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ABSTRACT

Surface-related multiple elimination �SRME� is an algo-
rithm that predicts all surface multiples by a convolutional
process applied to seismic field data. Only minimal prepro-
cessing is required. Once predicted, the multiples are re-
moved from the data by adaptive subtraction. Unlike other
methods of multiple attenuation, SRME does not rely on as-
sumptions or knowledge about the subsurface, nor does it use
event properties to discriminate between multiples and pri-
maries. In exchange for this “freedom from the subsurface,”
SRME requires knowledge of the acquisition wavelet and a
dense spatial distribution of sources and receivers. Although
a 2D version of SRME sometimes suffices, most field data
sets require 3D SRME for accurate multiple prediction. All
implementations of 3D SRME face a serious challenge: The
sparse spatial distribution of sources and receivers available
in typical seismic field data sets does not conform to the algo-
rithmic requirements. There are several approaches to imple-
menting 3D SRME that address the data sparseness problem.
Among those approaches are pre-SRME data interpolation,
on-the-fly data interpolation, zero-azimuth SRME, and true-
azimuth SRME. Field data examples confirm that �1� multi-
ples predicted using true-azimuth 3D SRME are more accu-
rate than those using zero-azimuth 3D SRME and �2� on-the-
fly interpolation produces excellent results.

INTRODUCTION

During its 75-year history, Geophysics has published many papers
about multiple reflections in seismic data. Some of the more interest-
ing papers appear in the January 1948 issue, which was entirely de-
voted to the question of whether multiple reflections are visible in
seismic records. Some authors were firmly convinced that multiples

were visible, while others were doubtful. Then there were the cagey
ones, such as Dix �1948�, who argued in favor of the existence of
multiples but conceded, “The evidence…does not yet make their ex-
istence ‘strictly certain’….”

After improvements in recording technology and more experi-
ence with marine seismic data made the existence of multiples obvi-
ous, the next question was “How do we get rid of them?” Most of the
papers about multiples that have appeared in Geophysics since 1948
address that question. The many intriguing answers fall into three
broad categories: exploiting the differences in the properties of pri-
mary and multiple reflection events in seismic records, wave-equa-
tion-based modeling of multiple reflections using an earth model,
and so-called data-driven methods that predict multiple reflections
directly from information contained in seismic records. Surface-re-
lated multiple elimination �SRME� �Verschuur et al., 1992�, the top-
ic of this review paper, falls in the third category. SRME deals only
with multiples whose raypaths include one or more downward re-
flections at the surface. There are data-driven methods related to
SRME that predict internal multiple reflections �e.g., Jakubowicz,
1998�, but we do not discuss them in this paper.

Because data-driven methods tend to be computationally expen-
sive, early efforts to develop SRME focused on less costly 2D ver-
sions of the algorithm. Although sometimes excellent �e.g., Dra-
goset and Jeričević, 1998; their Figure 3�, 2D SRME results were of-
ten disappointing because the 2D algorithm did not encompass the
3D complexity of geology and data-acquisition geometry. Recent
advances in computer hardware have made it feasible to apply ad-
vanced versions of 3D SRME to seismic data on a routine basis. Re-
sults have been generally outstanding and occasionally astonishing.
Figure 1, for example, shows the performance of 3D SRME on a
small, full-azimuth data set shot in a circular pattern �Moldoveanu et
al., 2008�. In spite of the unusual acquisition geometry, 3D SRME
has attenuated all surface multiples, including diffracted multiples,
exceptionally well. In general, 3D SRME is the most capable of all
methods that are widely used for attenuating surface multiples.

Here, we explain in a simple fashion how and why 3D SRME can
produce a result such as that in Figure 1. Our paper begins with a dis-
cussion of fundamental concepts, explains why a proper application
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of SRME must be three dimensional, describes various approaches
to 3D SRME, shows some data examples, and ends with a discussion
of future directions. For readers unfamiliar with SRME jargon, Ta-
ble 1 explains some terms that occur frequently in SRME discus-
sions and literature.

SRME FUNDAMENTALS

Data-driven concepts and history

Prior to the advent of SRME, attenuation of multiples was often
accomplished by using differences in the properties of primary and
multiple reflections to discriminate between them. One such proper-
ty is periodicity. In general, the distribution of reflecting layers with-
in the earth is aperiodic, which means that primary reflections are
also aperiodic. On the other hand, some multiples such as shallow-
water reverberations can have a periodic structure. That difference is
the basis of attenuating multiples by deconvolution methods
�Backus, 1959�. Another example is stacking velocity-based multi-
ple attenuation. Because the raypaths of a primary reflection and a
multiple reflection that have the same zero-offset arrival time
traverse different subsurface layers, the two events often have a dif-
ference in moveout. If that difference is large enough, simple stack-
ing using the primary reflection’s moveout velocity will attenuate
the multiple �Mayne, 1962�. Radon transform-based multiple atten-
uation �Hampson, 1986�, a popular method, likewise relies on veloc-
ity discrimination. All of these approaches as well as other discrimi-
nation-based methods share a common trait: they require assump-

tions about or knowledge of the earth’s subsur-
face.

Another way of attenuating surface multiples
is to model them by using the wave equation to
propagate a surface-recorded wavefield down-
ward into the subsurface and then back up to the
surface. This has the effect of turning primary re-
flections into first-order multiples, first-order
multiples into second-order multiples, and so on.
Berryhill and Kim �1986�, for example, assume a
simple model of the seafloor and then predict wa-
ter-layer and peg-leg multiples by propagating a
surface recording downward to the seafloor and
then upward to the surface. Wiggins �1988� de-
scribes a more complicated procedure that ac-
counts for a more realistic seafloor. Pica et al.
�2005� show that all surface multiples can be pre-
dicted using accurate 3D models of the earth’s
subsurface reflectivity and velocity. In all ver-
sions of these modeling procedures, the multiples
in the original data are attenuated by adaptively
subtracting the modeled multiples.

The data-driven concept for predicting surface
multiples is deceptively simple as well as funda-
mentally different from the wave-equation mod-
eling approach. Figure 2 shows raypaths for a va-
riety of surface multiples. In each case, the ray-
paths can be divided into two or more segments,
each of which could be recorded by a surface seis-
mic experiment. This suggests the possibility that
by properly recording and manipulating the ap-
propriate portions of the surface wavefield, any

Table 1. Meanings of SRME-related terms.

Term Meaning Remarks

Aperture The spatial area spanned by
the DRPs in an MCG

The aperture is one dimensional for
2D SRME and two dimensional
for 3D SRME.

DNMO Differential moveout A preconvolution trace adjustment
process used by some SRME
algorithms for on-the-fly interpolation.

DRP Downward reflection point A surface location at which there is a
possibility of a surface multiple
experiencing a downward reflection.
Each trace in an MCG corresponds
to one DRP.

MCG Multiple contribution gather A gather of convolved trace pairs that,
when summed, predicts surface
multiples for a target trace.

SRME Surface-related multiple
elimination

Coined by the Delphi Consortium
to describe data-driven methods of
predicting and removing surface
multiples.

Target
trace

A data-set trace for which
SRME will predict surface
multiples

SRME predicts multiples for a target
trace by computing and stacking
an MCG.

True-
azimuth
SRME

An SRME calculation that
honors the actual azimuths
of the target traces

The most accurate type of 3D SRME
calculation.

Zero-
azimuth
SRME

An SRME calculation that
assumes the azimuth of all
target traces is the nominal
inline azimuth of the survey

A 3D SRME that might be appropriate
for narrow-azimuth surveys having
small 3D effects.
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Figure 1. Stack section from a full-azimuth survey shot in a circular
pattern. �a� Result without multiple attenuation; �b� result after ap-
plying 3D SRME.
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surface multiple could be reconstructed directly from a field data set.
The trick, of course, is to find an algorithm that automatically carries
out that manipulation on a proper set of segments for each surface
multiple in a data set. As explained below, SRME accomplishes this
in a remarkable fashion: Not only is the manipulation carried out au-
tomatically, but it is done so in a way that requires no information
other than the recorded traces themselves, the coordinates of their
sources and receivers, and the acquisition wavelet. In other words,
unlike the modeling methods described above, SRME requires abso-
lutely no knowledge of the subsurface and makes no assumptions
about the geologic structure.

One could argue that, in a broad sense, all methods of multiple at-
tenuation are data driven. For example, wave-equation modeling of
multiples requires a velocity model calculated from a seismic data
set by a procedure such as tomography. Therefore, wave-equation
modeling can be classified as a data-driven method because the ve-
locity model is built using the data. However, we strictly define the
term data driven as a process whose end result is accomplished by a
simple mathematical manipulation of recorded seismic data that re-
quires no intermediate steps, products, interventions, or interpretive
analysis. By this definition, SRME is data driven, and the other
methods mentioned above are not.

