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Abstract

Synaptic neurotransmission is generally considered as a function of membrane-embedded receptors and ion channels in response
to the neurotransmitter (NT) release and binding. This perspective aims to widen the protein-centric view by including another
vital component—the synaptic membrane—in the discussion. A vast set of atomistic molecular dynamics simulations and
biophysical experiments indicate that NTs are divided into membrane-binding and membrane-nonbinding categories. The binary
choice takes place at the water-membrane interface and follows closely the positioning of the receptors’ binding sites in relation to
the membrane. Accordingly, when a lipophilic NT is on route to a membrane-buried binding site, it adheres on the membrane
and, then, travels along its plane towards the receptor. In contrast, lipophobic NTs, which are destined to bind into receptors with
extracellular binding sites, prefer the water phase. This membrane-based sorting splits the neurotransmission into membrane-
independent and membrane-dependent mechanisms and should make the NT binding into the receptors more efficient than
random diffusion would allow. The potential implications and notable exceptions to the mechanisms are discussed here.
Importantly, maintaining specific membrane lipid compositions (MLCs) at the synapses, especially regarding anionic lipids,
affect the level of NT-membrane association. These effects provide a plausible link between the MLC imbalances and neuro-
logical diseases such as depression or Parkinson’s disease. Moreover, the membrane plays a vital role in other phases of the NT
life cycle, including storage and release from the synaptic vesicles, transport from the synaptic cleft, as well as their synthesis and
degradation.

Keywords Synaptic neurotransmission . Neurotransmitter . Synaptic receptor . Membrane-based sorting . Molecular dynamics
(MD) .Membrane lipid composition (MLC)

Synaptic Membrane Plays a Role
in Neurotransmission?

From the traditional viewpoint, the synaptic membrane and its
lipids are acknowledged to play a crucial and yet somewhat
passive role in the synaptic neurotransmission.

The two adjacent neurons in the synapse can communicate
with each other via chemical messengers or neurotransmitters
(NTs) that burst out of the presynaptic membrane upon the
arrival of the action potential, diffuse across the synaptic cleft

and eventually bind into the receptors embedded at the post-
synaptic membrane [1, 2]. Accordingly, the opposing mem-
branes not only form barriers between the nerve cells but also
house very specific membrane-embedded protein machineries
such as receptors, voltage-gated ion channels, transporters,
and intracellular proteins (so-called postsynaptic density) that
modulate and relay the message across the cleft [3]. It is esti-
mated that about 6600 unique proteins are present in the syn-
apse [4], ensuring tight regulation of the signal transduction
[5–7].

As a result, the role of lipids in the synaptic neurotransmis-
sion is predominately discussed in the context of their inter-
actions and cooperation with these membrane proteins. Four
prominent examples of active cooperation between lipids and
proteins in the synapses are given below to demonstrate the
wealth of data on the subject.

Firstly, lipids are known to be involved in the regulation of
synapse development and plasticity. Tropomyosin receptor
kinase B (TrkB) [8], which is a crucial protein in the synapse
development, is regulated by cholesterol (CHOL) levels, i.e.,
losing its activity in membranes with low or high CHOL
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concentration [9]. Since CHOL levels increase in neurons
during development reaching five times higher concentration
in the adult brain compared with the early developmental
stage [10], the highest level of TrkB activity is limited to a
narrow time window of the brain development [11].

Secondly, lipids are heavily involved in presynaptic vesicle
release [12–14]—at least 36 protein species are under lipid reg-
ulation in this process [12]. Phosphatidylinositols (PIPs), includ-
ing PI(4,5)P2, PI(3,4,5)P3, PI4P, and other charged lipid species,
are responsible for the recruitment of numerous proteins at the
presynaptic membrane [12, 13, 15, 16]. The paramount changes
in the bilayer curvature during the vesicle fusion/fission are
achieved via CHOL translocations between the leaflets or
changes in the size ratio of the headgroups to hydrocarbon
chains (thus lipid shape) [13, 17]. Various phospholipases ac-
tively modulate lipid shape by synthetizing phosphatidic acid
(PA) and di-acyl-glycerol (DAG), because lipid species with
small headgroups promote negative membrane curvature.
Phospholipases also produce lysophosphatidylcholine that has
only a single hydrocarbon tail thats promotes positivemembrane
curvature. The curved regions of the lipid bilayer are specifically
recognized by sensory proteins that contain the banana-shaped
BAR (Bin Amphiphysin Rvs) domains [18].

Thirdly, neurotransmitter receptors are also regulated by
lipids, mostly by direct interactions [19–23], e.g., cholesterol
has been shown to function as a direct allosteric regulator of G
protein-coupled receptors (GPCRs) [24, 25]. Polyunsaturated
fatty acids (PUFAs) are essential in brain functions [26], in-
cluding the regulation of GPCR oligomerization [27].

