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With the increasing frequency of autonomous driving, more and more attention is paid to personalized path planning. However,
the path selection preferences of users will change with internal or external factors. Terefore, this paper proposes a personalized
path recommendation strategy that can track and study user’s path preference. First, we collect the data of the system, establish the
relationship with the user preference factor, and get the user’s initial preference weight vector by dichotomizing the K-means
algorithm. Te system then determines whether user preferences change based on a set threshold, and when the user’s preference
changes, the current preference weight vector can be obtained by redefning the preference factor or calling diference perception.
Finally, the road network is quantized separately according to the user preference weight vector, and the optimal path is obtained
by using Tabu search algorithm. Te simulation results of two scenarios show that the proposed strategy can meet the re-
quirements of autopilot even when user preferences change.

1. Introduction

In recent years, with the rapid development of information
and intelligent transportation systems, artifcial intelligence
(AI) has been widely used in transportation tools to provide
a comfortable travel experience for drivers and passengers
[1–3]. Te vehicle Internet tends to share data, enabling
vehicles to exchange learning experiences and improve
decision-making capabilities. Te individual models are
trained on the basis of the data collected. By collecting these
learning models from all vehicles, a comprehensive model
can be further developed. Tis is of the great signifcance to
the application of intelligent transportation system (ITS) in
autonomous driving and trafc control.

At present, the existing path navigation and recommen-
dation software in China, such as the Baidu map application
and the Josiah Goddard map application, are all popular
recommendation software, mainly based on the shortest time
[4, 5] and the shortest distance [6–8], has been unable to meet
the growing demand for personalized tourism.

Path recommendation systems usually recommend
paths based on the optimization of distance or travel time
cost functions. However, the shortest or fastest route is
usually not chosen by the driver, so the driver may have
diferent recommendations when traveling.

Te personalized route recommendation strategy for
each driver’s route selection preference has attracted much
attention. Te personalized route recommendation strategy
not only meets people’s personalized needs but also solves
the Blythe’s paradox, which is widely existed in the current
transportation network.

1.1. Literature Review. At present, the driver can get the
current driving status of the vehicle through the OBD data.
In reference [9], the authors proposed a monitoring system
consisting of OBD and GPS, designated area, pricing
scheme, and the relationship between other related policies.
Te OBD device is used to monitor engine operation and
measure fuel consumption and emissions reliably. In
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reference [10], OBD is used to analyze the driving behavior
data through the vehicle preloading equipment and the
factors that afect the safe driving and establish the logistic
expression model. In reference [11], OBD is used to monitor
and prompt hydrocarbon (HC) emissions caused by a failure
of the vehicle emission control system. In this paper, the
OBD data are used to correlate with the driving user’s path
selection preferences. Ten, the user’s initial preference
weight vector is obtained by the bisecting K-means algo-
rithm clustering. In reference [12], Xiong et al. proposed a
model predictive control optimal path optimization and
tracking framework. First, the relationship between the
vehicle and the reference road is established in the road
coordinate system, and then, the safe lane under the high
constraint environment is established by using the multi-
layer search method; path boundary and vehicle dynamics
constraints are introduced to provide optimal control
instructions.

In reference [13], the unsupervised classifcation
method based on the bisecting k-means algorithm is ap-
plied to the data obtained in low-energy consumption
proofread measurement of the online gas analyzer and
microsensor. Te good agreement with data from sensors
validated the efectiveness of the proposed method. In [14],
Zhao and othersproposed a reviewed block-based bag of
words model using the bisection K-means clustering
method which could signifcantly accelerate the process of
codebook generation. In reference [15], a new algorithm
based on graph mining is proposed and the bisecting k-
means algorithm is used to fnd frequent terminology
collection for the document. Te Tabu search algorithm is a
typical shortest path algorithm, which is used to calculate
the shortest path from one node to other nodes and is
widely used in path planning. In reference [16], the Tabu
search algorithm is proposed to solve the problem of Web
service composition. It adds a periodic diversifcation step,
which is kept on the diversifcation step at the usual
completion point. Tis approach combines path relinking
with dynamic diversifcation strategies, providing more
opportunities for future research. In [17], the Tabu search
algorithm is used to improve the route planning strategy in
urban areas under trafc congestion, which not only saves
driving time but also reduces fuel consumption. In [18], the
Tabu search algorithm is used to identify the current to-
pology of the network and help identify the shortest path
from the point of failure to the nearest operation source.
Te model improves efciency consumption by 23% and
bandwidth lifetime by 16%. How to make navigation more
efective has been a research hotspot. In [19], Xie et al.
proposes a new method of combining global path planning
with local path planning, to provide an efcient solution for
the unmanned surface vehicle (USV) path planning despite
the changeable environment. Te method solves the path
planning problem with variable environments and is
verifed by simulations and experiments. In [20], Mei
proposes an optimal tour guide path planning model based
on an ant colony algorithm. Te experimental results show
that the proposed model and the optimal path planning
algorithm are more optimized. In [21], rough set theory

