferior parietal cortex in 
typically developed individuals was noted while no correlation 
was found for autistic subjects. One of the most commonly 
used shape-based analysis techniques was folding analysis. For 
example, Awate et al. (20) (ages between 7.5 and 31 years) used 
six folding measures for cortical curvature analysis between both 
groups (autistic and typically developed). The folding measures 
used were i) intrinsic curvature index, ii) mean curvature norm, 
iii) convexity ratio, iv) isoperimetric ratio, v) shape index S, and 
vi) curvedness. The Awate et al. (20) study found increased folding 
in the ASD frontal, parietal, and temporal lobes when compared 
to typically developed individuals. This increased folding was 
more prominent in children than in adults. A more recent study 
by Katuwal et al. (21) also addressed the curvature abnormalities 
using seven features extracted from a reconstructed brain mesh. 
The features used were i) Gaussian curvature, ii) mean curvature, 
iii) folding index, iv) thickness, v) thickness standard deviation, 
vi) SA, and vii) volume. Another study by Nordahl et al. (22) 
(ages between 7.5 and 18 years) addressed the cortical shape 
abnormalities in both high-functioning and low-functioning 
ASDs plus TDs using surface-based morphometry. Sulcal depth 
was used as a quantitative measure to analyze morphological 
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abnormalities. For the low-functioning autistic subjects, the 
abnormalities in sulcal depth were mainly noticed in the anterior 
insula and frontal operculum in addition to shape abnormalities 
in the inferior frontal gyrus. The same abnormalities were noticed 
in high-functioning autistic patients, but with relatively smaller 
size. They were centered near the parietal operculum and ventral 
postcentral gyrus. Sulcal depth differences were also reported by 
Dierker et al. (23) (age mean is 11.4 years with 1.9 years standard 
deviation), in which differences in sulcal depth were noted in 
the anterior insula and temporoparietal junction between the 
two groups. The areas having the most significant abnormalities 
were the frontal and temporal areas, particularly from social 
and language regions, which were highly implicated in autism. 
Brain shape differences between autistic and typically developed 
individuals were explored by Ecker et al. (24) (ages between 
18 and 43 years), where GI in gray matter was studied. The 
experimental outcome was a prominent increase in gyrification 
around the left pre- and post-central gyrus in autistic individuals.

Regarding fMRI analysis, there are two major types of 
experiments to examine brain functional activity: i) resting-state 
fMRI (RfMRI) and ii) task-based fMRI (25) (age mean is 24 years 
with 10 years standard deviation).

In Just et al. (26), the underconnectivity theory was first 
proposed. This theory states that ASD is due to both cognitive 
and neurobiological disorders. The cognitive disorder mainly 
appears as reduced synchronized brain activity in integrative 
processing demanding tasks, for example, forming a sentence 
from a set of words (27) (age mean is 27.1 years with 11.9 years 
standard deviation).

Researchers conducted different studies to study the brain 
connectivity using task-based approaches. For example, less 
activation in the left dorsolateral prefrontal and inferior 
parietal areas was identified, and more activation was reported 
in the right occipital (visuospatial) areas and bilateral superior 
parietal using a figures task experiment in Damarla et al. (28) 
(age mean is 19 years with 5.5 years standard deviation). In 
Weng et al. (29) (age mean is 14.36 years with 1.7 years standard 
deviation), the response to facial expressions was studied, where 
autistic individuals were reported to have higher activation in 
the amygdala, ventral prefrontal cortex, and striatum. Another 
example of using task-based experiments is the rewards task, 
where subjects are given either monetary or social reward and 
their brain activity in response to this reward is recorded (30, 31) 
(age mean is 12.3years with 1.76 years standard deviation). In 
Dichter et al. (32), less activation in the right nucleus accumbens 
and more activation in left midfrontal and anterior cingulate 
gyrus were reported in ASDs than in TDs in response to social 
and monetary rewards. Another study by Cox et al. (33) (age 
mean is 24.11 years with 4.16 years standard deviation) supported 
less connectivity in autistic subjects in response to rewards.

To study the alterations in connectivity between TDs and 
ASDs, Deshpande et al. (34) (age mean is 21.14 years with 1 year 
standard deviation) applied a machine learning algorithm based 
on a multivariate autoregressive model trying to find the most 
logical end to a story shown to them.

In the study by Itahashi et al. (35) (age mean is 31 years with 
8 years standard deviation), researchers found that functional 

connectivity of ASDs is less than that of TD subjects. These 
results were also supported by Alaerts et al. (36) (age mean is 
13.7 years with 4.64 years standard deviation), which is providing 
more evidence for the underconnectivity theory.