Fourthly, lipids function as protein structural elements, and,
for this reason, they are frequently found in the X-ray crystal
structures of membrane proteins (see Enkavi et al. 2019 [28]).
For example, CHOL is clearly visible in the 3D structures of
serotonin [29], cannabinoid [30], μ-opioid [31], κ-opioid [32],
muscarinic acetylcholine [33], and adenosine [34] receptors, as
well as serotonin [35] and dopamine [36] transporters. These co-
crystallized or conserved lipids are likely only the tip of the
iceberg because the harsh conditions of the protein preparation
during crystal preparation get rid of most lipids. Finally,
lipidation or the process of covalently attaching lipid groups into
membrane proteins, namely palmitoylation, and prenylation, af-
fects numerous functions in the synapses [37, 38].

A growing number of studies indicate that direct and spe-
cific NT-lipid interactions could affect the signaling process in
addition to the well-documented lipid-protein interactions
discussed above. However, due to the sheer amount of evi-
dence that backs up the protein-centric view, too little attention
has traditionally been given to the fact that lipids and mem-
brane surfaces also affect NT diffusion or dynamics.
Therefore, this perspective aims to widen the protein-centric
view of synaptic neurotransmission to include also direct NT-
lipid interactions. By examining the published studies on the
topic and connecting the dots, it becomes evident that NTs are

affected by the membrane environment at every stage of their
lifecycles.

Evidence of Direct Neurotransmitter-Lipid
Interactions

It is well established that hydrophobic (Bwater-hating^) small
molecules can bind on the cell membrane and, then, diffuse
along its plane towards their membrane-embedded receptors
(Fig. 1a) [39–41]. Accordingly, it comes to reason that the
membrane has another integral and direct function in the syn-
aptic neurotransmission that should not be overlooked; i.e.,
the NTs are either attracted (lipophilic) to or repelled
(lipophobic) by the outer leaflet surface of the postsynaptic
cell membrane [42]. However, water-soluble molecules with
an amphipathic structure are also known to partition into a
lipid bilayer, thus being lipophilic. Amphipathic molecules
typically locate to the membrane-water interface (e.g.,
[43–47]) while hydrophobic molecules locate deeper into the
hydrocarbon core of the membrane.

The membrane affinity or lipophilicity of small molecules
such as drugs is reflected in their high octanol/water partition
coefficients or log P values. Non-peptidic or conventional
NTs are no exception to this fundamental rule, and their typ-
ical log P values (Fig. 2) follow the suggested membrane-
water phase sorting paradigm (Fig. 1b) [42]. It is, however,
an understatement to say that octanol, which is used in the log
P assay, is too simple a model system for estimating the nu-
ances of NT-membrane adherence that takes place with a com-
plex cell membrane housing diverse sets of lipid species (Fig.
1) [48]. This is underscored by the fact that there exist ~
21,000 lipid species (The Lipid Maps Structure Database,
http://lipidmaps.org/data/structure/), which can be arranged
into a myriad of combinations. Thus, not surprisingly, the
partitioning of drugs into biological membranes is much
higher than predicted by log P values [49].

Endocannabinoids such as anandamide, which are derived
directly from fatty acids and act as retrograde transmitters
[50], deep membrane penetration, and lipid-like dynamics,
are to be expected, but the level of membrane permeation or
adherence is less evident for the conventional NTs. In fact,
several computational and experimental studies have provided
solid evidence on the effects of specific NT-lipid interactions
and, moreover, highlighted the potential importance of mem-
brane lipid composition (MLC) imbalances for neurological
diseases [42, 48, 51–67].

In this respect, the lipophilic dopamine (Fig. 2) is possibly
the most studied small molecule NT. Dopamine was con-
firmed to partition preferentially onto the membrane based
on both atomistic molecular dynamics (MD) simulations
(Fig. 3a,b) and experimental monolayer studies (Fig. 3c)
[60]. The subsequent simulations with an alternative
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molecular mechanics force field methodology (OPLS vs.
CHARMM) provided similar observations [42, 53]. These
theoretical studies indicating strong dopamine-membrane as-
sociation were further validated by calorimetric [62], nuclear
magnetic resonance spectroscopy [63], and fluorescence mi-
croscopy [64] experiments.

Similarly, melatonin has been shown to partition onto lipid
bilayers via MD simulations, neutron scattering and diffrac-
tion, infra-red spectroscopy, fluorescence spectroscopy, calo-
rimetry, and Langmuir-Blodgett monolayer study [51–53,
65–67]. Serotonin was shown to interact with lipids in both
theoretical and experimental studies [54, 68]. Adenosine, epi-
nephrine (or adrenaline), and norepinephrine were shown to
interact with lipids using MD simulations [42]. Trace amine:
tyramine, octopamine, and tryptamine, having similar chemi-
cal structures to the above-discussed NTs, were also shown to
have an affinity towards different membranes [55]. Finally,
short peptidic NTs methionine-enkephalin and leucine-
enkephalin were shown to adhere to the membrane surface
[61].