and a genetic algorithm is used in this study to solve the low
efcacy and accuracy in robot path planning. Experimental
results show that the proposed method can efciently
improve robot path planning. In [22], Chen et al. proposed
a deep reinforcement learning algorithm for path planning,
which has the comprehensive reward function of dynamic
obstacle avoidance and goal approaching. Te results show
that the method can avoid moving obstacles in the envi-
ronment, complete the planning task, and has a high
success rate.

Te personalized needs of users are not mentioned in
these articles. In [23], Long et al. developed a novel route
recommendation system to provide real-time personalized
route recommendation for self-driving tourists, according
to the specifc preferences of users personalized access
routes, not only to save the total tour time but also to meet
their specifc travel preferences. In [24], a dynamic route
guidance method for driver’s personalized needs is pro-
posed. Te user preference weight is given artifcially,
which has strong subjectivity and lacks objectivity and
accuracy, but it provides a reference for the combination of
personalized needs and path planning. In reference [25], a
personalized path decision algorithm based on user pref-
erence is proposed, which lays a good theoretical foun-
dation and framework for this study. But there are also
limitations. Te one-time sample trajectory data used in
this paper needs a lot of complex mathematical calculations
to obtain the data needed for clustering. Te corresponding
weight of user driving style obtained by fuzzy c-means
clustering is fxed and one-sided, while in real life, the user
driving preferences are not always the same and most of
them are staged, so it cannot refect the user’s personalized
driving preferences.

1.2. Contribution. As mentioned above, most traditional
path planning schemes improve the speed and precision of
path planning algorithmically, while ignoring the efect of
user preferences [26–30] on path selection. In scenarios that
combine user preferences and path planning, user prefer-
ences are unchanged by default. In real life, however, user
preferences are not always the same. At diferent times, user
preferences may change periodically due to various internal
or external factors, such as age, physical condition, climate,
and work. Te type of preference may also change over time.
At the same time, when the preference type is unchanged,
the corresponding preference weights may also change.

Terefore, this paper proposes a personalized path
planning strategy that can track and study user preferences.
First, the preference type is associated with the OBD data
and a threshold is used to select the user’s current preference
type.Ten, the initial preference weight vector is obtained by
the split-k-average algorithm. Finally, the diferential per-
ceptron is used to track and adjust the preference weights in
real time, so that the optimal path can be recommended to
meet the user’s needs when the user’s preferences change. In
this paper, Nanchang is taken as the reference city of road
network quantifcation, and the Tabu search algorithm is
used to verify the efectiveness of the strategy.
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In the light of the above, the contributions of the present
document are summarized as follows:

(1) To associate OBD with user preferences and get the
initial preference weight vector by clustering

(2) Considering the periodic change of preference, the
change of two kinds of preference is summarized

(3) Tracking the user preferences and fne-tuning the
weights through the diferential perceptron

(4) Personalized quantization of road network, using the
Tabu search algorithm to plan the optimal path

(5) Taking Nanchang as a reference city, the simulation
experiment is carried out to verify the efectiveness of
the proposed strategy

2. System Implementation Review

A personalized path recommendation system that can track
and study the user’s path selection preferences is proposed in
this paper, as shown in Figure 1. Te system mainly includes
data preprocessing module, initial preference module, op-
timization and adjustment module, and path generation
module. When the change of user preferences has been
detected, the system will make use of the latest OBD data in
the storage space to study independently ofine until a path
that can meet the user’s current path selection preferences
has been found.

A brief process of tracking and studying the path
recommendation system is shown in Figure 2. In which,
three preference factors of time, economy, and comfort
are taken as the user’s initial path selection preferences,
and the path points marked in black are path ofset points.
Te frst case is that the preference factors change, the
latest recorded OBD data are needed to redetermine them,
and the initial driving preference weight is obtained by
clustering. In the second case, the diference perceptron
needs to be used for learning and correction because the
preference factors remain unchanged and the corre-
sponding weight values between the preference factors
change. Te third case is that in some road sections, the
planned path is not consistent with the actual driving
path. Since, the trafc network is real-time and dynamic,
emergencies, such as trafc lights, pedestrians, and ac-
cidents, will afect the coincidence rate. Tus, in the actual
situation, the planning path and the driving path are not
exactly consistent. Terefore, within the allowable error
range, in this case, it is considered that the user preference
remains unchanged and it is considered as a sudden
situation.