In Rausch et al. (37) (age mean is 16.23 years with 3.218 
years standard deviation), reduced functional connectivity in 
visuospatial and superior parietal areas was reported on ASDs 
when compared to TDs. Also in another study by Tyszka et al. 
(38) (age mean is 27.4 years with 2.4 years standard deviation), 
reduced connectivity was reported in local areas of both the 
frontal and temporal cortex, but no global abnormalities were 
detected. In Plitt et al. (39) (age mean is 17.5 years with 5.5 years 
standard deviation), dysfunction in the functional networks 
was reported, and this dysfunction was more obvious in social 
information processing related networks. The altered connectivity 
result was also supported by Di Martino et al. (40), where both 
hypoconnectivity and hyperconnectivity were reported in ASD 
circuits.

Not only underconnectivity was reported for ASDs in the 
previous studies. A study by Hahamy et al. (41) (ages between 
18 and 44 years) reported alterations in functional connectivity 
patterns, where the interhemispheric connectivity analysis 
in autistic subjects showed areas of decreased connectivity 
while other areas showed increased connectivity compared 
to healthy control subjects. The hyperconnectivity was also 
reported in autistic children in Supekar et al. (42) (ages between 
7 and 13 years), where autistic children with more severe social 
dysfunction were found to be functionally hyperconnected.

In addition to reporting global differences between ASDs and 
TDs, resting-state connectivity patterns demonstrated promising 
results in diagnosing many diseases, e.g., Alzheimer’s disease 
(43), schizophrenia (44) (age mean is 35.9 years with 13.5 years 
standard deviation), and autism. For example, the approaches 
in Kim et al. (44) achieved high accuracy in schizophrenia 
diagnosis.

A deep neural network and functional connectivity analysis have 
been used in the recent study by Heinsfeld et al. (45) and Dvornek 
et al. (46) for autism diagnosis where the functional connectivity 
correlation matrix was the input to the classification network.

The heterogeneity of autism among individuals according 
to symptoms and severity has raised the need for a more 
personalized approach to predict and analyze the behavior and 
functionality of each autistic subject. Hence, we could then 
design an optimum treatment plan for every autistic subject. In 
this study, we aim to answer two main research questions: i) Can 
fMRI and sMRI be used for autism diagnosis in an objective 
way? ii) Are fMRI and sMRI features associated with ADOS 
scores? The hypothesis of this study is that combined sMRI 
and fMRI parameters are more likely to correlate more closely 
with behavior and yield high diagnostic accuracy, sensitivity, 
and specificity. The proposed system uses machine learning 
to define global and local features of ASD regardless of age or 
gender. Finally, we again analyze our results to be sure that it 
fits nicely within research domain criteria (RDoC)-defined 
neurocircuits related to ASD. Such criteria are important for 
the generalization of this model to highly heterogeneous ASD 
populations that present to the physician’s office.
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MATERIALS AND METHODS

In this study, both fMRI and sMRI data are obtained from the 
National Database of Autism Research (NDAR). The data for 
both experiments are obtained from a single study (NDAR study 
ID 2021). Imaging data provided by NDAR are fully anonymized 
and they are linked with other records (diagnostic, behavioral, 
demographic, etc.) using a unique identifier, the NDAR globally 
unique identifier (GUID). The total number of subjects used 
is 185 subjects. The selected data were collected at George 
Washington University. All the selected subjects have both high-
resolution T1-weighted structural images and RfMRI images (7 
subjects out of the 185 have corrupted RfMRI imaging files, so 
they were included in the sMRI analysis and excluded from fMRI 
analysis and from sMRI–fMRI modalities fusion). Out of the 
used 185 subjects, 61 subjects have autism diagnostic observation 
schedule (ADOS) reports.

All neuroimages were produced by a Siemens Magnetom 
TrioTim with a 3-T magnet. Structural scans used an MPRAGE 
pulse sequence with TR = 2,530 ms, TE = 3.31 ms, TI = 1,100 ms, 
and flip angle 7°. Volumes were acquired in 3D with isotropic 
1-mm voxel spacing. For the functional scans, they have TR = 
2,000 ms, TE = 30 ms, and flip angle 90° in a two-dimensional 
acquisition sequence to produce images with 3-mm pixel spacing 
and 4-mm slice spacing. Time to acquire 33 coronal slices 
spanning the entire brain was 2.01 s, and the resting-state data 
were recorded for approximately 6 min.

sMRI Experiment
In this experiment, both morphological and volumetric features 
are extracted and studied. Prior to extracting any of these 
features, there are some mandatory data preprocessing steps 
to be applied followed by the segmentation of the brain cortex. 
These preprocessing steps could be summarized as follows:

Brain Data Preprocessing
The preprocessing is a vital requirement to remove the variability 
between subjects that may stem from data acquisition, different 
scanners, artifacts, or partial volume effects. Moreover, the 
preprocessing step removes non-brain tissues such as skull. The 
following steps are applied to preprocessing sequentially.