Following their low log P values (Fig. 2), polar or charged
NTs such as γ-aminobutyrate (GABA), glycine, acetylcholine
(Fig. 3), and glutamate are not observed to aggregate prefer-
entially at the water-membrane interface in the MD simula-
tions [42]. Despite this, sensitive experimental techniques
show that even these lipophobic NTs form both attractive

and repulsive interactions with the lipids [56]. Importantly,
the membrane partitioning of NTs is modified by the presence
of charged lipids or divalent cations [56].

In particular, GABA and glutamate were shown to interact
with the lipid bilayers in the presence of Ca2+, while acetyl-
choline in these conditions was repulsed [59]. Next, acetyl-
choline was shown to be attracted towards bilayers containing
negatively charged lipids [42, 56, 59] and repulsed by a bilay-
er composed of zwitterionic lipids [56]. Similarly, zwitterionic
NTs GABA and glycine were attracted towards bilayers con-
taining anionic lipids and were hardly affected by neutral bi-
layers [56]. Finally, anionic glutamate was repulsed from neg-
atively charged lipids and weakly attracted by a neutral bilayer
[56]. It is noteworthy that these interactions lead to increased
concentration of polar NTs at the membrane hydration layer
[56] without penetration into the membrane core as is ob-
served with the amphipathic NTs [42].

A distinct subset of small non-peptidic NTs are gaseous
molecules such as nitric oxide (NO), carbon monoxide
(CO), and hydrogen sulfide (H2S) [69, 70]. The solubility of
these gasses in organic solvents is higher than that of water;
thus, their concentration in the lipid phase is relatively high.
For example, the concentration of NO in the lipid bilayers is
4.4-fold higher than in water [71], and the concentration dif-
ference is 2.2-fold for H2S [72]. Free energy calculations
based on biased MD simulations are in agreement with these

Fig. 1 The effect of
the membrane on small molecule
diffusion and receptor entry. a
The ligands can either diffuse in
3D towards their membrane-
bound receptors (black dot; left)
or the 3D diffusion can transform
into 2D diffusion along the mem-
brane plane (curved line) prior to
the receptor binding (right).
Reproduced with the permission
from ref. [40]. Copyright 2009
Elsevier. b Themembrane (brown
opaque surface) adherence
(lipophilicity) or repulsion
(lipophobicity) of neurotransmit-
ters (CPK models) is demonstrat-
ed for the norepinephrine (right)
and glutamate (left), respectively,
using atomistic molecular dy-
namics simulations. Reproduced
with modifications from ref. [42].
Copyright 2016 Postila et al.
(https://creativecommons.org/
licenses/by/4.0/legalcode)
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experimental results for both NO [73] and H2S [74]. The
partitioning of CO into lipid bilayers has been studied using
MD simulations, which indicated similar behavior for NO and
O2 [75]. This is not surprising considering that charge separa-
tion in CO is 0.021e and in NO 0.028e. It is also worth men-
tioning that xenon (Xe), which is a gas with anesthetic prop-
erties, is highly soluble in lipid bilayers and most likely ac-
quires its analgesic effects by targeting membrane proteins
[41, 76].

Synaptic Receptor Types vs.
Lipid-Neurotransmitter Association

The non-peptidic signal molecules can be divided roughly into
two distinct categories based on the experiments: membrane-
binding (lipophilic) and membrane-nonbinding (lipophobic)
NTs (Fig. 1) [42]. Those NTs such as dopamine with aromatic
ring systems, apolar, or otherwise lipophilic/hydrophobic pro-
files adhere onto the membrane surface (see dopamine in Fig.
3 and norepinephrine in Fig. 1b). Not surprisingly, small
lipophobic/hydrophilic NTs such as glutamate (Fig. 1b) or

acetylcholine with polar or charged moieties prefer to stay in
the water phase instead of adhering onto the membrane (see
acetylcholine in Fig. 3). This division of NTs into lipophilic
and lipophobic groups is produced effectively by MD simu-
lations with various lipid bilayer models [42], but it can be
crudely deduced by simply relying on standard log P values as
well [42] (Fig. 2).

The selective adhesion of NTs at the water-membrane in-
terface is important due to the placement of their receptors’
ligand-binding sites in respect to the synaptic membrane (Fig.
3) [42]. Lipophilic NTs bind preferentially onto the membrane
surface from where they can diffuse along the membrane
plane towards their membrane-buried binding sites of
GPCRs (Figs. 4 and 5). Consequently, the 3D diffusion is
transformed into planar 2D diffusion, facilitating presumably
faster and more coordinated NT-receptor binding [40]. The
most hydrophilic NTs remain preferentially in the water phase
without notable membrane surface aggregation [42]—an ar-
rangement that should make the entry into their receptors’
extracellular ligand-binding sites faster and energetically more
favorable than if the molecules would adhere on the mem-
brane (Figs. 4 and 5). In effect, the membrane sorting places

Fig. 2 Chemical structures and log P values of non-peptidic neurotrans-
mitters. The given log P values are experimental except for acetylcholine
(https://pubchem.ncbi.nlm.nih.gov/). The log P values suggest that the
neurotransmitters (NTs) belong to either lipophobic (− 3.69 to − 2.90)
or lipophilic (− 1.37 to 1.60) categories. In reality, most of the NTs are

amphipathic molecules with both hydrophilic (Bwater-loving^) or hydro-
phobic (Bwater-hating^) groups whose combined effect determines how
likely they are to remain in the water phase or to aggregate on the mem-
brane, respectively.
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the released lipophilic and lipophobic NTs closer to their re-
ceptors’ binding sites than would otherwise be expected from
a completely random 3D diffusion [40].