The history of data-driven multiple attenuation began with recog-
nizing there is a convolutional relationship between primary reflec-
tions and surface multiples. Watson �1965� writes that relationship
as

Ms1�t���R0P�t��r�t�, �1�

where Ms1�t� represents first-order surface multiples, �R0 is the
surface reflection coefficient, P�t� is an upward-traveling sequence
of primary reflections that are reflected downward by the surface, the
asterisk means convolution, and r�t� is the earth’s reflectivity series.
Watson explains that one could interpret the quantity �R0P�t� as
another surface source of seismic energy. In other words, equation 1
is the familiar convolutional model of the earth, except that the re-
corded seismogram on the left now consists of surface multiples.
Anstey and Newman �1966� also recognize this concept, which they
call a retrocorrelogram: “The retro-correlation function…of a seis-
mic trace is obtained by correlating the trace against a time-reversed
version of itself. …During the process…, each primary event on the
seismic trace interacts with each primary event on the time-reversed
seismic trace to generate a first-order surface multiple event” �p.
411�.

Although Watson as well as Anstey and Newman grasp the basic
concept of data-driven multiple prediction, their papers indicate the
authors do not appreciate the method’s full potential. On the other
hand, Riley and Claerbout �1976� do. Their key equation, in one di-
mension and using Z-transform notation, is

C�Z��R�Z��1�H�Z�R�Z���1. �2�

Here, C�Z� represents a seismogram that would be recorded if no
surface reflections were present, R�Z� is the recorded seismogram
that includes surface reflections, and H�Z� is the inverse of the acqui-
sition wavelet.

Equation 2 has two interesting features. First, it indicates that
computing C�Z� is clearly an inversion problem. Solving that prob-
lem perfectly produces a seismogram which contains no surface
multiples. Second, equation 2 introduces the acquisition wavelet
into the data-driven concept, a required factor that is explained be-

low. Riley and Claerbout solve their equation in two dimensions by
using the field data as initial conditions to partial-differential propa-
gation equations. In their solution, they simplify the equations by as-
suming that the propagating waves travel at angles close to the verti-
cal and that the magnitudes of reflection coefficients are independent
of incident angle. Another reason for the narrow angle restriction is
their need to avoid converted waves. Thus, although Riley and
Claerbout formulate the problem in data-driven terms, they do not
solve it in those terms �because of their narrow angle assumption and
the use of velocity information for the wavefield propagation�.

The data-driven concept for surface multiple prediction reached
its full potential in a frequency-space formulation introduced to the
seismic industry by the Delphi consortium at Delft University �Vers-
chuur et al., 1992�. In fact, Delphi coined the acronym SRME. The
Delphi formulation has several important properties: the theory is
conceptually simple, extensions from one to two to three dimensions
are mathematically straightforward, it is purely data driven, and
there are several alternative ways to accomplish the calculation.

Because it is data driven, SRME can predict surface multiples re-
gardless of the details of their propagation through the subsurface.
Thus, surface multiples that experience AVO, mode conversions,
diffractions, internal reflections, and refractions are all predicted
with ease. Furthermore, SRME has no inherent restrictions on wave-
field propagation angles or wavefield complexity. Independence
from the subsurface, however, does not come without a cost. As we
explain later, instead of being burdened by subsurface assumptions,
SRME is burdened by strict requirements on data-acquisition char-
acteristics.

During the late 1970s and early 1980s, Royal Dutch Shell devel-
oped data-driven SRME independently from the work at Delft Uni-
versity. Perhaps reflecting their surprise that it actually worked, the
Shell researchers named it MAGIC. The Shell development re-
mained confidential until early this century �Biersteker, 2001�.

a)

d) f)

b) c)

e)

1 2 3 4

Figure 2. A variety of seismic events represented by their raypaths.
�a� Water-bottom multiple. �b� Water-bottom peg leg. �c� Second-or-
der multiple. �d� Refracted multiple. �e� Diffracted multiple. �f� Hy-
brid multiple. Because each event includes at least one downward
reflection at the surface, it is classified as a surface multiple. A key
characteristic of all surface multiples is that they can be segmented
into subevents which can be recorded in a seismic measurement per-
formed at the surface. For example, the second-order multiple �c�
consists of three subevents: 1–2, 2–3, and 3–4. Each subevent is
measurable by a surface experiment. Given a suitable set of mea-
surements, SRME can predict all types of surface multiples, includ-
ing those shown here, without knowing any properties of the subsur-
face. Red dots are the source, purple dots are the receiver, and the
black dot is the diffractor.
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How and why SRME works: The 1D case

For the workings of SRME, we first consider the simple case of a
broadband, horizontal plane wave incident on a horizontally layered
earth. We assume the top layer to be acoustic �the marine case�. If we
define R��� to be the primary reflection response of the earth �with-
out surface-related multiples� and S��� to be the wavelet of this
plane wave, then we can write the primary reflection response P���
as

P����R���S��� . �3�

Following equation 1, we can define the first-order multiples to be
the subsurface response of the primaries after downward reflection
at the surface with reflection coefficient r0:

M1����R���r0P����r0R2���S��� . �4�

In this way, each order of multiples can be constructed iteratively:

Mi����R���r0Mi�1����r0
i Ri�1���S��� . �5�

All surface-related multiples are obtained by summing the results for
all orders:

M�����
i

Mi���� �r0R2����r0
2R3���� . . . �S��� .

�6�

The total-data value D��� is defined as the sum of the primaries and
all surface multiples:

D���� P����M���

� �R����r0R2����r0
2R3���� . . . �S��� . �7�

An interesting result is obtained when we rewrite the multiples in
equation 6 as the total data multiplied by r0R���:

D���� P����r0R���D��� �8a�

or, using equation 3,

D���� P����r0S�1���P���D��� . �8b�

This describes the relationship between total data and primary data.
From this, we can derive equation 2 by writing the primary data
explicitly4:

P����
D���

1�r0S�1���D���
. �9�

This direct inversion approach forms the basis of the 2D implemen-
tation of Dragoset and MacKay �1993�, which involves the inversion
of a full matrix per frequency component.Alternatively, the division
can be replaced by a series expansion:

P����D����A���D2����A2���D3���� . . . ,

�10�

where A����r0S
�1���. This is the route followed by Verschuur et

al. �1992�, although extended to the 2D case, where each term in the
series involves matrix multiplications per frequency component. In
both approaches, the required input consists only of the measured
seismic data, the surface reflectivity, and the source wavelet. The
source wavelet is a complication because any discrepancy in the
wavelet �in terms of amplitude or phase� will immediately degrade
the multiple-elimination result. However, the attractive feature of
these expressions is that no other information on the subsurface is re-
quired. The series-expansion approach allows precalculation of the
prediction terms, such that unknown factor A��� could be estimated
by a nonlinear optimization process, assuming that the multiple-free
data have minimum energy �Verschuur et al., 1992�.

Eventually, workers realized that it is probably better to rewrite
equation 8b as a recursion process, where the estimated primaries for
one iteration serve as the input for the next iteration:

P�i�1�����D����A���P�i����D���,

�11�

where i indicates the iteration number and usually
we take P�1�����D���. This iterative approach
�Berkhout and Verschuur, 1997� has the advan-
tage that, in each iteration, the source signature
can be determined by a simple least-squares
matching process of the predicted surface multi-
ples to the total data.

Figure 3 shows a simple example of a plane-
wave response that iteratively converges to the
primary response using equation 11. Note that,
after one iteration, all multiples are predicted at
the correct arrival times but not with the correct
amplitudes. More precisely, the higher-order
multiples have been overpredicted in amplitude.
In practice, this first-order result is often accepted
as the predicted multiples, and the adaptive sub-
traction process — with a time-varying wavelet
— takes care of the amplitude discrepancies. Es-

4Riley and Claerbout �1976� use C�Z� for primary data P���, R�Z� for total data D���, and H�Z� for the inverse of the acquisition wavelet S�1���.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

a)

b)

c)

d)

e)

f)

g)

h)

Time (s) Time (s)

Figure 3. Iterative prediction and subtraction of multiples. �a� Input plane-wave response
for a medium with two interfaces. �b–d� Estimated surface multiples after iterations 1, 2,
and 5, respectively. �e� True response without surface multiples. �f–h� Estimated prima-
ries after iterations 1, 2, and 5, respectively.
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pecially for deepwater situations, where different orders of multiples
are well separated in time, this approach works very well.

Finally, note that if we can assume that the earth is horizontally
layered, then equations 3–7, 8a, 8b, and 9–11 remain valid for plane-
wave propagation under nonzero angles. Thus, a CMP gather can be
transformed to the frequency-wavenumber or frequency-ray-pa-
rameter domain, and each plane-wave component can be treated in-
dependently �Kennett, 1979b; Sen et al., 1998�.

How and why SRME works: The 2D and 3D cases

Equations 3–7, 8a, 8b, and 9–11 only hold for the strict 1D case
�i.e., a horizontally layered earth�. In this section, we discuss the
multidimensional situation. But let’s start with the 1D case and con-
sider the multiple prediction part, with the multiples written as
M����R���r0D��� in accordance with equation 8a.