1. Intensity normalization (47): In this step, intensity non-
uniformities are corrected using a non-parametric model. It 
does not require any prior knowledge about existing tissue 
classes in the image.

2. Brain extraction and skull stripping (48): In this step, 
an algorithm combining both watershed algorithm and 
deformable surface model is used for skull stripping. The used 
algorithm starts by localizing a voxel belonging to the white 
matter, creating local minimum in the white matter, and then 
applying watershed algorithm with a pre-flooding height. 
This creates an initial estimate about the brain volume. To 
overcome any inaccuracies that might lead to cortical surface 
erosion, a deformable surface model is then applied. This 
allows the integration of geometric constraints into the skull 
stripping process.

Brain Segmentation and Area Labeling
The atlas-based brain segmentation task (49, 50) is formulated as 
a joint model using the given atlas and an affine transformation 
with 12 degrees of freedom, ω = f that maps the input volume to 
the atlas domain.

Let R = {r = (x, y, z): 0 ≤ x ≤ X − 1, 0 ≤ y ≤ Y − 1,0 ≤ z ≤ 
Z – 1}; Q  = {0, 1,…, Q − 1}; and L = {0,…,l} denote a finite 
arithmetic lattice of the size XYZ supporting gray scale images 
and their region (segmentation) maps, a finite set of Q integer 
gray values, and a labeled set of objects (“0”), non-brain tissue 
(“1”), cerebrospinal fluid (CSF) (“2”) for gray matter, and so on. 
Let g = {gr: r ∈ R; gr ∈ Q} and m = {mr: r ∈ R; mr: ∈ L} be a gray-
scale image having values from L, i.e., m: R ↦ L, respectively.

First, the brain atlas, A = {ai = (gi, mi): i = 1, 2,…, N}, contains 
3D MRI scans of different brains and their manually labeled 
volumes. Given the atlas function, f, that co-aligns ai to the atlas 
domain (preselected template). This atlas is constructed in such a 
way that retains each anatomical label information at each voxel. 
The prior probability for each label m to occur at atlas location r is:

 P( ( ) )
#

m r m
m

= ≈
of times label occurred at locationn ( )

of voxels that map to

f r

r# inthetrainingsett
 (1)

Since each location r can be mapped to different labels, the 
intensity distribution of each label m at r is modeled as a Gaussian 
distribution. The mean and variance of such distribution are 
calculated as:

 µm i

i

N

N
( )) ( ( ))r r=

=

∑
1

1

g f  (2)

where gi are the set of N images for which label m occurs at 
location f(r) in the corresponding manually labeled image Si. The 
variance for label m at location r is given by:

 σ µm i m

i

N

N
( ) ( ( ( )) ( ))r r r2 2

1

1
= −

=

∑ g f  (3)

Having both prior information and conditional probability 
for each class at each atlas location, the segmentation problem 
for a new input subject, given its affine transformation, ω, for the 
atlas domain is modeled using MAP estimate:

 P(m|g, ω) = P(g|m, ω) P(m) (4)

with the assumption that the noise is independent at r, P(g|m, ω) 
can be written as:

 P P r(g ) (g( )m, m( ))ω =

∈

∏ ω r
r R

 (5)

Using the atlas information, Eqs. 2 and 3, the conditional 
probability for each label at each voxel is given by:
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To get the prior probability (P(m)) for Eq. 4, a Markov 
random field model is used to encode the label’s relationship 
as a function of location within the brain in addition to the 
local direction. Taking into account 6 voxels in the positive and 
negative cardinal directions at each location in the atlas space, 
the P(m) is expressed as:

 P P Pr

r

i i

i

m

( ) ( ) ( ( ) )m m m m=

∈ =

∏ ∏
ρ

r r r( ),
1

 (7)

where ρ is the neighborhood system of r. The values of P(m(r)) 
are computed and stored in the atlas using Eq. 1. The spatial 
relationship between different labels is encoded in P(m(ri)|m(r), 
ri). However, for simplicity and computation efficiency, the MAP 
estimate assumes P(m(ri)|m(r), ri) as uniform as no labels have 
been assigned yet. After obtaining the initial segmentation, it is 
sequentially updated using iterated conditional modes (ICMs) 
algorithm. For more details about the segmentation algorithm, 
the reader is referred to Sled et al. (47).

After completing the preprocessing and the segmentation 
steps, the following steps are applied for 3D surface reconstruction 
and brain parcellation to an anatomical atlas from the segmented 
volume.

1. Tessellation of the gray–white matter boundary (51, 52): In 
this step, the spherical topology of the surface is accurately 
corrected. The used technique constructs a mapping between 
the original surface onto a sphere. Topological defects are 
detected as the minimal nonhomeomorphic regions. Each 
topological defect is then corrected by opening and sealing 
along the set of non-separating loops.