3. Path Recommendation System

3.1. Data Preprocessing Module. Diferent self-driving users
have diferent path selection preferences, so we conducted a
questionnaire on the surrounding self-driving users and
obtained the survey data shown in Figure 3. From Figure 3,
we can see that four preference factors are afecting the route
selection of self-driving users, namely, time, economy,

comfort, and safety. Among them, the highest attention is
paid to safety. In this paper, we choose these four preference
factors as user preference sets.

To determine the type of user preference factors, OBD
data and user preference are used to establish a connection
in this paper [31]. Te main function of OBD is to supervise
the status of components related to emission control during
the actual use of vehicles. In this paper, OBD status in-
formation, geographic location information, and trip record
information are used to correlate user preference factors.
Te correlation process is as follows:

(1) In the driving process, the greater the average speed
of the user, the more the user attaches importance to
time. In this paper, v is selected to be the relevance
quantity (RQ) of a time-based user and v in any
period time can be read directly from the server
through the OBD terminal device.

(2) Te average fuel consumption (AFC) in the driving
process is the most important indicator for economic
users. Te lower the value, the higher importance
users attach to the economy. Terefore, AFC is
chosen as the associated quantity of economic users
in this paper. As there is no specifc calculation
method for AFC in the standard OBD II and EOBD
protocol, it is necessary to use OBD related data for
estimation.

(3) Te change rate of the relative position of the
accelerator pedal (CRap) is closely related to the
comfortable user. Te lower the (CRap) value, the
higher the user’s attention to the comfort. Users
who pay attention to comfort have good driving
stability. Tey step on and loose slowly, and give
oil smoothly. Terefore, CRap is chosen as the
correlation quantity of comfortable users in this
paper. Moreover, it can be obtained directly from
the server by modifying the interval time pa-
rameters of the standard OBD II and EOBD
protocol.

(4) In the process of driving, excessive driving speed will
bring a threat to the safety of users. Terefore, the
maximum traveling speed of this period is taken as
the correlation quantity of safe users in this paper.
However, it can be read directly from the OBD
terminal device.

Te calculation process of each associated quantity is
shown in Table 1.

Considering the laws and regulations related to safe
driving and the opinions of professionals in the automobile
industry, the threshold value of the average value of daily
correlation volume is set, as shown in Table 2.

Te maximum three items of δi are selected as the user’s
preference factors by the relevant degree δi of correlation
and threshold calculation. As k� 3, the clustering efect is
obvious, and to explain the change of preference factors
conveniently, three preference factors are selected as the
user’s path selection preference each time. Te relevant
degree calculation formula is defned as follows:
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3.2. Initial Habit Module. After the user preference factor is
determined, the initial preference weight vector is obtained
by clustering. Time, economy, and comfort are taken as

examples and the bisecting k-means algorithm is used in
clustering in this paper. To facilitate the clustering and efect
display of OBD data, the data should be normalized before
clustering. Te partial results of some user OBD sampling
data processed are shown in Table 3.

v, AFC, and CRap are used to establish the three-di-
mensional coordinate system, and then, the normalized data
are divided into the bisecting K-means clustering, and the
initial preference weight vector of users is obtained
according to the clustering results. In order to make the
clustering efect signifcant, here, select Δt � 1min to be
clustered, and the results are shown in Figure 4.
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As can be seen from the fgure, the value of red
marked points v-axis is generally higher than the other
two categories. Due to the highest attention to time, the
value v of time users is generally large. Terefore, the red
marker class is a time-based feature point and Te values
of the AFC-axis of the points marked in green are gen-
erally smaller than those of the other two categories.
Economic users pay the highest attention to fuel con-
sumption, and the value of AFC is generally very small.
Terefore, the green marker is the economic character-
istic point. Te value of CRap-axis of blue marked points
is generally smaller than the other two categories.
Comfortable users pay the most attention to driving
stability and the value of CRap is generally very small.
Terefore, the blue marker is the comfort feature point.
After the bisecting K-means clustering converges, the
number of coordinate points belonging to three clus-
tering centers is normalized to get the initial user pref-
erence weight vector w � (w1, w2, w3). Te normalization
formula is as follows:

wj �
nj

n1 + n2 + n3
(j � 1, 2, 3). (2)

Among them, n1, n2, and n3 are the numbers of coor-
dinate points belonging to the three clustering centers
individually.

3.3. Path Generation Module. Tis part is mainly divided
into two parts. Te frst part describes how to individualize
and quantify the road network to establish a model for
solving the optimal path. Te second part shows how to
calculate the optimal path by simulation.