In practice, we do not know the impulse response R���, so we use
�an estimate of� the primaries and the wavelet deconvolution filter:
M����S�1���P���r0D���. As stated earlier, the multiples can be
interpreted as the surface response of a plane wave, where the total
recorded wavefield acts as the source signature. Thus, the recorded
wavefield is re-emitted into the subsurface. This concept can be ex-
tended to a multidimensional situation. Therefore, we have to con-
sider an exploding surface, where the surface can be thought of as
being occupied by a dense grid of sources. Each source emits the sur-
face reflection of the measured upgoing wavefield r0D�xr,yr,�;xs,ys�
at location �xr,yr,z�0� originating from a seismic source at �xs,ys,z
�0�.

If the subsurface response of all these sources is measured again,
we obtain a prediction of the surface-related multiples in a full 3D
sense:

M�xr,yr,�;xs,ys��r0 �
xk,yk

R�xr,yr,�;xk,yk�D�xk,yk,�;xs,ys�,

�12�

where R�xr,yr,�;xk,yk� describes the primary response of the earth
for a source at �xk,yk,z�0� and a receiver at �xr,yr,z�0�. This is
closely related to Huygens’ principle �Verschuur, 1992� because we
can interpret the surface as a set of secondary sources that emits the
upgoing wavefield back into the subsurface such that primaries be-
come first-order multiples, first-order multiples become second-or-
der multiples, etc. Figure 2 shows this pictorially: every multiple re-
flection consists of a primary reflection combined with another pri-
mary or a multiple reflection. Appendix A provides more detail
about this intuitive description of SRME.

For the exact quantification of this expression, we must look at
wave theory and arrive at the Rayleigh II integral. Usually, the Ray-
leigh II integral is used to describe one-way wave propagation,
where the up/downgoing wavefield at point A is calculated based on
the up/downgoing wavefield measured at a surface at z0 �see, e.g.,
Schneider, 1978�:

D�r�A,���
1

2�

��
x,y

�G�r�A,�;r�0�

� z
D�r�0,��dxdy, �13�

where G�r�A,�;r�0� describes the Green’s function �i.e., the impulse

response� from a source at r�0� �x,y,z0� to point A with r�A

� �xA,yA,zA�. This continuous formulation resembles our more-or-
less intuitive discrete relation in equation 12. We can consider the
prediction of multiples as a generalized wavefield extrapolation pro-
cess down and up through the subsurface, described by the impulse
responses, R�xr,yr,�;xk,yk�.

In terms of amplitudes, this means the impulse response should
contain the vertical derivative term at the source side. In the past,
various approaches have been followed to include this effect.
Berkhout �1982� and Verschuur et al. �1992� assume that each im-
pulse response of the subsurface has been generated by a dipole
source at the surface because a vertical derivative can be simulated
by putting two monopole sources with opposite signs spaced closely
with one above the other, thus constituting a dipole source. Fokkema
and van den Berg �1990� consider an impulse response in terms of
the vertical component of the particle velocities �which are in fact
vertical derivatives of the pressure wavefield�. Weglein et al. �1997�

describe the impulse response in terms of monopole sources and re-
ceivers, thereby introducing an explicit obliquity factor to introduce
the effect of the vertical derivative.As a consequence, their formula-
tion requires deghosting at source and receiver sides of the data,
whereas Verschuur and Berkhout’s �1997� method allows the source
ghost to be present in the data, assuming that a source ghost provides
a good estimate of a dipole response.

A physical interpretation of equation 12 can be best obtained
when fixing the source and receiver coordinates of the output trace.
Then it describes the process of predicting the multiples for one
source-receiver combination �i.e., one trace in the seismic data�. In
the time domain, this reads

m�xr,yr,t;xs,ys��r0 �
xk,yk

r�xr,yr,t;xk,yk��d�xk,yk,t;xs,ys�,

�14�

where * means convolution in time. Note that d�xk,yk,t;xs,ys� de-
scribes a common-source gather and r�xr,yr,t;xk,yk� describes a com-
mon-receiver gather. These two data gathers are convolved trace by
trace, after which the convolution results are summed over the sur-
face coordinates.

Figure 4 visualizes this for one selected multiple event. The inter-
esting fact is that when all convolution events are summed, the phys-
ical multiple path �the solid line in Figure 4� will be selected. In
terms of traveltimes, the physical path is the one that obeys Fermat’s
principle of shortest time. In other words, by convolving the traces of
a common-source gather and a common-receiver gather, all possible
multiple reflection paths at the surface are created and the summa-
tion will automatically select the physical contribution. Note that the
location of the stationary reflection point at the surface will vary for
each type of multiple. Therefore, a preselection of traces to flow into
this summation may limit the accuracy of the prediction process.

In Figure 5, this is illustrated for the 2D case in the subsurface
model of Figure 4. One shot record is selected from the total data
�Figure 5a� and for the common-receiver primary impulse responses
the receiver at x�2100 m is chosen �Figure 5b�. The result of a
trace-by-trace convolution of these two data subsets is shown in Fig-
ure 5c, which is often referred to as the multiple contribution gather.
The summation of these convolutions is shown in Figure 5d, and this
corresponds to the 2D version of the prediction process �equation
14�:

3D SRME:Aperspective 75A249

Downloaded 28 Sep 2012 to 131.180.130.198. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



m�xr,t;xs��r0�
xk

r�xr,t;xk��d�xk,t;xs� . �15�

Note that the stationary points in Figure 5c �the apexes of each event�
provide the main contributions to the actual multiples in Figure 5d.
When this process is repeated for different common-receiver gath-
ers, the predicted multiples for all receiver locations can be obtained
�Figure 5e�. Subtracting the predicted multiples from the input
yields the estimated primaries in Figure 5f. In this case, the perfect
result was obtained because we used the true primary-impulse re-
sponses in the prediction process. In practice, when starting with the
total data as the first estimate of the primaries, the higher-order mul-
tiples will be overpredicted and one or more iterations of this process
will be required.

Common misconceptions about SRME

Over the years, several misconceptions about SRME have spread
through the geophysical community. A few of them are clarified in
the following paragraphs.

Absorption

The real earth always exhibits absorption of seismic energy, al-
though a larger part of this may be attributed to complex propagation
phenomena such as internal scattering within fine layers. A symmet-
ric, first-order multiple will have encountered twice the absorption
effect of its corresponding primaries. However, to predict this multi-
ple, the SRME method will convolve two primary responses, such
that the total absorption effect in the multiple is predicted properly.

Thus, SRME automatically takes absorption ef-
fects into account.

Wavelet

A related issue is that some people expect
SRME needs the wavelet observed in the seismic
data. However, the wavelet that is required for
SRME to work properly is the acquisition wave-
let, i.e., the wavelet emitted by the source. If this
wavelet, because of propagation effects, is modi-
fied during its journey through the earth, that
modification is part of the impulse response of the
earth, not of the wavelet itself. Therefore, esti-
mating a wavelet with SRME and using this
wavelet to deconvolve the data will remove the
acquisition effect but not the propagation effect.

Internal multiples

SRME can handle internal multiples in the
data. However, from a surface-multiple point of
view, these internal multiples are part of the sub-
surface impulse response and act as primaries.
SRME will not remove internal multiples, but it
will remove a surface-related multiple of an inter-
nal multiple �such as the hybrid multiple in Figure
2f�.

Converted waves

Analogous to the reasoning for internal multi-
ples, converted waves are part of the subsurface
impulse responses and are not addressed by
SRME. The assumption of SRME is that the mea-
surements are done in an acoustic environment,
which is true in the marine case. Any converted
wave will reach the receivers as a P-wave travel-
ing through the water layer, and SRME treats
them as a regular P-wave primary. Again, sur-
face-related multiples from converted waves will
be removed by SRME. If measurements are done
in an elastic environment, such as land, things be-
come a bit different. This is described for the 1.5D
case by Kennett �1979a, 1979b�, implemented in
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Figure 4. Surface multiples can be predicted by convolving the traces of a common-shot
gather �red lines� with those of a common-receiver gather �blue lines�. By summing all
these convolution results, the physical path �indicated by solid lines� will be obtained and
the other contributions will be cancelled.

Figure 5. Multiple-prediction mechanism. �a� Shot record with multiples for a source at x
�900 m. �b� Primaries-only impulse response common receiver gather with the receiv-
er at x�2100 m. �c� Trace-by-trace convolution of �a� and �b�, yielding a multiple con-
tribution gather �MCG�. �d� Summation of the traces in the MCG, being the predicted sur-
face multiples for a source at x�900 m and a receiver at x�2100 m. �e� Repeating the
convolution process for all receiver locations. �f� Primaries, obtained by subtracting the
predicted multiples �e� from the input shot record �a�.
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an adaptive fashion by Verschuur et al. �1988�, and extended to the
2D case by Wapenaar and Berkhout �1989�.

Refracted, diffracted, and direct waves

In general, one can state that any event that is upward traveling
from the subsurface and is detected by the receivers can be handled
by the SRME method. This includes — besides the previously men-
tioned internal multiples and converted waves — refracted waves
and diffracted waves. All are treated as primary arrivals, from which
surface-related multiples associated with these arrivals can be re-
moved �e.g., a surface-related multiple from a refracted wave can be
eliminated�. The only class of waves that cannot be handled by the
SRME method is direct waves �and surface waves in land data�.
These arrivals must be removed before the SRME process can be
carried out.