2. Surface inflation and spherical atlas registration (53, 54): In 
order to establish a spherical-based cortical surface, three 
steps are applied: i) inflate the cortical surface to visualize 
hidden structures in the sulci, ii) cut and flatten the entire 
hemisphere, and iii) parameterize using a sphere. The 

parameterized surface is then used to create a spherical 
surface-based coordinate system. To define such coordinate 
system, the average folding pattern of a large population is 
used as an atlas. Each individual subject is then aligned to 
this atlas.

3. Cortical surface parcellation to the Desikan–Killiany (DK) 
atlas (55): In this step, each hemisphere is parcellated into 34 
cortical labels.

Figure 1 shows a typical sample of (a) an original volume, 
(b) intensity normalization, (c) brain extraction, (d) segmentation, 
and (e) DK atlas parcellation

After completing the above steps, eight features are calculated 
for each of the 34 hemisphere areas. The eight calculated features 
for each DK atlas area are as follows:

1. Surface area (A).
2. Volume (V).
3. Average thickness (T).
4. Standard deviation of the thickness (T).
5. Average of mean curvature (MCI), defined as:

 
MCI

K K
=

+1 2

2
, where K1, K2 are the two principle 

curvatures calculated at each vertex.
6. Average of Gaussian curvature (K), defined as:
 K = K1 * K2.
7. The average intrinsic curvature index (ICI), defined as:
 ICI = MAX (K, 0).
8. The average folding index (FI), defined as:
 FI = ABS (K1) * (ABS (K1) – ABS (K2)).

In this study, we used the publicly available and widely used 
brain MRI analysis software FreeSurfer pipeline, available at: 
http://surfer.nmr.mgh.harvard.edu/ for all preprocessing and 
feature extraction steps mentioned above.

To overcome the problem of variability in the utilized eight 
features between subjects due to confounding variables like age, 

FIGURE 1 | A typical example of the pipeline applied to an input volume to prepare it for feature extraction. (A) Original volume, (B) intensity normalization, (C) brain 

extraction, (D) segmentation, and (E) DK atlas parcellation.
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IQ, or gender, a normalized form of these features is used. For 
each subject and for every feature, a 68 areas × 68 areas delta 
matrix is created, where each element in this matrix is the 
difference in the feature value between two different areas. In this 
way, the interaction between the feature values at different areas 
is studied instead of using the individual feature value per area. 
Using this technique adds more robustness to the system against 
variability between subjects due to any confounding variables 
like age, gender, or IQ. The pipeline of the sMRI experiment is 
shown in Figure 2.

In order to assess how the extracted features are associated 
with autism severity, a correlation analysis is performed between 
the difference in feature values among all subjects having ADOS 
report and the ADOS overall score.

fMRI Experiment
In the fMRI experiment, the features used are the functional 
connectivity coefficients between each couple of areas in the DK 
atlas. The first step in the fMRI analysis is the data preprocessing. 
The preprocessing in this experiment was applied using the FSL-
5.0 nuero-imaging toolbox. The preprocessing steps applied in 
this study are as follows:

1. Slice timing correction: In an interleaved order, to correct for 
the effect of acquiring 2D slices at different time shifts.

2. Motion correction (56): To correct for unintended subject 
motion in the scanner.

3. Normalization to MNI-152 space: The normalization is 
applied using two-step reregistration. The first step is to 
register the fMRI subject to its structural image. The second 
step it to register the sMRI image to the MNI-152 space.

4. Spatial smoothing: A Gaussian filter of full width at half 
maximum (FWHM) of 6 mm is applied to remove the spatial 
noise.

5. High-pass filtering: To remove the low-frequency drifts effect.

The main purpose of this experiment is to study the 
functional connectivity within each subject and how it is capable 
of diagnosing autism. The functional connectivity was selected to 
be the used feature as it gives an indication about the coherence 
of activation between the different brain areas. Hence, it is useful 
in identifying the brain functional networks and how these 
networks’ connectivity could be altered between (57) autistic and 
typically developed subjects. Since we are concerned in this study 
with DK cortical parcellation, the functional connectivity matrix 
is constructed between each pair of these atlas areas.

After calculating the preprocessing, the subject 4-D volume 
is masked with each of the DK atlas areas to calculate the mean 
time course of this area. The Pearson correlation coefficient (ρ) is 
used to calculate the functional connectivity between each pair 
of areas in the atlas. Figure 3 shows how feature matrix of the 
functional connectivity is calculated in this experiment. After 
calculating the connectivity matrix and assessing how the altered 
connectivity pattern could reflect autism severity, a regression 
model is used to fit the functional connectivity coefficients with 
the overall ADOS severity score in the same way as in the sMRI 
experiment.

Local and Global Diagnosis
Having the sMRI and fMRI features ready, the same classification 
pipeline is applied to both of them. As mentioned above, the 
fMRI features are a 68 × 68 connectivity matrix, F per subject.