3.3.1. Road Network Quantifcation. To simplify the road
model and calculation, referring to the regulations of
highway technical engineering standard, urban road design
code, urban road network planning index system, Nanchang
urban trafc planning, and combining with the actual
characteristics of the road network, Baidu map and the
results of feld investigation and verifcation, the roads in
Nanchang are divided into the following fve categories. To
sum up, the road conditions in Nanchang are actual. Te
actual situation of each road is shown in Table 4.

In order to unify the quantitative standard and simplify
the calculation of the optimal path with a genetic algorithm,
the data in Table 3 are normalized and correlated. Te
process is as follows:
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(3)

Te data processed by formula (3) are shown in Table 5.
Based on the comprehensive consideration of diferent

driving preferences and simplifed calculation, the unit cost
function is designed as follows:

Table 1: Te OBD data processing algorithm.

Algorithm 1: OBD data processing
Input: OBD data, VE � 0.91, MM � 28.27, R � 8.314, PPG � 6.17,
GPP � 4.536, RA � 14.7
Output: v, AFC, CRap, Vmax
1: Begin
2: While car running
3: Read and storage the values of v, CRap and Vmax every
6 seconds from OBD data
4: Read the values of, L, RPM, MAP, and IAT every
6 seconds from OBD data
5: Calculate AFC
6: MAF � (RPM × MAP/IAT/120) × (VE/100) × ED × MM/R
7: AFC � (RA × PG × GPP × v/3600 × MAF) × (1 + L)

8: Storage AFC

9: End while
10: End

24%

21%

4%

36%

15%

Time
Economy
Comfort

Other
Safety

Figure 3: Results of habit factor sampling for surrounding car users.
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Uk � fk c1, c2, · · · , cm( 􏼁 � 􏽘
m

i�1
ωici. (4)

In this paper, each user has three main driving prefer-
ences, that is, the other three preference weights are set to
zero, making m � 3, so the cost of personalized quantif-
cation of the K segment road is as follows:

UTk � Lk × fk c1, c2, c3( 􏼁 � Lk × 􏽘
3

i�1
ωici. (5)

3.3.2. Tabu Search Algorithm. After the recommendation
system personalizes and quantifes the road network
according to the user preference weight vector [32], the
model becomes a classic problem of fnding the optimal
solution. In this paper, the Tabu search algorithm is used to
calculate the optimal path according to the user’s preference.
Here, the model diagram shown in Figure 5 is selected to
illustrate how the algorithm calculates the optimal path. In
Figure 5, the cost consumption values of each point between
1 and 20 are calculated, respectively, by formula (5). After
personalized quantifcation of the road network, fnding the

optimal path becomes a single source shortest path problem
shown in Figure 5.

Te process of using the Tabu search algorithm to get the
optimal path of the model shown in Figure 5 is shown in
Table 6. As can be seen from Table 6, the fnal optimal path is
1⟶ 4⟶ 7⟶ 10⟶ 13⟶ 15⟶ 16⟶ 20, and
the total cost consumption is 88.

3.4. Optimization and Adjustment Module. In order not to
afect the user’s self-driving experience, it is stipulated that
the system will conduct tracking and studying at night
every day, and the preference tracking process is shown in
Table 7. Due to the existence of emergencies, the consis-
tency between the planned path and the actual driving path
will not always be 100%. In the system, a threshold pa-
rameter is set for the coincidence degree. Before training
every day, the system will flter the OBD data of the day and
eliminate the data whose coincidence degree is higher than
the threshold value. Ten, the system recalculates the
correlation degree δi of four correlation quantities
according to the remaining OBD data of the day in the
storage space and sorts them from small to large. If the
correlation quantity corresponding to the minimum value

Table 2: Correlation threshold.

Relevant quantity v (km/h) AFC (L/100 km) CRap (%) Vmax (km/h)

Treshold 40 8 10 60

Table 3: Partial OBD data after normalization.

Time v AFC CRap Vmax

08:08:34:25 0.1250 0.0090 0.0588 0.3600
08:08:40:25 0.0500 0.0068 0.5294 0.2010
08:08:46:25 0.2500 0.1109 0.4706 0.5212
08:08:52:25 0.3500 0.1267 0.8824 0.5842
08:08:58:25 0.3562 0.1154 0.5882 0.6124
08:08:64:25 0.6250 0.7467 0.6471 0.7653
08:09:00:25 0.8875 0.9887 0.4706 0.9102
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Figure 4: Bisecting K-means clustering results (above is before clustering and below is after clustering).
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Table 6: Tabu search algorithm solution process.