Data-set requirements

As described in the iterative implementation of SRME, the mea-
sured data themselves are used as the prediction operator �in the first
iteration�. For the 3D case, we obtain

m̂�1��xr,yr,t;xs,ys��r0 �
xk,yk

d�xr,yr,t;xk,yk��d�xk,yk,t;xs,ys�,

�16�

where ^ indicates that we will have imperfections because the seis-
mic data do not represent perfect impulse responses of the subsur-
face. Verschuur and Berkhout �1997� and Dragoset and Jeričević
�1998� discuss several of these practical issues. The most important
ones follow.

Acquisition wavelet

The seismic source should behave as a perfect point source, with a
unit-valued, broadband zero-phase signature. In practice, the source
�array� has directivity effects, a mixed phase, and causal wavelet,
and it contains a source ghost. Therefore, these effects should be
compensated for in advance or during the prediction and/or subtrac-
tion stage. Note that some implementations require that the source
ghost be included in order to avoid using the obliquity factor.

Receiver ghost

The SRME theory assumes that we use the upgoing wavefield at
the surface, but in reality we measure the total �pressure� wavefield
just below the surface. The main impact of this fact is a receiver
ghost that will influence the observed wavelet and — more impor-
tantly — create a directivity effect. If not compensated for, multiples
will be predicted with a wavelet that varies with propagation angle,
which will complicate the subtraction process.

Direct-wave removal

The direct wave �including its ghost� is not included in the SRME
method because it produces no multiples; the data should only con-
tain reflections from the subsurface. Therefore, the direct wave
should be removed from the data in advance, usually by a muting
process. This step becomes more complicated when the water layer
is shallow and the direct wave interferes with the early reflection
event�s�.

Missing near-offset reconstruction

The summation in equation 15 or 16 should cover all downward
reflection points �DRPs� at the surface where multiples have
bounced. Therefore, the aperture of the data should be large enough
to capture all of these locations. For the far offsets, this is usually not
a problem. However, at small offsets — where the nearest offset typ-
ically is 100–200 m — this produces severe edge effects in the pre-
dicted multiples, especially in shallow-water situations �see, e.g.,
Verschuur, 1991, 2006; Dragoset, 1993�. Therefore, a very impor-
tant preprocessing step is to extend the offsets to zero offset �see,
e.g., Kabir and Verschuur, 1995� and even beyond by applying
reciprocity.

Adaptive subtraction

We have explained how SRME predicts multiples. If the process
were perfect, that would be the end of the story; the predictions could
be subtracted from the original data to remove the surface multiples.
Unfortunately, for many reasons, such predictions are never perfect.
First, if SRME prediction consists of just the first-order iterative
term, then, as explained, the amplitudes of all multiples beyond first
order are incorrect. Second, if SRME prediction uses an acquisition
wavelet that contains errors or no acquisition wavelet at all, then the
accuracy of the predictions will be lowered. Third, errors in predict-
ed multiples can occur for other reasons, including shot-to-shot vari-
ations in the source signature, imperfect calibration of the receivers,
and errors that occur when a field data set imperfectly matches the
sampling requirements of the SRME algorithm. Finally and most
importantly, if multiples are predicted by 2D SRME, they can gross-
ly mismatch actual multiples because of the limitations of the 2D as-
sumption. Because of these phenomena, simple subtraction of pre-
dicted multiples from the original seismic traces generally gives
poor results. Note, too, that poor subtraction results can be com-
pounded when using an iterative SRME calculation that includes a
step-by-step subtraction.

When they are not too large, errors in predicted multiples often
can be handled by adaptively subtracting the predictions from the
original data. The most commonly used form of adaptive subtraction
is least-squares matched filtering �Abma et al., 2005�. Within a data
window, a filter is designed that, when applied to the multiple predic-
tions, will minimize the energy in the window after the filtered pre-
dictions are subtracted. The two main assumptions in this procedure
are that within the data window the predictions do not correlate with
primary reflections and that a single filter exists that can accomplish
the matching. The validity of these assumptions depends on the size
of the window, the filter length, the amount of variation in the pre-
dicted multiple errors, and the geologic distribution and character of
primaries and multiples.

Because of the known limitations of least-squares adaptive sub-
traction �van Borselen et al., 2003�, much effort has been expended
to find alternative methods of adaptive subtraction that can comple-
ment least-squares adaptive subtraction or replace it. Discussion of
these techniques is beyond the scope of this review. However, adap-
tive subtraction is an active research area and further developments
are likely.

Regardless of the type of adaptive subtraction that one uses, wide
experience has revealed the following:

• In general, a more accurate prediction of multiples reduces the
challenge of obtaining a good adaptive subtraction.
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• The errors in multiples predicted by 2D SRME can be so great
�Dragoset et al., 2006; their Figure 9� that no adaptive subtraction
algorithm has a chance of overcoming them. The only way
around this problem is to predict the multiples with 3D rather
than 2D SRME.

• Adaptive subtraction is still necessary with 3D predictions be-
cause of the reasons mentioned earlier. However, because of im-
proved prediction accuracy, the errors in predictions from 3D
SRME generally are within the bounds of what can be handled by
adaptive subtraction algorithms.

3D SRME

Why 3D SRME is necessary

Fundamental SRME theory is naturally three dimensional, in that
it accommodates a fully 3D earth. Until fairly recently �e.g., Kleem-
eyer et al., 2003�, however, SRME has almost invariably been im-
plemented in a 2D sense.

Implementations that are two dimensional assume that the geolo-
gy and acquisition geometry are two dimensional, with the only con-
cession to the true 3D nature of the problem’s being some accommo-
dation of the approximately pointlike nature of the source. Histori-
cally, 2D implementations have been favored because typical acqui-
sition geometries provide insufficient sampling in at least one direc-
tion for 3D SRME �see following section�. In addition, the cost
�CPU requirement� for 3D algorithms was prohibitive.

Figure 6 illustrates the limitations of a 2D algorithm when
crossline dip or cable feather is present. Figure 6a illustrates the ef-
fect of crossline dip on multiples predicted with a 2D algorithm. The
red raypath indicates the multiple recorded on the �S,R� trace �source
S, receiver R� for a reflector with crossline dip. The DRP for this
multiple, X, is on the shallow �updip� side of the 2D line; X has non-
zero crossline offset y and is therefore outside the 2D aperture,
which lies along the shot-receiver line only. The true traveltime for
the multiple is equal to the sum of the primary traveltimes on traces
�S,X� and �X,R�, but neither of these traces is in the 2D data set. The
traveltime predicted by a 2D algorithm corresponds to X�, the point
on the 2D line that minimizes the sum of the primary traveltimes on
�S,X�� and �X�,R�. This will always be greater than the true multiple
traveltime when the DRP is not on the 2D line.

Figure 6b illustrates the effect of cable feather for the case in
which feather aligns the traces with the dip direction. The traveltime
for the multiple on trace �S,R�, indicated by the red raypath, is equal
to the sum of the traveltimes on traces �S,X� and �X,R�.Although the

data set will contain a trace close to �S,X�, it will not contain a trace
close to �X,R�; the nearest trace, �S�,R��, must be used instead. The
primary traveltimes for �X,R� and �S�,R�� are not the same �see the
inset�, and this will lead to errors in the predicted traveltime, which
could be of either sign. In general, the DRP will not lie along the ca-
ble. Neither the trace �S,X� nor the trace �X,R� will be in the recorded
data set, leading to errors in the predicted multiples, which are a
complex function of the geology and the acquisition geometry.

Although efforts are often made to accommodate the assumptions
of the 2D algorithm — for example, by shooting in the direction of
maximum structural dip and by keeping cable feather to a minimum
— violations of the 2D assumptions inevitably occur in practice.
Wide-azimuth �WAZ� and orthogonal geometries are also inherently
incompatible with 2D algorithms.

Violations of the 2D assumptions lead to errors in the predicted
multiples �van Dedem and Verschuur, 1997; Dragoset and Jeričević,
1998; Nekut, 1998; Ross et al., 1999; Dragoset et al., 2006�. The tim-
ing component of these errors is predictable, given a model of the ge-
ology, and is also measurable in the data, e.g., using crosscorrela-
tions. Figure 7 illustrates that the errors vary rapidly and can have
magnitudes on the order of 100 ms. Moreover, the timing errors vary
according to the mode of multiple in a complex manner. Unless these
3D effects are small and slowly varying, adaptive subtraction is un-
able to compensate for them, and the 2D algorithm is ineffective.

The 3D nature of the acquisition geometry can be addressed to
some degree by extending the 2D algorithm to a 2.5D algorithm
�Matson and Corrigan, 2000�. However, such an extension does not
address 3D geologic effects and often suffers from issues relating to
inadequate sampling in the crossline direction.