 F

n
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ρ ρ

ρ ρ

1 1 1 2

1 68 68

, ,

, ,


   (8)

where ρi,j is the Pearson correlation coefficient between time 
courses in area i and area j and n is the index of areas (n = 68). For 
the sMRI features S, they are a 68 × 68 × 8 matrix per subject and 

FIGURE 2 | Eight features are extracted from the parcellated volume; summary statistics are calculated for each feature at each DK atlas area. Then, Delta matrix 

for each subject is calculated by subtracting the feature values between each couple of areas. The output feature matrix is 68 × 68 × 8.
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each element in the difference in each of the eight features values 
between each couple of areas.
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f f

=



















∆ ∆

∆ ∆

1 1 1 2

68 1 68 68
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where Sf is the feature matrix of the feature f and Si,j,f is the 
difference in the values of feature f between areas i and j.

With these feature matrices, one for each modality, a local 
classifier is applied for each element in each of the two matrices. 
Both the accuracy and the output probability of each feature 
to be belonging to the autism class are recorded. The local 
classifiers used for both sMRI and fMRI are KNN classifiers 
with number of neighbors = 7. After finishing the local 
classification phase, the features for each modality are sorted 
according to the local classification accuracy they achieved in 
the first step.

KNN is a non-parametric, distance-based classifier. The KNN 
algorithm assigns a membership score to each new sample based 
on the number of closest K-neighbors samples from this sample 
belonging to each of the classes. Based on a majority voting, the 
sample is assigned to one of the classes (58).

The second step in this diagnosis system is to use the sorted 
feature vector of both sMRI and fMRI for the per-modality 
diagnosis. In this step, an incremental approach was used 
by adding one feature at a time to the used feature vector and 
recording the cross-validation accuracy until reaching the 
optimal feature vector length per modality. In this step, a random 
forest classifier is used. To adjust the hyperparameters of the 
random forest (number of estimators and maximum depth of the 
tree), a grid search is used.

Random forest is an ensemble machine learning algorithm 
combining multiple decision trees using bootstrap aggregating. 
Each decision tree is fed with a bootstrap of the data with 

replacement. In order to calculate the feature selection when 
using random forest, GINI impurity is used (59, 60).

Once the optimal cutoff threshold is obtained for each 
modality and the optimal feature vector is determined for 
sMRI and fMRI, these two feature vectors are concatenated and 
fed to another random forest classifier for the global diagnosis 
decision. The two-step classification approach used is illustrated 
in Figure 4. Also, Figure 5 illustrates the whole pipeline of the 
proposed methodology in this study.

EXPERIMENTAL RESULTS

Subjects Demographics and Cohort 
Summary Statistics
Out of the 185 subjects used, 7 subjects were excluded from the fMRI 
analysis and hence from the sMRI–fMRI fusion because they have 
corrupted fMRI volumes. The dataset contains 72 autistic subjects 
(33 males and 39 females) and 113 typically developed subjects (49 
males and 64 females). The gender was statistically tested using chi-
squared test, and it was found statistically insignificant, χ2 = 0.01088, 
P = 0.744. For the ASD group, the males’ mean age is 13.07 years 
while the females mean age is 13.53. In the TD group, the males’ 
mean age is 13.04 and the females’ mean age is 12.8125. The age 
difference between the two groups is also statistically insignificant 
(t = 0.95, P = 0.343). The ADOS scores for 61 are available. The 
social affect (SA) ADOS varied between 0 and 19 with a median of 
9, the RRBs varied between 0 and 6 with median of 2.5, while the 
cumulative ADOS varied between 1 and 24 with a median 11.5. 
Table 1 shows the entire summary statistics of the used cohort.

Correlation Analysis With ADOS Total 
Score
For each of the features used in the two modalities, the correlation 
between the feature values in the 61 subjects having ADOS 
overall score and the corresponding ADOS score was studied. 

FIGURE 3 | For each couple of areas, the correlation coefficient between the time courses is calculated to form one 68 × 86 feature matrix.
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The selected correlation thresholded at a correlation of 0.32, 
which corresponds to a P value of 0.01.

In the fMRI experiment, 31 features have correlation 
coefficients above the significance threshold. In the sMRI 
experiment, there are 345 features above the selected threshold. 
The number of features meeting the significance criteria in the 
sMRI is much higher than that in fMRI as the number of features 
used in sMRI is eight times the number of features in fMRI.

In the sMRI feature matrix, the distribution of the features 
above the significance level is found to be as follows (Figure  6): 
volume: 62 times, thickness standard deviation: 44 times, 

TABLE 1 | The used cohort summary statistics.