Routes Total consumptions
1⟶ 1 0
1⟶ 2 8
1⟶ 3 12
1⟶ 4 10
1⟶ 3⟶ 5 17
1⟶ 4⟶ 6 14
1⟶ 4⟶ 7 17
1⟶ 3⟶ 5⟶ 8 24
1⟶ 4⟶ 6⟶ 9 23
1⟶ 4⟶ 7⟶ 10 35
1⟶ 4⟶ 6⟶ 9⟶ 11 38
1⟶ 3⟶ 5⟶ 8⟶ 12 49
1⟶ 4⟶ 7⟶ 10⟶ 13 49
1⟶ 4⟶ 7⟶ 10⟶ 14 55
1⟶ 4⟶ 7⟶ 10⟶ 13⟶ 15 55
1⟶ 4⟶ 7⟶ 10⟶ 13⟶ 15⟶ 16 63
1⟶ 4⟶ 7⟶ 10⟶ 13⟶ 17 60
1⟶ 4⟶ 7⟶ 10⟶ 13⟶ 17⟶ 18 68
1⟶ 4⟶ 7⟶ 10⟶ 14⟶ 19 85
1⟶ 4⟶ 7⟶ 10⟶ 13⟶ 15⟶ 16⟶ 20 88
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Figure 5: Road network model after personalized quantifcation.

Table 4: Performance of road networks at all levels.

Time RND (km/km2) RS (v/c) RE (a.u.) MS (km/h) EC (RMB/km)
Expressway 0.42 0.42 0.40 100 0.74
Main road 1.31 0.68 0.35 60 0.51
Sub road 1.60 0.84 0.30 50 0.58
Landscape road 0.38 0.62 0.65 50 0.54
Business zone 1.75 1.15 0.22 40 0.62

Table 5: Road network costs at normalized levels.

Road classifcations
Cost

Cos tT Cos tE Cos tC Cos tS

E 0.31 0.74 0.31 0.32
M 0.40 0.51 0.36 0.49
S 0.47 0.58 0.42 0.58
L 0.36 0.54 0.19 0.58
B 0.62 0.62 0.57 0.74
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of δi changes, the system determines that the preference
factor changes, and clusters the latest data of the other three
correlation quantities to get the initial weight vector again.
On the contrary, the system judges that the preference
factor has not changed, and calls the diferential perceptron
to fne-tune the weight vector. Because of the relatively
small number of data samples on the same day, direct
clustering by ignoring the previous data will enlarge the
efect of change. Data clustering together will cover up
smaller weight changes. Terefore, in this paper, we choose
to call the diferential perceptron to fne-tune to improve
the accuracy.

Te setting of the diferential perceptron function is
shown in Table 8. Taking OBD data and current weight
vector as input, the maximum number of iterations is set as
2,000. Te total length of fve types of roads is calculated for
the actual path and the planned path, respectively, and the
total cost corresponding to the three preference factors is
calculated for the two cases. Ten, the change of the weight
of each preference factor is calculated. Among which, η is the
learning efciency, take 0.003 to obtain the weight vector
closest to the current user path selection preference through
repeated iterative learning.

4. Experiment

Two types of preference change are proposed in this paper:
one is the change of user preference factor and the other is
the change of the weight of the same preference factor. To
verify the efectiveness of the strategy proposed in this paper,
Nanchang city is taken as a reference City, and simulation
experiments are carried out in two scenarios, respectively. In
scenario 1, the user preference factor changes. Assuming
that the initial preference factor of user A is economy,
comfort, and safety, then due to work reasons, time is more
important than the economy, so the preference factor
becomeseconomy, comfort, and safety. In scenario 2, the
weight of the same user preference factor changes. Suppose
that the initial preference factor of user B is time, economy,
and comfort. Ten, due to the fnancial crisis of the family,
user B pays more attention to the economy and less attention
to comfort. In these cases, 90% of the threshold value is used
to determine whether it is an emergency or not.

4.1. Experiment 1. Te preference factor of self-driving user
A is economy, comfort, and safety, and the corresponding
initial weight vector is obtained by the clustering algorithm,
which is w � (0.48, 0.14, 0.38). After the preference factor of
user A changes, the planned path and the actual driving path
are shown in the red path and green path in Figure 6, re-
spectively. It can be seen from the fgure that due to the
change of preference factors, the coincidence of the planning
path and the actual path are very low, only 0.785%, indi-
cating that the current planning strategy can no longer meet
the personalized traveling needs of users.