The motivation for a 3D algorithm is clear. Given suitable data, a
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Figure 6. Limitations of 2D SRME when �a� crossline dip or �b�
feathering is present. The effect of cable feather is shown for the spe-
cial case when feather aligns the traces with the dip direction. The in-
set is a side view of reflection raypaths for reflections �X,R� and
�S�,R��. Refer to the text for a detailed explanation of this figure.
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Figure 7. The 200-m offset plane for a field data set at the level of the
first-arrival multiple �arrows� for �a� the input data, �b� 2D predicted
multiples, and �c� 3D predicted multiples. It is clear that the 3D pre-
diction is much more accurate than the 2D prediction. The timing er-
rors for the 2D prediction are about 80 ms at the center of the line.
�from Moore and Bisley, 2005�
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3D algorithm will theoretically avoid all of the assumptions dis-
cussed here. Even taking into account practical issues such as noise
and imperfect sampling, we can expect a model that is significantly
more accurate than that produced by a 2D algorithm. Advances in
computer power have greatly reduced the impact of this as a barrier
to the implementation of 3D algorithms, leaving data-sampling is-
sues as the main challenge to overcome.

Data-sampling requirements for 3D SRME

At the heart of any SRME algorithm is the integration over the ap-
erture of convolutions of pairs of traces �see SRME Fundamentals�.
This integration is typically performed by stacking �summing� the
convolutions that form the MCG. The sampling density in the MCG
should therefore be sufficient to avoid having aliased energy con-
taminate the stack trace. This condition in turn determines the de-
sired sampling of the recorded data.

The aliasing condition for the MCG depends on the maximum fre-
quency of interest and the maximum dip of events in the MCG. The
actual shape of events in the MCG is complex in general, but a useful
indication of the maximum dip can be obtained by considering the
asymptotic behavior of events as the DRP moves to infinity. In that
case, the traveltime in the MCG is essentially twice the traveltime
from the source or receiver to the DRP, and hence the apparent veloc-
ity is half of the physical velocity. Because only the stack trace of the
MCG is required, aliasing only becomes a problem when the aliased
energy contaminates the zero-wavenumber component of the spec-
trum. Therefore, the sampling requirement for the MCG is equiva-
lent to that for unaliased shot and receiver gathers. An example of
this phenomenon is shown for 2D SRME by Dragoset et al. �2006;
their Figures 4b and 5b�. That is, a filter sufficient to remove aliasing
from input shot records �Figure 4b� prevents aliasing artifacts from
appearing in predicted multiples �Figure 5b�.

In practice, the maximum observed dip in the MCG is generally
less than the asymptotic limit because the aperture is limited. The re-
quired sampling within the MCG can be determined by testing on
sparse but representative target traces.

The aperture needs to include the DRPs for any multiples of inter-
est. Because of the integration process, the word “include” should be
taken to mean inclusion of a Fresnel zone around the apex in the
MCG, such that the correct constructive interference is achieved by
the stacking process. In addition, it is normal to taper amplitudes at
the edge of the MCG to avoid edge effects. The size of this taper
should also be taken into account when determining the size of the
aperture.

To predict multiples for a given target trace, theoretically we need
to record areal shot and receiver gathers with sampling and apertures
matching those of the MCG �Dragoset and Jeričević, 1998�. Typical-
ly, this means we require inline and crossline shot and receiver spac-
ings on the order of tens of meters and inline and crossline offsets on
the order of several kilometers. These requirements are not achiev-
able in practice, and some form of interpolation is required. Before
considering this practical issue, though, we consider the implemen-
tation of 3D SRME given ideal data.

3D SRME calculation given ideal data

Given ideal data, the 3D SRME algorithm is very simple. The fol-
lowing procedure illustrates the basic steps of the algorithm.

A target trace �S,R� is a single source-receiver pair from a dense
regular survey grid, for which we generate a multiple model �Figure

8a�. Figure 8b shows an MCG aperture, which is designed to include
the DRPs of interest. The MCG is formed from complementary gath-
ers, an areal source gather with its source at S �Figure 8c�, and an ar-
eal receiver gather with its receiver at R �Figure 8d�. In an iterative
implementation, one of these gathers is composed of estimated pri-
mary traces; the other is composed of data traces. A single contribu-
tion to the MCG corresponding, for example, to DRP X is created by
convolving a trace with a source at S and a receiver at X, with a sec-
ond trace with a source at X and a receiver at R. The convolution step
is repeated for every DRPin the aperture and the collection of convo-
lutions is stacked.

This description omits some of the details, such as the obliquity
factor, effect of the ghosts, and the source signature. These effects
can be accounted for if necessary in practice but are of secondary im-
portance to the issues created by the fact that sampling of field data is
usually far from ideal.

The 3D SRME process is demonstrated in Figure 9, where we
consider a synthetic data set for a model that consists of two diffrac-
tors in a homogeneous medium. We consider the data measured
along the inline direction for y�0 and show the inline zero-offset
traces in Figure 9a. The crossline locations of the diffractors are y�

�300 m and y��200 m, i.e., they are out of plane. If we assume
that we only have measurements at y�0, the 2D situation, then the
predicted multiples are given in Figure 9b. Note that the locations of
these predicted multiples do not coincide with the true multiples. Es-
pecially for the left diffractor �being the more out of plane�, this dif-
ference is quite large �about 150 ms�. Because the error is different
for each multiple event, adaptive subtraction cannot overcome the
problem. This is visible in the 2D multiple-removal result in Figure
9e. The multiples for the second diffractor could be reasonably well
attenuated, but the multiples for the first diffractor could not be ad-
dressed.

Next, the full 3D prediction is carried out, assuming a dense areal
sampling in sources and receivers �Figure 9c�. Note that all multiples
are predicted with the correct kinematics. Figure 9d shows the MCG
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Figure 8. Plan view of 3D SRME, illustrating the MCG and required
traces. �a�A target trace. The dashed line indicates the region that in-
cludes all downward reflection points for the multiples of interest.
�b� The MCG aperture for the target trace �shaded box� and an exam-
ple DRP, X. �c� The required areal shot gather, with the source at S.
Receivers are required at all grid nodes �blue triangles� included in
the aperture. Trace �S,X� required for the example DRP is annotated.
�d� The areal receiver gather, with the receiver at R. Sources are re-
quired at all grid nodes �yellow stars� included in the aperture. Trace
�X,R� required for the example DRP is annotated.
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for the middle trace in Figure 9a �indicated with the dashed line� af-
ter the inline summation. This means that in equation 16, the summa-
tion over xk has been carried out, providing a prediction result for
each crossline location yk. After summation in the crossline direc-
tion, the energy at the apexes will stack into the predicted multiples.
The lateral location of each apex defines the DRP of the correspond-
ing multiple. Indeed, the timing of the apex locations in Figure 9d
corresponds with the true multiples in Figure 9a, as indicated by the
times at which the dashed line intersects them. Note that the 2D mul-
tiple prediction for this output trace is obtained by selecting the trace
at y�0 in Figure 9d, which is quite wrong for two of the events. As
expected, the subtraction of the 3D predicted multiples is close to
perfect, as visible in Figure 9f.

For this synthetic example, we were able to use the true primaries
as the multiple prediction operator to get first- and second-order
multiples in the correct amplitude balance. In practice, the primaries
are not available, and we need the iterative implementation of
SRME �equation 11�. In the second and later iterations of an iterative
implementation, the source-side or the receiver-side trace will con-
tain estimated primaries rather than data.Although it does not matter
whether the primary estimate is used on the source or receiver side,
the choice must be implemented consistently for all convolutions.

Application of 3D SRME to field data

Field data are far from ideal in many respects. The most important
shortcoming in practice is inadequate sampling, in terms of sam-
pling density and range of offsets acquired. Many workers �e.g., Lin
et al., 2005; Bisley and MacNeill, 2008; McHugo et al., 2009� show
the detrimental effects of insufficient aperture and sampling on mul-
tiple models using field data.

All acquisition geometries used today exhibit nominal sampling
densities that are too coarse in at least one direction. For marine-

streamer data, the worst-sampled direction is typically the crossline
source direction, which is often undersampled by a factor of 10 or
more compared to the desired sampling. This coarse sampling is of-
ten exacerbated by coverage holes that occur as a result of obstruc-
tions or feathering. In addition, the actual sampling is irregular and
does not fit the required sampling of the MCG.

Typical geometries also do not record areal shot and receiver gath-
ers with sufficient extent to cover the desired aperture. For marine
data in particular, the maximum crossline offset is often insufficient
by a factor of three or more. In addition, near offsets are often com-
pletely missing or poorly sampled, and negative offsets are not re-
corded. Field data therefore invariably require some form of interpo-
lation and extrapolation before they are suitable for 3D SRME.

Many other characteristics of field data violate the assumptions of
the 3D SRME algorithm to a lesser extent. For example, the tidal
state and/or water velocity vary throughout the acquisition, such that
the recorded data are inconsistent with a single-earth model. Field
data also exhibit variations in the source signature and, of course,
contain noise. As far as possible, these effects are minimized by ap-
propriate preprocessing. Some of the implications of these practical
issues are described in more detail by Dragoset et al. �2006�.

IMPLEMENTATIONS OF 3D SRME

Over the years, various implementations of 3D SRME have been
reported in the literature, their difference mainly found in the way
they handle the spatial sampling issues described earlier. In this sec-
tion, we give an overview.