ASD TD

Males Females Males Female

Count 33 39 49 64 p = 0.744

Age mean 13.07 13.53 13.04 12.81 p = 0.34

Age SD 2.75 2.58 2.68 3.17

Median Range

SA 9 0–19

RRB 2.5 0–6

Cumulative 11.5 1–24

FIGURE 4 | The two-stage classification approach used. In the first stage, a local classification per feature in sMRI and fMRI feature matrices is used. The output 

accuracies of the first stage are used to create sorted feature vectors. An incremental approach is used to determine the optimal length of the sMRI and fMRI 

feature vectors. These two vectors are finally concatenated for the global classification.

FIGURE 5 | The overall pipeline of the proposed approach, for each modality preprocessing and analysis is applied to calculate the feature matrix. The features 

of the modality are fed to a local classifier, modality fusion decision is then calculated and finally overall diagnosis decision is reported using both sMRI and fMRI 

decisions.
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thickness: 12 times, mean curvature: 25 times, Gaussian 
curvature: 16 times, foldness index: 82 times, curvature index: 29 
times, and SA: 75 times. Figure 7 shows sample of correlation of 
both sMRI and fMRI with ADOS overall score. Also, Figures 8 
and 9 show the most frequent areas associated with features 
having significantly correlated features with overall ADOS score.

Local and Global Diagnosis
For each subject, the local probabilities for both sMRI and 
fMRI feature matrices are calculated. These probabilities are 
used to generate the personalized brain maps. The output of 
the local classification is two matrices PS and PF with the same 
size as the feature matrices F and S.

FIGURE 6 | The frequency of occurrence of each of the sMRI features in the significantly correlated features list with ADOS overall score.

FIGURE 7 | Six selected samples to show the correlation between the feature values in sMRI (upper row), fMRI (lower row), and the ADOS overall score. For each 

subplot, the figure title shows the couple of area numbers in the DK atlas, the feature name in the case of sMRI, the correlation coefficient, and the P value.
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where pfij if the probability of the functional connectivity 
between areas i and j to belong to the autism class and Psi,j,f is the 
probability that the difference in the structural feature f between 
areas i and j belong to the autism class.

To obtain the personalized maps, two vectors, Vf and Vs, are 
calculated for fMRI and sMRI, respectively.

 V P i jf
j

F( ) max ( , )i =
≤ ≤0 68

 (12)

 V P i j fs
i j f

S( ) max ( , , )
,

i =
≤ ≤ ≤ ≤68 1 8  (13)

FIGURE 8 | The most frequent areas in the fMRI experiment found to be associated with significantly correlated features with ADOS overall score.

FIGURE 9 | The most frequent areas in the sMRI experiment found to be associated with significantly correlated features with ADOS overall score.

https://www.frontiersin.org/journals/psychiatry#articles
https://www.frontiersin.org/journals/psychiatry
www.frontiersin.org


Personalized CAD SystemDekhil et al.

11 July 2019 | Volume 10 | Article 392Frontiers in Psychiatry | www.frontiersin.org

These two vectors indicate the highest probability of an area to 
be belonging to the autism class. A sample of these color coded 
maps is shown in Figure 10.

Per-Modality Diagnosis Results
After calculating the local probabilities, PS and PF, they were 
sorted according to the obtained accuracy. A linear scan is 
done to find the optimal number of features to concatenate 
for sMRI and fMRI. From this scan, it is found that by fusing 
the first 34 sorted features in sMRI and the first 4 features, the 
highest sMRI and fMRI accuracies are achieved. To show the 
effect of changing the number of selected features, Figures 

11 and 12 show the accuracy, sensitivity, specificity, and area 
under the curve (AUC) when using different numbers of 
features (from 1 to 100 areas). Table 2 shows the accuracy, 
sensitivity, specificity, and AUC obtained for sMRI and fMRI 
when selecting the first 34 and 4 features, respectively. The 
reported results used random forest classifier with fourfold 
cross validation.

Global Diagnosis Results
After knowing the optimal number of features to be used from 
both sMRI and fMRI, these features are concatenated together 
to form a global feature vector. The output global feature vector 
contains 38 features. These 38 features are then fed to a random 
forest classifier to obtain global accuracy, sensitivity, specificity, 
and AUC. These results are 80.8%, 84.9%, 79.2%, and 81.92% for 
the accuracy, sensitivity, specificity, and AUC, respectively. In 
addition, a comparison between different classifiers in the global 
diagnosis is reported in Table 3.

DISCUSSION

The challenge of understanding the child’s individual neural 
circuitry is daunting. Multiple reports in general suggest 
hypoconnectivity (35) in most studies. However, neurophysiological 
and MRI evidence does suggest local hyperconnectivity in some 
brain regions (28). This report extends our previous fMRI findings 
(61–63) and suggests that particular MRI parameters related to 
the expanded neuropil in mini-columns including foldness index, 
SA, and volume are more relevant to defining ASD-related neural 
circuits (64). These parameters make it possible to link between two 
adjacent Brodmann areas (BAs) or brain regions, which directly 
increase the correlation to behavior. Again, the local diagnosis of 
our algorithm identified ASD-related brain regions that fit into 
RDoC neural circuits and are similar circuits found to be predictive 
of ASD diagnosis at 24 months.