Based on the lipophilic/lipophobic membrane sorting and
established locations of receptors’ ligand-binding sites, the
neurotransmission may be divided into (1) membrane-
independent and (2) membrane-dependent mechanisms (Fig.
5) [42]. Accordingly, the polar/charged amino acids such as
glutamate, glycine, and serine, or the amino acid-like GABA
and acetylcholine would not adhere onto the synaptic mem-
brane as they are destined to enter receptors with extracellular
ligand-binding sites. Reciprocally, most hydrophobic NTs

such as dopamine, its precursor L-dopa, norepinephrine, epi-
nephrine, adenosine, melatonin, and serotonin partition on the
membrane, where the GPCRs have membrane-buried ligand-
binding sites (Fig. 4).

Various simulation studies [42, 54, 60, 61] and biophysical
experiments [51–54, 62–67] corroborate this mechanistic di-
vision; however, there are notable exceptions to the rule when
focusing on the available receptor protein structures and pos-
sible MLCs.

Firstly, serotonin receptors have both extracellular and
membrane-buried ligand-binding sites (Fig. 4), although the
NT has a notably high log P value (Fig. 2) and prefers the

Fig. 3 a Snapshots of the initial (0 ns) and final configurations (500 ns)
obtained in molecular dynamics (MD) simulations of lipid bilayers (stick
models) composed of POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-
phosphocholin; green), CHOL (cholesterol; orange), ganglioside GM1
(monosialotetrahexosylganglioside; red), in the presence of dopamine,
acetylcholine, and histamine (blue or gray CPKmodels).Water is omitted
for clarity. Reproduced with the permission from ref. [57]. Copyright
2018 Elsevier. b Free energy profiles of the neurotransmitters
translocating thorough the lipid bilayer indicate that dopamine preferred
a location at the core of the bilayer below the lipid headgroup region. The

center of mass of the bilayer is at 0 nm. Vertical blue dashed lines show
approximate regions of the bilayer hydrocarbon core, the membrane-water
interface, and water. Reproduced with the permission from ref. [57].
Copyright 2018 Elsevier. c Fluorescence lifetime imaging microscopy
images of giant lipid vesicles containing nitrobenzoxadiazole (NBD)-la-
beled lipids at the headgroup or last carbon of the Sn2 chain in the absence
and presence of dopamine. The images show dopamine aggregation at the
membrane interior. Reproduced with the permission from ref. [64].
Copyright 2017 the American Chemical Association
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membrane surface to the water phase in both simulations and
experiments [42, 79]. The membrane preference of serotonin
could be overcome by only increasing its secreted levels in
those synapses where membrane adherence is unfavorably
affecting the receptor entry. Secondly, although acetylcholine
binds into the extracellular ligand-binding sites of both nico-
tinic acetylcholine receptor (Fig. 4) and acetylcholinesterase,
the positively charged NT also has to enter the membrane-

buried binding site of muscarinic acetylcholine receptor [80]
(Fig. 4). The lack of membrane adherence seems unlikely to
be overcome by only increasing the acetylcholine levels; how-
ever, acetylcholine could be forced to bind onto a membrane
containing anionic lipids. In other words, the inconsistency of
acetylcholine binding sites could, in theory, be explained by
MLC differences between those synapses housing either nic-
otinic or muscarinic acetylcholine receptors (Fig. 4). By

Fig. 4 The positions of ligand-binding sites of conventional synaptic
receptors in the postsynaptic membrane. The approximate positions of
the ligand-binding sites of G protein-coupled receptors (GPCRs) (yellow)
and ion channel-forming receptors (orange) are circled green in the

protein 3D structures (cartoon models). The inner and outer bilayer leaf-
lets are shown with blue and red lines, respectively. Reproduced with
modification from ref. [42]. Copyright 2016 Postila et al. (https://
creativecommons.org/licenses/by/4.0/legalcode)

Fig. 5 Synaptic neurotransmission models. Left panel—membrane-
dependent model: (1) release of lipophilic neurotransmitters (NTs), (2)
diffusion across the synaptic cleft, (3) binding onto the postsynaptic mem-
brane surface and 2D diffusion on the membrane plane, and, finally,
binding into the receptors. Middle panel—membrane-independent

model: (1) release of lipophobic NTs, (2) diffusion across the synaptic
cleft, and binding into the receptors. Right panel—the presynaptic vesicle
with its known lipid composition [77, 78]. Reproduced with the permis-
sion from ref. [58]. Copyright 2017 American Chemical Society
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regulating the MLC tightly, the NT entry would follow either
the membrane-independent or membrane-dependent mecha-
nism [42] (Fig. 4).