Data interpolation/extrapolation/regularization

In the early days of 3D SRME �the late 1990s and early 2000s�, the
general concept was to interpolate and extrapo-
late all data required to carry out the 3D SRME
process. Thus, the difference between the pre-
sented methodologies was determined by the
type of interpolation method used. The first re-
ported implementation of 3D SRME on field data
was by Biersteker �2001�, later expanded on by
Kleemeyer et al. �2003�.Although they do not de-
scribe the exact interpolation method, it is clear
that they interpolate the data before doing the
summations.Along similar lines, Lin et al. �2004�

and Matson et al. �2004� advocate to first interpo-
late the data to a dense grid, followed by full 3D
prediction.

Baumstein and Hadidi �2006� are clearer about
their interpolation methodology: they use dip
moveout �DMO� and normal moveout �NMO� to
project the data onto a dense, regular grid, a pro-
cess they call inverse shot record DMO �ISR-
DMO�.

Crossline reconstruction of multiple
contributions

To solve the 3D SRME problem, van Dedem
and Verschuur �2000, 2005� postpone the interpo-
lation step to a later stage. First, the inline sum-
mation is carried out, this being the summation
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Figure 9. Illustration of 2D versus 3D multiple prediction for a model with two diffractors
in a homogeneous medium. The diffractors are located at �300 m and �200 m out of
the recording plane. �a� Inline zero-offset section of the model. �b� The 2D predicted mul-
tiples along the inline direction for the zero-offset locations in �a�. �c� The 3D predicted
multiples, using a dense inline and crossline distribution of sources and receivers. �d�
Multiple contribution gather after inline summation for the middle trace in �a�, indicated
by the dashed line. Note that the apex locations in the MCG coincide with the times at
which the dashed line in �a� intersects the multiples. �e� The 2D subtraction result. �f� The
3D subtraction result.
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over xk in equation 16. This summation can usually be done without
problem because in traditional narrow-azimuth 3D marine data ac-
quisition, the inline coordinates are well sampled in terms of sources
and receivers. This results in the so-called crossline multiple contri-
bution gathers �MCGs� where only a few contributions are present,
one for each contributing source line. For a typical 3D marine data
set with dual sources, this gives four contributions per output trace.
Such an MCG consists of curved events, where the apex of each
event represents the exact multiple kinematics.

In the case of a well-sampled crossline MCG, a simple summation
of these traces provides the predicted multiples at the apex of each
event, as demonstrated in Figure 9. Next, an interpolation step is car-
ried out over these sparse contributions to approximate the apex lo-
cation of each event. Because of the low number of traces, a great
deal of a priori knowledge should be put into this interpolation.
Therefore, hyperbolic events are assumed, and a sparse inversion
method describes the crossline MCGs with only a few apex-shifted
hyperbolic events. This approach is adopted by Hokstad and Sollie
�2003� and van Borselen et al. �2005�. They modify the method to
apex-shifted parabolic events, such that the expensive sparse trans-
formation calculations can be carried out efficiently in the frequency
domain with only minor loss in accuracy.

On-the-fly interpolation

An alternative to preprocessing the data to make them conform to
the assumptions of the algorithm is to implement the algorithm as-
suming data are available wherever they are required. An on-the-fly
interpolator is used to create the required traces from the recorded
traces only when they are needed. These interpolated traces are then
discarded after use.

This implementation philosophy allows the prediction algorithm
to be made independent of the interpolator, in that it does not need to
know anything about the actual, or regularized, acquisition geome-
tries. The prediction algorithm is very simple and requires few pa-
rameters because it can expect to receive traces wherever they are re-
quired. This is accomplished without the need to create large, regu-
larized data sets.Another reassuring feature of the algorithm is that it
tends naturally to the ideal algorithm as the available data become
increasingly well sampled.

With the advent of increasingly diverse acquisition geometries
�multiazimuth, wide azimuth, rich azimuth, coil shooting, etc.�, the
flexibility of 3D SRME algorithms with respect to the geometry is
becoming increasingly important. The detachment of the prediction
algorithm from the interpolator means that the same prediction algo-
rithm �and corresponding quality-control products� can be used re-
gardless of acquisition geometry. The complexity is moved to the in-
terpolation algorithm, which generally has its own associated quali-
ty-control products that can be used in conjunction with those for the
prediction algorithm.

The main disadvantage of on-the-fly algorithms is that many in-
terpolated traces are required. Typically, the aperture for a given tar-
get trace contains tens of thousands of DRPs, and each requires two
interpolated traces. Therefore, only very simple interpolators are
practical. Fortunately, however, because the MCGs contain so many
convolutions, the quality of each interpolated trace can be quite low
without this having a significant detrimental effect on the output
when the MCG is stacked.

Probably the simplest class of interpolators that are applicable to
this method are the nearest neighbor methods, which compute the in-

terpolated trace from the nearest available trace �van Dedem and
Verschuur, 2001; Kurin et al., 2006; Moore and Dragoset, 2008�.
There are many ways to define “nearest,” but typically some weight-
ed combination of the errors in midpoint, offset, and azimuth is used
�Figure 10�. These errors then provide quality-control information
on the likely quality of the interpolated trace, and the errors can be
accumulated in some way over the MCG to give an overall quality
estimate for the predicted multiple. In practice, it is normal to try to
correct the available trace for the errors in offset using a differential-
moveout correction in a manner similar to that used by Levin �2002�

to simulate prestack data from a poststack volume. In principle, if a
dip model is available, it is also possible to correct for errors in mid-
point location.

Current 3D SRME implementations using nearest-neighbor, on-
the-fly interpolation algorithms are considered state of the art for
production processing, and several spectacular examples are shown
later in the article. Although they can be very machine intensive,
they are popular because the parameterization is simple, intuitive,
and stable, and excellent results can be easily obtained by nonexpert
users.

Algorithms based on regularization can also be run in an on-the-
fly mode, in that the regularized data need only be stored for as long
as they are required. If the target traces are computed on a regular
grid, then this can be made efficient because regularized shot and re-
ceiver gathers can be computed once and all of their contributions to
the output model accumulated before discarding the regularized
data. The ISR-DMO method is particularly amenable to this imple-
mentation.

R

M
X

S

R

M

X

Figure 10. Plan view of an implementation of 3D SRME using on-
the-fly interpolation. Surface multiples for trace �S,R� are to be mod-
eled. The dashed line illustrates the region that includes all down-
ward reflection points for the multiples of interest, and the MCG ap-
erture required to include these is drawn as a shaded box. The DRP
grid is centered on the midpoint M of trace �S,R� and is aligned with
its source-receiver line rather than with the background survey grid.
An example DRP is annotated at X, which requires traces �S,X� and
�X,R�. The enlarged portion �bounded in orange� illustrates the se-
lected nearest trace to �X,R�, using the selection criteria of minimum
weighted errors in midpoint, offset, and azimuth. This selected trace
is then modified on the fly to improve the correspondence to the de-
sired trace �X,R�.
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Approximations to 3D SRME

The computational cost and complex input/output associated with
any implementation of the full 3D SRME algorithm have naturally
led to the development of many approximate algorithms.As always,
the desire has been to reduce the cost of the algorithm yet maintain its
accuracy.

This section focuses on cost reduction through algorithmic chang-
es. The cost may also be reduced by other means, e.g., by choosing
the aperture carefully �ultimately, in a space-variant manner� or by
interpolating a sparse model of the predicted multiples, thereby re-
ducing the number of target traces.

The simplest way to reduce the cost of 3D SRME is to reduce the
number of convolutions required. Because the aperture and sam-
pling are essentially fixed, this means finding a way to reuse convo-
lutions for many target traces. Unfortunately, no convolutions are
naturally duplicated from one target trace to the next, so it is desir-
able to be able to modify a convolution with a given geometry into
that for a similar geometry. If the same modification applies to many
convolutions in the MCG, then the modification can be performed
after those convolutions are stacked, and the performance advantag-
es are greatly enhanced.

Many workers have investigated these kinds of approaches. The
3D result in Figure 7 and the azimuth gather in Figure 11 were pro-
duced using one such algorithm. Despite the approximations that
were made, this algorithm still allows the multiples to be predicted at
true azimuth. The figures show that true-azimuth prediction was im-
portant in this case.

Although multiples are sensitive to azimuth in complex situations
�Figure 11�, there are simpler cases where the azimuth sensitivity
can be neglected. If azimuth variations are small or 3D effects are
weak, then predicting multiples at a fixed azimuth regardless of the
actual azimuth of the target trace offers significant performance ad-
vantages while maintaining reasonable accuracy. This approach is
generally applicable only to narrow-azimuth surveys, and the fixed
azimuth �often termed zero azimuth� is the nominal inline azimuth of
the survey. These algorithms are commonly termed zero-azimuth
3D SRME.

Of particular interest are algorithms that modify 2D SRME mod-
els into 3D SRME models �Matson and Abma, 2005�. A 2D SRME
model can be viewed as stacked MCGs in which the source, receiver,
and DRPall have the same crossline location. If we restrict ourselves
to zero-azimuth target traces, then we need to be able to modify these
stacked, zero-crossline-offset convolutions into those that would
have been computed if the DRP had some nonzero crossline offset
from the source and receiver.