Computer-Aided Diagnostic System  
for ASD
The current dataset suggests that it is possible to define a 
localized diagnosis, which is the key to defining each relevant 
ASD neurocircuit within an individual. The algorithm provides 
high accuracy, sensitivity, and specificity when sMRI or fMRI are 
analyzed separately. Our current algorithm also fuses the sMRI and 
fMRI datasets, which provides a greater estimate of 80% accuracy, 
85% sensitivity, and 79% specificity. The ability of the algorithm to 
estimate a whole-brain diagnosis was validated by a cross-validation 
technique using fourfolds. The principle of dataset fusion is to 
handle the individual variability of brain structure and function 
that is impacted by various genetic and environmental factors.

FIGURE 10 | A sample of the generated personalized maps for eight subjects: (A, B) are the personalized maps of two ASD subjects obtained from sMRI local 

classification, (C, D) are the personalized maps of two ASD subjects obtained from fMRI local classification, (E, F) are the personalized maps of two TD subjects 

obtained from sMRI local classification, and (G, H) are the personalized maps of two TD subjects obtained from fMRI local classification.
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Further, the principle of data fusion by Big Data techniques 
will delineate key circuits that correlate with behavioral output 
of those circuits. Our careful approach has studied the different 
MRI parameters that are inputs into the machine learning 
algorithm. While it may be possible that, as a whole, global 
diagnosis may be better via fMRI vs. sMRI, our study suggests 
that the addition of fMRI or sMRI parameters in regions 
specific for the ASD diagnosis/classification of regions linked 
in neural circuits gives an even higher significant Pearson 
correlation (0.37–0.45) at P  = 0.001 than previous Rs-MRI 
(0.25) (62) data with ADOS total score. Similarly to what was 
found to be predictive in high-risk infants who then developed 
ASD at 24 months, we found that MRI parameters related to the 
neuropil expansion (volume, SA, and folding index) and fMRI 
parameters (functional connectivity measure) were features 
that mediated the significant Pearson correlation between any 
two brain regions and ADOS total scores. These significant 
correlations between brain regions were most significantly 
frequent in the posterior brain regions. Such observations 
would be consistent with the overall increased functional 
connectivity observed in the posterior cortex (28). Whether 
the predominance of right hemispheric correlation over left 
hemispheric correlation is significant will await the input of 
further data. Thus, the current data suggest that the approach 
of a localized diagnosis with fusion of multi-model datasets 
will greatly improve accuracy, sensitivity, and specificity while 
linking two or more adjacent BAs or brain regions to directly 
increase the correlation to behavior.

LIMITATIONS OF THE APPROACH

While neuroimaging is an attractive and easily obtainable piece of 
clinical data, the experiments here are limited by different sources 
of data including harmonization of scans for head motion, 
different MRI scanners and sequences, plus fMRI data obtained 
under different conditions. Such variables could limit the utility of 
our data in building a personalized medicine model. Further the 
drawback of the current data and MRI methods includes defining 
the developmental trajectory, impact of age/gender, development 
of clinically applicable techniques for scanning across ages, and the 
unknown nature of the relationship between modern psychology 
diagnostics/behavioral testing and MRI/genetic data. The current 
findings may be only applicable to older ages (8–18 years old) and 
higher-functioning ASD subjects. However, the current data link 
multiple BA regions in RDoC neurocircuits implicated in ASD, 
thereby suggesting the scalability of this approach to larger, more 
heterogeneous ASD populations.

The lack of longitudinal fMRI data in the under 8-year 
population of typically developing children may limit the approach 
(65). The number, diversity of subject pool (age/gender), design 
of MRI protocols, and preprocessing/methods of analyses are still 
variables under study. Additionally, the methods for analyses and 
selections of datasets for our machine learning algorithms are still 
not standardized and must yield biologically relevant information. 
The generalization and feasibility of a system will be improved by 
increasing the number of subjects and the intra-variability between 
subjects, including age/sex, multiple scanner data, and other factors.

FIGURE 11 | The accuracy, sensitivity, specificity, and AUC obtained by changing the number of selected features for sMRI between 1 and 100 features. The 

maximum accuracy achieved is obtained when using 34 features.
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FUTURE DIRECTIONS: MULTI-
MODEL FUSION LINKS TO RDOC 
NEUROCIRCUITS

Our previous data using fMRI alone from the NDAR dataset 
identified frontopolar and temporal parietal junction functional 
networks as key regions correlated with ADOS scores and 
mapped to RDoC neurocircuits (62). The new extended list 

of ADOS-associated brain regions (pericalcarine cortex, 
lateral occipital cortex, supramarginal gyrus, transverse 
temporal, fusiform gyrus, superior parietal, precentral gyrus, 
parahippocampal gyrus, and frontal polar regions) includes the 
previous regions but greatly expands the RDoC neurocircuits 
identified through as localized diagnosis in ASD brains (65).