After the personalized quantifcation of the road network
w � (0.48, 0.14, 0.38), the specifc generation values of
economic consumption (TC), comfort consumption (EC),
and safety consumption (CC) in two cases are shown in
Table 9, respectively.

Te total cost Ctotal of the actual path and the planned
path can be obtained through classifcation and integration
of the data of the road type in Table 9 and is shown in
Table 10. As can be seen from Table 10, due to the change of
preference type, the path types in the two cases are diferent,
and the total cost is also very diferent, which is 12.737.

When the system is tracking and studying at night, the
correlation δi of four preference factors is calculated by
formula (1). Among them, the correlation quantity of

Table 7: Te habit tracking processing algorithm.

Algorithm 2: Habit tracking processing
Input: Te latest OBD data, current habit weight vector w

Output: new habit weight vector w′ � (ω1′,ω2′,ω3′)
1: Begin
2: Calculate δi with the latest OBD data, i ∈ T, E, C, S

3: If RQ of δi min unchanged
4: w′ � Improved diferential perceptron (the last OBD
data, w)
5: Else
6: Obtain w′ by reclustering the OBD data of the other
three RQ
(7) End if
(8) End

Table 8: Te improved diferential perceptron algorithm.

Algorithm 3: Improved diferential perceptron
Input: OBD data, habit weight vector
Output: Improved new habit weight vector w′ � w1w2w3
11: While n !� 2000 or ‖w′ − w‖> ε
12: For each road classifcation do

13: Calculate the total length of the section in AP and PP
respectively

14:

L
AP
Ti � 􏽘

j�1
L

AP
Ti

L
PP
Ti � 􏽘

j�1
L

AP
j

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

i ∈ T, E, C, S

15: End for
16: For each habit factor do

17: Calculate the total cost in AP and PP respectively

18:
UAPi � L

AP
Ti 􏽘

i�1
ωici

UPPi � L
PP
Ti 􏽘

i�1
ωici

⎧⎪⎪⎨

⎪⎪⎩
i ∈ T, E, C, S

19: Calculate weight change volume respectively
20: ∆ω � η(􏽐 UAPi − 􏽐 UPPi)i ∈ T, E, C, S

21: Calculate and normalize the new driving style weight
22: ωi

j � ωj + Δω j � 1, 2, 3
23: End for
24: n� n+ 1
25: Re-quantify road network with w′
26: Replan the optimal path with the Tabu search algorithms
27: End while
28: Return w′ � w1w2w3
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minimum δi changes from the previous time to economy.
Terefore, the system determines that the user A’s prefer-
ence factor changes, and the current preference factor
changes to time, comfort, and safety. Te current weight
vector is obtained by the bisecting K-means clustering. Fi-
nally, the planning path calculated by the Tabu search al-
gorithm using personalized quantitative road network is
shown in the red path in Figure 7.

As can be seen from Figure 7, after tracking and
studying, the consistency between the planned path and the
actual path is greatly improved, from 0.785% to 98%. Among
them, the specifc cost data in the two cases after adjustment
are shown in Table 11.

Te total cost Ctotal of the actual path and the planned
path can be obtained through classifcation and integration
of the data of the road type in Table 11 and is shown in

School

Train station

Expressway

Main road

Park

River

Landscape road

Sub road

Business zone

Figure 6:Te initial planning path and the actual driving path before the adjustment in Experiment 1 (the left one is the model diagram and
the right one is the actual map).

Table 9: Adjustment of the frst two paths in Experiment 1.

Paths Road names Types ERL (km) EC CC SC

Initially planned route

Wugong Mountain Avenue M 3.4 0.832 0.171 0.633
Xiangyun Avenue M 7.6 1.861 0.383 1.415
Changnan Avenue M 13.4 3.280 0.675 2.495
Changdong Avenue M 9.4 2.301 0.474 1.750
Ziyang Avenue M 6.5 1.591 0.328 1.210

Ziyang East Avenue M 2.6 0.637 0.131 0.484
Aviation City Avenue S 0.51 0.142 0.030 0.112

Actual path

Wugong Mountain Avenue M 3.3 0.808 0.166 0.615
Circumferential Expressway E 60.4 21.454 2.621 7.345

Ziyang East Avenue M 0.79 0.193 0.040 0.147
Aviation City Avenue S 0.51 0.142 0.030 0.112

Table 10: Te total cost of the frst two paths before adjusting in Experiment 1.

Paths Types L (km) UTk Ctotal

Initially planned route M 42.90 20.652 20.936S 0.51 0.284

Actual path
M 4.09 1.969

33.673E 60.4 31.420
S 0.51 0.284
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Table 12 As can be seen from Table 12, the path types in the
two cases are the same, and the total cost diference is only
0.081, which indicates that the system can still meet the
user’s path planning needs through tracking and adjusting
after the user’s preference factor changes.