Figure 12 illustrates how this works. Suppose we want to predict
multiples for a �zero-azimuth� target trace �St,Rt� on a target line Lt.
First, multiples are predicted independently for every line using a 2D
algorithm. The 2D-predicted multiples for line Lt include contribu-
tions from DRPs such as Xt that lie on the line, but they do not include
contributions from DRPs such as Xt�2, which lies on line Lt�2. The
contribution from this latter DRP, which ideally should be the con-
volution of the red traces �St,Xt�2� and �Xt�2,Rt�, must be estimated
from the convolutions, which are implicit in the 2D-predicted multi-
ples. By making assumptions and approximations �Matson and
Abma, 2005�, we achieve this using operators that are kinematically
similar to azimuthal moveout. The operators effectively transform
zero-crossline-offset convolutions into their equivalents at finite
crossline offset. However, such a correction requires a velocity mod-
el; therefore, this class of approximate algorithm is somewhat re-
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Figure 11. The effect of azimuth on primary and multiple reflections.
�a� Side views of the primary �green� and multiple �red� raypaths for
a planar water bottom with 10° dip. The primary raypath extends
from the shot S to the receiver R via an upward reflection at the water
bottom P. The multiple raypath contains two upward reflection
points �PS and PR�, as well as the DRP, X. �b�Aplan view of the same
raypaths �arrowed green and red lines� with the same points annotat-
ed. The trace azimuth is 30° to the dip direction. The arcs indicate the
variation in the ray points as the azimuth is varied from �80° to
�80° with the midpoint M held constant. The primary reflection
point P is contained within a relatively small area of the water bot-
tom as the azimuth is changed over a given range. In contrast, the
multiple reflection points PS and PR traverse a large area for the same
azimuth range and therefore see a greater variation in water depth
and traveltime than the primary. �c� 3D-predicted multiples at 2500
-m offset as a function of azimuth for a specific midpoint location in
a field data set. Most multiples are very sensitive to azimuth, exhibit-
ing up to 300 ms of timing variation �in either direction� over the 47°
azimuth range shown. �from Moore and Bisley, 2005�
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Figure 12. Schematic of zero-azimuth SRME. The target trace
�St,Rt� is on target line Lt. The 2D-predicted multiples for line Lt in-
clude contributions from DRPs such as Xt that lie on the line, but they
do not include contributions from DRPs such as Xt�2, which lies on
line Lt�2. The contribution from this latter DRP, which ideally
should be the convolution of the red traces �St,Xt�2� and �Xt�2,Rt�,
must be estimated from the convolutions that are implicit in the 2D-
predicted multiples.
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moved from the purely data-driven ideal. Convolutions from a range
of crossline offsets are then stacked to produce an estimate of the
multiples that a 3D algorithm would predict.

FIELD DATA EXAMPLES

Northwest Shelf, Australia

Figure 13 compares 2D, zero-azimuth 3D, and true-azimuth 3D
results for a field data set from the Northwest Shelf,Australia.Apro-
gressive improvement in the results is seen as the 2D assumption is
first dropped, and then the zero-azimuth assumption is also re-
moved. More details are given by Bisley and MacNeill �2008�.

Gulf of Mexico wide-azimuth data example

In Figure 14, the difference between zero-azimuth and true-azi-
muth 3D multiple prediction is demonstrated for one shot record.
The data are from a WAZ survey in the Keathley Canyon area. The
shot record shown in Figure 14a is located at a 2.4-km nominal
crossline offset. For more information on this data set, see Aaron et
al. �2008� and Fromyr et al. �2008�.

Figure 14b shows the predicted multiples when the zero-azimuth
assumption is used, meaning that the input data are first transformed

to zero azimuth via an azimuth-moveout procedure, after which a ze-
ro-azimuth prediction takes place, according to Matson and Abma
�2005�.After that, predicted multiples can be projected to their origi-
nal azimuths. For this complicated subsurface structure, in combina-
tion with the large crossline offset of the receiver location, the result
is unacceptable errors in the prediction. Note that the events indicat-
ed with the red ovals are mispositioned with respect to the corre-
sponding events in the input shot record and also do not have the
proper lateral shape. The latter is especially visible for the upper
area. In the lower red area, the relative amplitudes of the predicted
multiples do not match the original ones. When the true-azimuth pre-
diction method is used �Figure 14c�, the results indicate predicted
amplitudes, positioning, and shape of the multiples are in much bet-
ter agreement with the multiples in the input data, as noted in the
green areas.

Diffracted-multiple example

The final data example is from the full-azimuth circular-acquisi-
tion survey featured in Figure 1. The water-bottom reflection and
several other reflectors just below it combine with a diffracting point
to create a sequence of diffracted multiples �Figure 15a�. A true-azi-
muth version of 3D SRME that includes nearest-neighbor, on-the-
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Figure 13. Field data example from the Northwest Shelf, Australia.
�a� True-azimuth 3D SRME model. �b� Input. �c� The 2D SRME re-
sult. �d� Zero-azimuth 3D SRME result. �e� True-azimuth 3D SRME
result. These panels display a progressive improvement after remov-
ing assumptions used in model generation. The model panel is in-
cluded to help identify multiples in the other panels. The dashed line
marks a simple region of water-bottom multiple that is well attenuat-
ed in all cases. The arrows to the right indicate areas of complex mul-
tiples. Some improvement over 2D SRME is seen when using zero-
azimuth 3D SRME. A large improvement occurs when the zero-azi-
muth approximation is discarded. Displays are near-offset NMO
stack panels from a sail subline. The match filtering parameteriza-
tion is the same for all SRME results.
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Figure 14. Comparison of �b� zero-azimuth 3D multiple prediction
with �c� true-azimuth 3D multiple prediction for �a� one shot record
extracted from a 3D survey in the Gulf of Mexico Keathley Canyon
area. Note the errors in predicted multiples as observed in the zero-
azimuth prediction �within the red ovals� are absent in the true-azi-
muth prediction �within the green ovals�. �from Aaron et al., 2008�
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fly interpolation is applied to the data set �Figure 15b�. The interpola-
tion includes differential moveout �DNMO� to correct traces found
by the search for discrepancies between their offsets and the offsets
of the desired traces.

The DNMO correction used in this example is appropriate for pri-
mary reflections but not for diffractions. Why, then, is the attenua-
tion of the multiple diffractions so successful? The answer to this
question hearkens back to our discussion about errors in multiple
contribution gathers. If those errors have no systematic bias, then
they will stack out, leaving behind a good multiple prediction.
Moore and Dragoset �2008� show a synthetic example of the timing
errors in an MCG for a diffracted multiple; the errors are indeed un-
biased.

DISCUSSION

Even a lengthy article such as this can only hope to give a general
overview of the development of 3D SRME into the powerful process
we know today.Although we have tried to cover the major aspects of
that development, we acknowledge that it has been impossible to
mention all of the research activity in this field. Furthermore, we
have only been able to include, or reference, a very limited subset of
the wide variety of case histories that have been published. We offer
our apologies to those who have contributed to this field but have not
received specific mention.

Despite recent advances, 3D SRME still has limitations.Adaptive
subtraction remains a feature of the SRME workflow, though its job
is becoming easier. We can expect our results to improve as a conse-
quence of advances in adaptive subtraction technology, but the ulti-
mate goal remains the refinement of the SRME multiple model-
building process to the point where adaptive subtraction is obviated.

Without a doubt, the main reason for imperfections in our 3D
SRME models remains inadequate sampling of the wavefield. Fu-
ture developments in acquisition technology will almost certainly
improve this situation, but we remain a long way from the theoretical
ideal. Advances in interpolation technology can also be expected to
play their part in improving our models. In particular, we can expect
the interpolation component of the on-the-fly methods to improve,
especially as more computer power becomes available.

The theory and examples in this paper mirror those in the litera-
ture, in that there has been a focus on deepwater data. Shallow-water

data bring their own issues — most notably, the increased impor-
tance of near offsets and the need to iterate the prediction process to
obtain correct amplitudes. Ideally, progress with respect to the first
issue should be addressed with advances in acquisition technology,
but there is also significant potential for new processing methods.An
example is joint estimation of missing near-offset data and surface
multiples �van Groenestijn and Verschuur, 2009�.

Land data, of course, also suffer from surface multiples. The
strong solid/air interface reflects almost all upgoing energy back into
the subsurface, just as the water/air interface does in the marine case.
However, in the land case, other issues often attract more attention.
These include the attenuation of ground roll and other noise modes,
and compensation for variations in near-surface conditions. Kelamis
and Verschuur �2000� attempt to apply surface multiple removal to
land data. They conclude that preprocessing is the key issue for ap-
plying data-driven methods to land data; any residual noise in the in-
put data will be amplified in the predicted multiples, thus limiting the
effectiveness of the subtraction. Workers de Maag et al. �2009� show
that 3D SRME can remove long-period multiples from a wide-azi-
muth land data set. They attribute this success to the improved wave-
field sampling of their WAZ acquisition. Although these two results
are promising, further work and examples are needed before we can
conclude that 3D SRME is, in general, as successful a process for
land data as it is for marine data.