The greater mapping of behaviors over an anatomical and 
functionally linked circuit is more likely to map a cluster of 
ASD individuals whose behaviors and characteristics are more 
similar than different. Further, the division of behavioral clusters 
across specific neurocircuits may identify not only traditional 
autism susceptibility genes like those in the SFARI database but 
also ASD modifier genes that subtly impact the structure and 
function of circuits, thereby influencing behavioral output of the 
circuit. Such ASD modifier genes (in the genetic background of 
an individual) may mediate the gene–environment interactions 
responsible for 50% of ASD etiology. This group of genes may 
be quite large but have low effect size and therefore would not be 
picked up in traditional autism genetic studies (66). This group 
of genes may be represented among the transcriptome studies 
reported in ASD where altered transcripts may not necessarily 
correspond to a specific autism susceptibility gene but may 
define specific developmental trajectories (42). Such genes or 
traditional ASD susceptibility genes may also define specific MRI 
clusters. In a recent report (67), three groups of MRI phenotypic 
clusters were defined during an fMRI survey of mouse models 
of autism. Group 1 (SGSH, TREM1, FMR1, and CNT2) had 
hypoconnectivity involving the PFC, BG, retrosplenium of CC, 
and thalamus plus hyperconnectivity of the ventral striatum/

TABLE 3 | The accuracy, sensitivity, specificity, and AUC obtained for sMRI and 

fMRI when selecting the first 34 and 4 features, respectively.

Random 

Forest
SVM

Naïve 

Bayes

Neural 

network

Accuracy 0.808 0.71 0.75 0.68

Sensitivity 0.849 0.72 0.77 0.7

Specificity 0.792 0.67 0.71 0.64

AUC 0.819 0.73 0.73 0.67

TABLE 2 | The comparison between random forest, SVM, naive Bayes, and 

neural network results for the global fusion.

sMRI fMRI

Accuracy 0.79 0.74

Sensitivity 0.82 0.72

Specificity 0.77 0.75

AUC 0.824 0.72

FIGURE 12 | The accuracy, sensitivity, specificity, and AUC obtained by changing the number of selected features for fMRI between 1 and 100 features. The 

maximum accuracy achieved is obtained when using four features.
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nucleus accumbens. Group 2 (CDKL5, EN2, MECP2, and CHD8) 
had whole cortex/BG hypoconnectivity plus increased functional 
connectivity of the lateral septum. Group 3 (Syn2, BTBR, and 
16p11 deletion) had increased functional connectivity in PFC, 
insula, parietal cortex, amygdala, midbrain and hypoconnectivity 
in sensory cortex, ventral striatum, and thalamus. Further, some 
mutations (EN2, FMR1, MECP2, and SGSH) had highly correlated 
changes between hemispheres while other mutations had a low 
correlation between hemispheres (16p11 deletion and Syn2). The 
MRI evidence supports the hypothesis that multiple behavioral 
clusters may map onto distinct MRI phenotypes involving the 
frontal, temporal, and parietal cortices identified here as well as 
important subcortical structures (nucleus accumbens, striatum, 
and thalamus). While distinct ASD susceptibility genes may 
define global MRI phenotypes, our careful comparisons of fused 
datasets with genomics are likely to identify more subtle modifier 
ASD genes that finally influence the local sculpting and function 
of neural circuits during specific developmental periods, thereby 
producing more distinct behavioral clusters. In summary, the 
advancement of new technologies in psychology, radiology, and 
genetics has allowed never before interrogation of datasets that 
further delineate human biology. The use of Big Data technology 
is the only current realistic experimental methodology that could 
define the variability of neural circuits and linking genetics with 
behavior in such a polygenic disease such as ASD. This study 
demonstrates that fusion of MRI data and machine learning could 
refine diagnostic accuracy, especially at the local neurocircuit 
level. Such data could define clinically distinct endophenotypes 
from particular affected neural networks and therefore amenable 
to targeted pharmacological and/or behavioral interventions. 
The goal of this project is to ultimately develop personalized 
treatments for ASD. The next phase of this study will focus on 
the full integration of genomic, behavioral, and MRI datasets to 
further define the feasibility, robustness, and generalizability of 

our systems. In addition, more data will be included for subjects 
at younger ages and infants; also, some other phenotypes, like 
ADHD for example, will be included. In this way, the system will 
be more comprehensive with higher diagnosis ability for ASD.
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