4.2. Experiment 2. Te preference factor of self-driving user B
is time, economy, and comfort, and the corresponding initial
weight vector is w � (0.14, 0.44, 0.42). After user B’s prefer-
ence weight changes, the planned path and the actual driving
path are shown in red and green paths in Figure 8, respectively.

Due to the change of preference weight, the consistency
between the planned path and the actual path is not high,
which is 76.64%. It shows that the current planning strategy
does not fully meet the user’s personalized travel needs. To
improve the degree of coincidence, we need to further
improve the accuracy of the weight vector.

After the personalized quantifcation of the road network
w � (0.14, 0.44, 0.42), the specifc generation values of time
consumption (TC), economic consumption (TC), and
comfort consumption (EC) in two cases are shown in Ta-
ble 13, respectively.

Te total cost Ctotal of the actual path and the planned
path can be obtained through classifcation and integration of
the data of the road type in Table 13 and is shown in Table 14.

It can be seen from the table that, due to the change of
preference weight, the path types in the two cases are the
same, but the length is diferent, and the total cost diference
is 2.149.

Similarly, when the system is tracking and studying at
night, the correlation δi of four preference factors is
recalculated by formula (1). Among them, the correlation
quantity of the corresponding minimum δi value does not
change, which is safety. Terefore, the system will determine
that the user B preference type has not changed but the
weight changes, and call the diferential perceptron to fne-
tune, and fnally, get the current weight vector
w′ � (0.15, 0.51, 0.34). Finally, the planning path calculated
by the Tabu search algorithm using personalized quantita-
tive road network w′ is shown in the red path in Figure 9.

As can be seen from Figure 9, after tracking and
studying, the consistency between the planned path and the
actual path has improved, from 76.64% to 84.58%. Among
them, the specifc cost data in the two cases after adjustment
are shown in Table 15.

School

Train station

Expressway

Main road

Park

River

Landscape road

Sub road

Business zone

Figure 7:Te adjusted initial planning path and actual driving path in Experiment 1 (the left diagram is themodel diagram and the right one
is the actual map).

Table 11: Data of two paths after being adjusted in Experiment 1.

Paths Road names Type ERL (km) TC CC SC

Initially planned route
Wugong Mountain Avenue M 3.3 0.937 0.166 0.243
Circumferential Expressway E 60.7 13.360 2.634 2.914

Liu Cheng Street S 0.82 0.274 0.048 0.071

Actual path

Wugong Mountain Avenue M 3.3 0.937 0.166 0.243
Circumferential Expressway E 60.4 13.294 2.621 2.899

Ziyang East Avenue M 0.79 0.224 0.040 0.058
Aviation City Avenue S 0.51 0.170 0.030 0.044
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Figure 8: Te initial planning path and the actual driving path before adjustment (the left one is the model diagram and the right one is the
actual map).

Table 12: Total cost of two paths after adjustment in Experiment 1.

Paths Types L (km) UTk Ctotal

Initially planned route
M 3.3 1.346

20.647E 60.7 18.908
S 0.82 0.393

Actual path
M 4.09 1.668

20.728E 60.4 18.815
S 0.51 0.245

Table 13: Te data of the frst two paths before the adjustment in Experiment 2.

Paths Road names Types ERL (km) TC EC CC

Initially planned route

Wugong Mountain Avenue M 3.4 0.190 0.763 0.514
Xiangyun Avenue M 8.1 0.454 1.818 1.225
Riverside Avenue S 5.6 0.368 1.429 0.988
Hongcheng Road M 3.7 0.207 0.830 0.559

Jinggangshan Avenue M 0.9 0.050 0.202 0.136
Eight One Avenue M 1.5 0.084 0.337 0.227
Beijing West Road L 2.3 0.116 0.546 0.184
Beijing East Road L 5.8 0.292 1.378 0.463
Ziyang Avenue M 6.5 0.364 1.459 0.983

Ziyang East Avenue M 1.5 0.084 0.337 0.227
Aviation City Avenue S 0.51 0.034 0.130 0.023

Actual path

Wugong Mountain Avenue M 3.4 0.190 0.763 0.514
Xiangyun Avenue M 8.1 0.454 1.818 1.225
Changnan Avenue M 8.7 0.487 1.952 1.315
Nanlian Road M 2.4 0.134 0.539 0.363

Jinggangshan Avenue M 4.8 0.269 1.077 0.726
Eight One Avenue M 1.5 0.084 0.337 0.227
Beijing West Road L 2.3 0.116 0.546 0.184
Beijing East Road L 5.8 0.292 1.378 0.463
Ziyang Avenue M 6.5 0.364 1.459 0.983

Ziyang East Avenue M 1.5 0.084 0.337 0.227
Aviation City Avenue S 0.51 0.034 0.130 0.023
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Table 14: Te total cost of the frst two paths before the adjustment in Experiment 2.