Finally, we should remember that the removal of multiples is
largely motivated by our inability to process them properly; in fact,
they contain useful information about the subsurface. Even though
topics such as imaging or inverting multiples are well beyond the
scope of this paper, we should not forget that, one day, articles such
as this might become items of purely historical interest.

CONCLUSIONS

We have presented our perspective on the history, theory, imple-
mentation, and use of 3D surface-related multiple elimination. The
theory itself is exact: With ideal field data and adequate computa-
tional resources, SRME multiple prediction should work perfectly,
without assumptions or knowledge about the subsurface. In practice,
field data are never ideal. Consequently, much of the research and
development activity on 3D SRME has focused on determining how
best to predict multiples for imperfect data. Many solutions have
been proposed. The most accurate of these incorporate true-azimuth
prediction, in which the algorithm honors the azimuths of the traces
for which multiples are predicted. The currently favored approach to
true-azimuth 3D SRME uses on-the-fly interpolation. In typical im-
plementations of this method, some knowledge of the subsurface,
such as moveout velocities, is required; this means that one no longer
has a purely data-driven approach. The benefits of this pragmatism
are great. Incorporating the data interpolation into the prediction de-
couples the entire SRME process from detailed dependence on sur-
vey geometry. Furthermore, as our data examples show, the results
are excellent.
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APPENDIX A

AN INTUITIVE EXPLANATION OF SRME

When SRME was introduced to the geophysical community, it
met with a great deal of skepticism. Many geophysicists, being fa-
miliar with traditional methods of multiple attenuation, found it dif-
ficult to believe that all surface multiples could be predicted directly
from surface recordings without specific knowledge of or assump-
tions about the subsurface. The short comeback to professed disbe-
lief was that the properties of SRME follow directly from the mathe-
matical theory of wave propagation. Although true, this reply was
unsatisfactory to those not well versed in that theory. Thus, early pro-
ponents of SRME strove to explain the algorithm in ways that ap-
pealed to intuition rather than mathematical rigor. This appendix is
based on those intuitive explanations.

Let’s imagine the simple experiment shown in Figure A-1. A
sound wave of arbitrary complexity is traveling through a nonab-
sorptive homogenous medium toward a listening post at point R. Be-
tween point R and the sound wave, we choose some imaginary geo-
metric surface such as B and pose this question: If the sound wave is
measured as it propagates through each point of surface B, do those
measurements allow computation of the exact sound that will reach
R? The answer to this question is yes, and the computational method
is described approximately by the Huygens-Fresnel principle of
wave propagation.5 The principle states that each point on measure-
ment surface B gives rise to a new pointlike source of sound that is
equivalent to the sound incident at that point. In a homogeneous ma-
terial, the sounds from these so-called secondary sources propagate
as expanding spherical waves, and the total sound that reaches any
subsequent point, such as R, is the superposition of those secondary

sound waves �Figure A-2�. Thus, given the measurements, the shape
of surface B, and the location of point R relative to surface B, the cal-
culation of the sound that reaches R is straightforward.Akey proper-
ty of the Huygens-Fresnel principle is that the nature of the original
source of the sound at S as well as the propagation phenomena the
sound wavefield experiences prior to reaching surface B is com-
pletely irrelevant to solving the posed problem.

Next, let’s make the experiment more complicated. Suppose that
the material inside of surface B is absorptive and contains unknown
inhomogeneities. In that case, the Huygens-Fresnel principle is still
valid, but the calculation of the sound that reaches R is no longer sim-
ple because the properties of the material now can cause all sorts of
complicated phenomena to occur; that is, we no longer have simple
spherical wave propagation to R from the measurement points on B.
Can we still calculate the sound at R? Again, the answer is yes, but
now the experiment must include an additional set of measurements.
As shown in Figure A-3, suppose that an impulsive sound source is
activated at one of the measurement points on surface B and the
sound received at point R is recorded. This procedure is repeated for
every measurement point on B. In other words, the impulse response
of the inhomogeneous material is measured between R and every
point on B. Analogous with filter theory, if a sound wave incident on
a particular point of B is measured, then its effect at point R is given
by the convolution of the measurement at B with the appropriate im-
pulse response. The total effect at R of a sound wave incident on B is
thus a superposition of the convolutions between the measurements
made at B and the impulse responses recorded at R. The details of the
material inside surface B are completely irrelevant because their im-
pact on sound-wave propagation has been fully characterized by the
set of impulse response measurements at R.

Finally, in a sequence of steps, let’s morph the second experiment
into a configuration that resembles a seismic experiment �Figure
A-4�. First, surface B becomes a plane such that all sound that reach-
es R must pass through it. Second, instead of being transparent, B be-
comes a perfect reflector of sound. Although dramatic, this change

5H. von Helmholtz and G. Kirchhoff found more mathematically rigorous solutions to this problem. Nevertheless, the Huygens-Fresnel principle provides an
intuitive understanding of how the problem is solved.
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Figure A-2. An illustration of the Huygens-Fresnel principle of
wave propagation. The answer to the question posed in Figure A-1 is
“Yes.” According to the Huygens-Fresnel principle, the wavefield
that propagates toward R is a superposition of the wavefields from
secondary sources placed on surface B. The figure shows a few of the
secondary wavefields. The output of each secondary source is the
sound incident on B at that point. If there are no inhomogeneities
within B, then the secondary wavefronts are spherical, which makes
calculation of the sound that reaches R easy.
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Figure A-1. Illustration of a wave propagation problem. A sound
source S and a sound detector R are placed in a homogeneous materi-
al �yellow�. Because of inhomogeneities �blue�, the source creates a
complex sound wave that propagates toward R. An arbitrary surface
B is defined so that it surrounds point R. The problem: If the sound
wave incident on surface B is measured, can that data be used to pre-
dict the sound that reaches R? �Note that B is a 3D surface. It is
shown here as a 2D surface to simplify the diagram.�
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has no impact on the dynamics and kinematics of the experiment.
Third, B is identified as the sea surface, which is assumed to be a per-
fect reflector that changes the dynamics of the experiment by revers-
ing the polarity of the reflections. Thus, the sound incident on B �now
the sea surface� is a 3D common-shot gather, the set of impulse re-
sponse measurements from the second experiment is a 3D common-
receiver gather, and a stack of the trace-by-trace convolution of the
two gathers predicts the surface multiples received at R from a
source firing at S. As in the imaginary experiment above, surface
multiple prediction requires no details or assumptions about the
sound propagation through the medium because all of that informa-

tion is contained within the two sets of measurements.
Thinking about SRME as a sound propagation experiment, as the

second one described above, makes many of its properties and re-
quirements easy to understand. Clearly, every point in surface B that
receives sound from the source at S should be considered a measure-
ment point of the surface. This explains the aperture requirement for
SRME as well as why holes in the aperture — from missing near off-
sets, for example — must somehow be filled. In addition, every mea-
surement point on B must have its impulse response measured at R,
which explains why SRME ideally requires recording a shot at every
measurement point on the surface. Also, a 3D common-receiver
gather used in an SRME calculation is supposed to be a collection of
impulse responses. If those responses are measured by a sound pulse
that is not an impulse, then that sound pulse must be removed from
the measurements. This is why SRME requires knowledge of the
source signature. And if source signatures contain errors, then the
predicted multiples will contain errors as well �see Figure 7 in Dra-
goset et al., 2006�. Finally, when a 3D SRME calculation ignores
trace azimuth, it’s as if one performed the sound propagation experi-
ment calculation by assuming the position of R in Figure A-3 were
somewhere other than its true position. Clearly, such a calculation
would be faulty.

The experiment and data manipulation that we describe is a 3D
version of the second term on the right in equation 10. Because that
equation is in the frequency domain, the convolution of the data with
themselves appears as a multiplication. The factor A����r0S

�1���
includes the reflection coefficient of the sea surface and a removal of
the source signature.
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Figure A-3. A secondary experiment. When inhomogeneities are
present within surface B, the wavefronts that propagate toward R
from the secondary sources are no longer spherical. If the inhomoge-
neities are unknown, then the wavefield at R cannot be computed.
This problem can be overcome by performing a second experiment
in which the impulse responses at R from each point on B are mea-
sured. An example of one such measurement is shown here. A stack
of convolutions of the incident wavefield at points on B with the cor-
responding impulse responses predicts the sound received at R.
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Figure A-4. Moving counterclockwise from the upper left, the ex-
periment in Figure A-1 morphs into a seismic experiment. �a� The
original experiment. �b� The measurement surface becomes a plane
rather than an arbitrary shape. �c� A perfect reflector is positioned at
the measurement plane. This alters neither the kinematics nor the dy-
namics of the experiment. �d� The measurement plane is now identi-
fied as the sea surface, the inhomogeneities become the seafloor and
below, and the source and receiver are in the measurement plane.
The wavefield from S incident on B is a common-shot gather, and the
impulse responses at R from points on B are a common-receiver
gather �with the source signature removed�.
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