The Effect of Membrane Lipid Composition
on Neurotransmitter Dynamics

The adjacent neurons form a synapse specialize in the release
of specific NTs; for example, the neuromuscular junctions are
packed with nicotinic acetylcholine receptors (Fig. 4) that se-
lectively bind acetylcholine [81]. This means that the protein
machinery both at the pre- and postsynaptic membranes is
tightly regulated to match the needs of the secreted NT types
in each synapse. Likewise, it comes to reason that also the
MLCs would be specific for these different synapses and op-
timized to assure fast and efficient signaling with the NTs in
question.

Recent lipidomics studies have led to the vast and rapid
expansion of the available data on various organs, tissues, cell
types, and cell organelles [82, 83]. Similarly, data concerning
lipidome changes in pathological states, including neurologi-
cal and mental disorders, provide new insight into the possible
role of lipids in neuronal tissues [84–89]. Although no direct
link has been established so far, it is easy to fathom how an
imbalance in the strength of NT-membrane partitioning could
contribute to, for example, major depressive disorder or
Parkinson’s disease. Typically, both conditions are treated by
increasing the concentration of the responsible NTs in the
neurons. With depression, antidepressants increase either the
level of serotonin or dopamine at the synapse by blocking
their transport or by inhibiting their catabolism. With
Parkinson’s disease, the dopamine precursor L-dopa, which,
unlike dopamine diffuses across the blood-brain barrier, is
administered to increase the effective dopamine levels. In the-
ory, the local concentration of the NTs either at the membrane
surface or in the water phase could be negatively affected by
too strong or weak membrane association; thus, the MLC
would be at least a partial culprit for the shortage of NTs that
can bind into the receptors.

Despite the rapid progress of lipidomics analysis [90–93],
the MLCs for specific synapses or neurons are not particularly
well characterized to date. The synaptic membrane leaflets are
expected to remind a typical animal cell: the extracellular leaflet
being neutral and composed mainly of sphingolipids (SPH;
Fig. 6), saturated phosphatidylcholine (PC; Fig. 6), and
CHOL (Fig. 6); and its more anionic counterpart the intracellu-
lar leaflet containing more negatively charged lipids such as
phosphatidylserine (PS; Fig. 6), PIP (Fig. 6), and
phosphatidylglycerol (PG; Fig. 6) [94]. The only notable
charged lipid species of the extracellular leaflet, whose levels
are moderately high in the neurons where their molar fraction is
in the order of few mol%, are the glycolipids including

gangliosides and sulfogalactosyl ceramides [95]. As their con-
centration can reach even 30mol% [96, 97], glycolipids such as
monosialotetrahexosylganglioside (GM1; Fig. 6) are potential-
ly a vital membrane component affecting the NT dynamics via
charge-related effects. Moreover, an aberration in
sulfogalactosyl ceramide content in neurons was observed for
the case of few neurodegenerative disorders [98, 99].

In fact, studies have shown that the main lipid classes in the
synaptosome—a structure containing both the pre- and post-
synaptic membranes, synaptic vesicles, and possibly frag-
ments of other cells—follow this general pattern of animal cell
MLC. Nevertheless, notable differences between the synapto-
some and whole brain lipids have been observed [100]. A
more accurate lipidomics study of the synaptosome, in which
~ 80 lipid species were identified, showed significant differ-
ences in the MLC of the synaptosome in comparison with the
synaptic vesicle [101] (Fig. 4). Another recent lipidomics
study of the postsynaptic membrane showed large changes
in the lipid profile during brain development. It was shown
that the amount of CHOL, SPH, and ether lipids increases
with time. Moreover, the decrease of the number in short tails
and an increase in the number of tails with six double bonds
were observed [102]. In the central nervous system, CHOL
originates from in situ performed synthesis [10], which takes
place predominately in astrocytes [103]. Thus, the decrease of
CHOL synthesis by astrocytes could lead to the impairment of
the brain development and decrease of neuron growth in co-
culture of neurons with astrocytes [104].

The atomistic MD simulations [42, 54, 60, 61] (Fig. 3a, b)
and experiments [51–56, 62–68] alike show that the lipid as-
sortment indeed affects NT dynamics profoundly. Majority of
the non-peptidic NTs are attracted towards the anionic mem-
brane models to a varying degree [42, 56, 59, 62]. That in-
cludes even the most charged and hydrophilic NTs such as
GABA or glycine as they show a moderate level of adherence
on the membrane models containing anionic lipid PS (Fig. 6),
PG (Fig. 6), and phosphatidic acid [56]. This adherence onto
the anionic membranes in comparison with the neutral mem-
brane models is explained by the prevalent charge factor and
electrostatic interactions: the anionic lipids attract the positive-
ly charged, amphipathic or zwitterionic NTs even if this
charge-based attraction does not necessarily assure complete
membrane preference over the water phase or full lipophilicity
[56]. The only exception seems to be the anionic glutamate,
which is repulsed by the anionic lipids [56].