Paths Types L (km) UTk Ctotal

Initially planned route
M 25.6 11.328

17.418L 8.1 2.979
S 6.11 3.111

Actual path
M 36.9 16.328

19.567L 8.1 2.979
S 0.51 0.260
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Expressway

Main road

Park

River

Landscape road

Sub road

Business zone

Figure 9: Te initial planning path and the actual driving path before adjustment (the left one is the model diagram and the right one is the
actual map).

Table 15: Adjusted data of two paths in Experiment 2.

Paths Road names Types ERL (km) TC EC CC

Initially planned route

Wugong Mountain Avenue M 3.4 0.204 0.884 0.416
Xiangyun Avenue M 8.1 0.486 2.107 0.991
Changnan Avenue M 6.4 0.384 1.665 0.783

Yingbin North Avenue M 3.9 0.234 1.014 0.477
Fuhen Road M 1.6 0.096 0.416 0.196

Hongcheng Road M 1.1 0.066 0.286 0.135
Jinggangshan Avenue M 0.9 0.054 0.234 0.110
Eight One Avenue M 1.5 0.090 0.390 0.184
Beijing West Road L 2.3 0.124 0.633 0.149
Beijing East Road L 5.8 0.313 1.597 0.375
Ziyang Avenue M 6.5 0.390 1.691 0.796

Ziyang East Avenue M 0.79 0.047 0.205 0.097
Aviation City Avenue S 0.51 0.036 0.151 0.073

Actual path

Wugong Mountain Avenue M 3.4 0.020 0.884 0.416
Xiangyun Avenue M 8.1 0.049 2.107 0.991
Changnan Avenue M 8.7 0.052 2.263 1.065
Nanlian Road M 2.4 0.014 0.624 0.294

Jinggangshan Avenue M 4.8 0.029 1.248 0.588
Eight One Avenue M 1.5 0.009 0.390 0.184
Beijing West Road L 2.3 0.124 0.633 0.149
Beijing East Road L 5.8 0.313 1.597 0.375
Ziyang Avenue M 6.5 0.039 1.691 0.796

Ziyang East Avenue M 1.5 0.084 0.337 0.227
Aviation City Avenue S 0.51 0.036 0.151 0.073
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Te total cost Ctotal of the actual path and the planned
path can be obtained through classifcation and integration
of the data of the road type in Table 15 and is shown in
Table 16. As can be seen from Table 16, the path types in the
two cases are the same, and the total cost diference is 1.199.
Compared with studying before adjustment, the diference
in total cost decreases and the coincidence increases. It
shows that the system can also meet the user’s path planning
needs by tracking and adjusting when the user’s preference
weight changes.

5. Conclusion and Outlook

A personalized path recommendation strategy that can track
and study the user’s path selection preferences is proposed in
this paper. In the case that the self-driving users do not know
their preferences and their preferences will change peri-
odically, the system frst determines the main driving
preference factors of users through the collected OBD data
and obtains the initial preference weight vector through the
bisecting K-means clustering. When the preference changes,
the system judges according to the relevant parameters and
adjusts the preference weight vector according to the situ-
ation. Ten, the road network model is quantifed according
to the weight vector. Finally, the Tabu search algorithm is
used to calculate the optimal path. In the two scenarios,
through the comparison between the planned path and the
actual path and the path before and after tracking and
studying, the efectiveness of the strategy proposed in this
paper is verifed. Te results show the consistency between
the planned path and the actual path has improved from
76.64% to 84.58% after tracking and studying the user’s
personalized driving behavior. Te adjusted total cost of
initially planned route is 18.580, while actual path 19.779.
Te path types of the two cases are the same, and the total
cost diference is only 0.081. It is proved that the strategy can
also meet the personalized traveling needs of users when
their preferences change.

To make the Tabu search algorithm not easily fall into
local optimum when calculating the optimal path, the road
network model in this paper is relatively simple. However,
when the actual road network is larger and the route is more
complex, the algorithm is easy to fall into local optimum. At
the same time, only static factors rather than the real-time
trafc situations in the road network are considered in this
paper. In the future work, we should improve the accuracy of
planning path algorithm or change the way of road network
modeling, and add some dynamic factors to make the
strategy proposed in this paper more universal.
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