With dopamine and histamine, the presence of physiolog-
ically relevant glycolipid GM1 (Fig. 6) lipid species was
enough to enhance their already notably strong membrane
preference based on the MD simulations [57]. The same effect
could not be replicated with the acetylcholine, whose binding
to muscarinic receptors (Fig. 4) should benefit from the mem-
brane partitioning as suggested by the dualistic neurotransmis-
sion model (Fig. 5) [42]. The membrane adherence of
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acetylcholine is achieved with a membrane model containing
PS in the simulations [42] and PS or PG experimentally [56];
however, these lipid types are more endogenous to the intra-
cellular leaflet of the cell membrane than the typical extracel-
lular leaflet. Thus, if stable membrane adherence of acetylcho-
line is indeed a prerequisite for the entry into the membrane-
buried ligand-binding site, the membrane housing the musca-
rinic receptors should contain lipids that are more anionic than
the GM1 (Fig. 6).

It is well established that CHOL (Fig. 6) decreases the
transport of gasses through lipid bilayers [41, 105–107]. NO
diffusion in the lipid bilayers can be slowed down by 20–40%
depending on the MLC [108, 109] and also the permeability
coefficients of NO can be reduced by 17% [110]. MD simu-
lations and free energy calculations indicate that CO and NO
behave similarly in the CHOL-rich membrane environment
[111]. Nevertheless, the diffusion of NO through biological

systems is fast (2.2 × 10−5 cm2/s) [112–114] and, moreover,
the process is likely facilitated by aquaporins [73]. Thus, gas-
eous NTs should be able to diffuse and bind into their specific
receptors regardless of their positioning in respect to the lipid
bilayer.

Neurotransmitter Transporters:
Lipid-Assisted Neurotransmitter Entry?

Synaptic receptors (Fig. 4) are not the only proteins in the
synapse that bind and interact with the NTs. The neurotrans-
mitter transporters with membrane-buried ligand-binding sites
also bind NTs in order to transport them away from the syn-
aptic cleft after their release and elicited function [115]. For
example, with glutamate, the transport must be expedient due
to its potentially toxic effects of the prolonged presence in the

Fig. 6 Chemical structures of the most common lipids. PC,
phosphatidylcholine; PE, phosphatidylethanolamine; SPH,
sphingomyelin; CHOL, cholesterol; LPC, lysoPC; DAG, diacylglycerol;

PS, phosphatidylserine; GM1, monosialotetrahexosylganglioside; PG,
phosphatidylglycerol; PIP2, phosphatidylinositol bisphosphate; PIP3,
phosphatidylinositol triphosphate; PA, phosphatidic acid
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synapse [116]. The role of the transporters is complex because
the NTs can also move in reverse through them in certain
conditions [117] instead of relying on the presynaptic vesicle
release (Fig. 5). Until very recently [118, 119], mechanistic
insight into the neurotransmitter transporters has relied on X-
ray crystallographic structures of their bacterial counterparts
such as leucine transporter [115].

The paradox is that even the most hydrophilic or
lipophobic NTs (Fig. 2) that are not prone to adhere on the
membrane (Fig. 3) must be transported actively away from the
synapse through the transporters with the membrane-buried
binding sites. The increased anionic or hydrogen-bonding ca-
pable lipid content within the membrane patches surrounding
the transporter proteins, in theory, could assist the entry into
the buried binding sites. While there is no evidence on the
implied effect of direct NT-lipid interaction on the transport,
the MLC has been shown to influence bacterial aspartate
transporter conformation and function via specific pi-cation
interactions [120]. Furthermore, the presence of charged ami-
no acid residues at the water-membrane interface could assist
at the early stage of NT entry into the transporters.

Acetylcholine, whose efficient entry into the muscarinic
receptors (Fig. 4) seems to require highly anionic MLC based
on the MD simulations [42], remains an odd example also
when inspecting its removal from the synaptic cleft.
Acetylcholine is catalyzed into choline and acetate by the ace-
tylcholinesterase and, notably, the enzyme’s ligand-binding
site is extracellular and, thus, the positively charged NT remov-
al is not directly dependent on its membrane adhesion.

Presynaptic Vesicle: Three Fail-Safes
for Assuring Efficient Neurotransmitter
Release

The pre- and postsynaptic membranes are not the only lipid
bilayer surfaces (Fig. 4) that NTs interact with during the
neurotransmission. Upon the arrival of the action potential,
the aggregation of PIPs (Fig. 6) instigates the protein assembly
leading to the release of the NTs from the presynaptic vesicles
into the synaptic cleft [13]. For this release to function fast and
efficiently, the NTs, no matter how lipophilic (Fig. 2), should
not aggregate excessively on the inner leaflet of the presynap-
tic vesicle as this would hinder the signaling overall.

There are at least three fail-safe mechanisms for preventing
the unwanted membrane aggregation onto the inner leaflet of
the vesicle (Fig. 5) [58]. Firstly, the lumen of the vesicle is
kept relatively acidic (pH 5.6) in comparison with the physi-
ological pH (7.4). The low pH assures that the negatively
ionizable parts of lipid headgroups and NTs are more likely
to be fully protonated/neutral and, thus, remain not attracted to
each other [121]. The generated proton gradient also assists in
the transport of the NTs into the vesicles by vesicular

neurotransmitter transporters [121]. Secondly, the MLC of
the vesicle’s inner leaflet is composed of mainly neutral lipid
species such as PC and phosphatidylethanolamine (PE) (Fig.
6), whereas the highly anionic PIP lipid is present in the outer
leaflet [77, 78]. Thirdly, positive and divalent cations Ca2+ and
Zn2+ are actively pumped inside the vesicle where they can
adhere on the anionic headgroups of the membrane lipids and
neutralize the water-membrane interface [121, 122].

The charged MLC is crucial for the membrane adherence
of NTs from both ends of the hydrophilicity and hydrophobic-
ity scale [42, 51–56, 60–67]. Charge neutrality of the
headgroup region of the membrane assists the release of all
non-peptidic NTs regardless of their propensity to partition on
the membrane in general (Figs. 3 and 6). This is more urgent
when dealing with very lipophilic NTs because they tend to
aggregate onto the water-membrane interface regardless of the
MLC [42, 53, 60, 61, 65, 66] and, for example, dopamine
almost entirely aggregates on to the membrane in the MD
simulations [42, 60] (Fig. 3). This membrane preference of
dopamine is predicted to be prevented almost entirely by the
neutral MLC, and high calcium levels present inside the pre-
synaptic vesicles based on the simulations and free energy
calculations [58]. Nevertheless, the mechanisms for detach-
ment of lipophilic NTs and drugs from various membranes
in the synapse remain mostly unknown and, thus, require
more scrutiny in the future.

Role of Membranes in Intracellular
Neurotransmitter Metabolism

What is also not well recognized in the current literature is that
both the synthesis and degradation of amphipathic NTs hap-
pen within the context of membranes. While there might not
exist direct evidence of membrane assistance in these intracel-
lular metabolic processes, for example, in the case of dopa-
mine, the essential proteins are membrane-bound or
membrane-associated based on the latest research.

Dopamine, the first catechol NT at the biosynthetic path-
way, is synthesized from the amino acid tyrosine in two steps:
(1) the tyrosine hydroxylase converts it to L-dopa, and (2) the
L-dopa decarboxylase converts it into dopamine. Although
both enzymes were previously considered to be cytosolic,
recent studies have indicated their association with mem-
branes: the tyrosine hydroxylase binds to liposomes [123],
and the L-dopa decarboxylase associates generally with the
membranes in the cellular environment [124]. In the next step,
dopamine is used as a substrate in the synthesis of two other
catechol NTs: (1) norepinephrine and (2) epinephrine. The
first step of the conversion is performed by the dopamine-β-
hydroxylase enzyme that has both water-soluble and
membrane-bound forms [125]. An alternative pathway of do-
pamine biosynthesis utilizes the cytochrome P450 enzyme
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[126], which is an established integral membrane protein.
Degradation of dopamine after its reuptake is an essential
process due to the toxicity of its oxidized form [127]. The
initial steps of dopamine degradation are suggested to be per-
formed by four different enzymes, including the membrane-
associated monoamine oxidize [128] and uridine diphospho-
glucuronosyltransferases [129], and, finally, catechol-o-
methyl transferase (COMT) [130] and sulfotransferase [131]
that have both membrane-bound and water-soluble forms.

The Effect of Membrane Sorting for Drugs
and Beyond

The studies reviewed in this perspective indicate that the NT-
membrane interactions are likely to be tightly regulated and,

therefore, a crucial part of the synaptic neurotransmission.
This level of organization and coordination is needed because
the NT diffusion across the synaptic cleft (20–30 nm) takes
only a few microseconds [132]. Moreover, the membrane-
based sorting (Fig. 4) not only affects neurotransmission effi-
ciency but likely extend to all phases of the NT life cycle,
including their release from the synaptic vesicles, diffusion
across the cleft, receptor entry or binding, removal from the
synaptic cleft, as well as their production and eventual
degradation.

The potential role of the membrane sorting (Fig. 5) should
not be overlooked with any small molecules or ligands due to
the ubiquitous presence of membranes in the synaptic cleft
(Fig. 1) or, ultimately, inside or outside of any cell. If a drug
is due to enter a cell membrane-buried or an extracellular
ligand-binding site (Fig. 5), its binding rate should benefit

Fig. 7 The pivotal role of the membrane in membrane-bound catechol-o-
methyl transferase catalysis and selective inhibition. a Steps of catalytic
mechanism of the membrane-bound catechol-o-methyl transferase (MB-
COMT): (A1) the catalytic domain interacts weakly with membrane in
the apo form; (A2) the cofactor S-adenosyl-L-methionine (ADOMET)
binds to the catalytic site of MB-COMT; (A3) MB-COMT in complex
with ADOMETopens the catalytic site towards the membrane, which, in
turn, allows the protein to bind to the membrane surface; (A4), finally, the
MB-COMT binds an Mg2+ ion that is already present at the membrane
surface. b The behavior of MB-COMT selective vs. non-selective inhib-
itors in the membrane: selective inhibitors orient catechol group towards

the water phase and, in contrast, non-selective inhibitors could be oriented
less optimally in relation to the MB-COMT catalytic site. c The estima-
tions of interactions of the ADOMET and catalytic domain of COMT in
complex and separately with lipids indicate that the catalytic domain is
preferably membrane-oriented: (C1) the free energy changes when pro-
tein is pulled away from the lipid bilayer; (C2) quartz crystal microbal-
ance (QCM) frequency changes during interaction with the lipid bilayer;
(C3) dissociation constant (inverse of affinity) from lipid bilayer (vesicle)
determined by isothermal calorimetry. Reproduced with permission from
ref. [146]. Copyright 2018 the Royal Society of Chemistry
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from the sorting (Fig. 1a) [40, 42]. This is analogous to
matching the charge/shape properties between the receptors’
ligand-binding sites with those of the ligands during docking
[133–136], docking rescoring [137–139], or drug discovery
[136, 140–142]. In fact, there is overwhelming evidence of
the affinity of small molecules towards lipids [28], and the
MLC is also known to affect drug membrane permeability
[143]. The log P values, membrane permeation, and lipophilic
efficiency are already routinely considered in the medicinal
chemistry [144]. The difference between the drugs and NTs
is that the synaptic MLCs are fine-tuned through evolution for
the unobstructed dynamics of the latter group and not neces-
sarily for the former [42]. However, if a drug binds into the
same ligand-binding site as the endogenous ligand (not an
allosteric modulator), it is likely to have a similar charge pro-
file for interacting with the membrane. For example, the
ligand-binding sites of ionotropic glutamate receptors are
highly charged to match the opposite charge profile of its
ligands, mainly glutamate [145]—a feature that also affects
their dynamics with the membrane (Fig. 1a) [42].

The importance of membranes for drug development was
clearly demonstrated in a recent study showing dependency
between inhibitor membrane location and orientation in re-
spect to the membrane surface (Fig. 7), and its selectivity
towards the membrane-bound form of catechol-o-methyl
transferase (MB-COMT) compared with its water-soluble
form (S-COMT) [146]. The COMT inhibitors are used togeth-
er with L-dopa in the treatment of Parkinson’s disease to pre-
vent dopamine deficit [147, 148]. L-Dopa is converted into
dopamine inside the neurons, and the role of COMT inhibitors
in the drug formulation is to prevent L-dopa degradation.
Interestingly, in the brain tissues, the MB-COMT dominates,
while in the remaining part of the body, the S-COMT is dom-
inant. For this reason, the development of MB-COMT-
specific drugs (Fig. 7b) is beneficial due to the likely reduction
in the undesired side effects.

Conclusions

All four components, the neurotransmitter (NT), the mem-
brane lipid composition (MLC), the shape/charge of the re-
ceptor’s binding site, and its location in relation to the lipid
bilayer, should match; otherwise, the efficiency of the neuro-
transmission is bound to suffer. If an NT is due to binding into
an extracellular ligand-binding site, it does not adhere firmly
on the membrane surface. In contrast, an NT that binds into a
membrane-embedded ligand-binding site has a strong tenden-
cy to adhere to the membrane as well. This division of neuro-
transmission into the membrane-independent and membrane-
dependent mechanisms is supported by molecular dynamics
simulations, X-ray crystallography, log P values, and other
sensitive biophysical experiments. Even prior to an NT release

into the synaptic cleft, prohibitively strong membrane adher-
ence of NTs is prevented by controlling the MLC of the inner
leaflet, pH, and ionic content of the presynaptic vesicles. In
fact, an NT dynamics is likely to be affected by the membrane
environment during their transport out of the cleft as well as
their intracellular synthesis and degradation. Collectively, the
data supports the view that individual synapses, which are
specific for certain NTs, have carefully curated global and/or
local MLCs to assure fast neurotransmission and avoid poten-
tial disease states caused by NT-membrane mismatches. In
short, the membrane should not be seen as a passive barrier
or a mere scaffold for proteins, but rather as an active partic-
ipant or even a nexus that facilitates the fast-paced synaptic
neurotransmission.
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