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Abstract: Passive human sensing approaches based on the analysis of the radio signals emitted by the
most common wireless communication technologies have been steadily gaining momentum during
the last decade. In this context, the Bluetooth technology, despite its widespread adoption in mobile
and IoT applications, so far has not received all the attention it deserves. However, the introduction
of the Bluetooth direction finding feature and the application of Artificial Intelligence techniques
to the processing and analysis of the wireless signal for passive human sensing pave the way for
novel Bluetooth-based passive human sensing applications, which will leverage Bluetooth Low
Energy features, such as low power consumption, noise resilience, wide diffusion, and relatively low
deployment cost. This paper provides a reasoned analysis of the data preprocessing and classification
techniques proposed in the literature on Bluetooth-based remote passive human sensing, which is
supported by a comparison of the reported accuracy results. Building on such results, the paper
also identifies and discusses the multiple factors and operating conditions that explain the different
accuracy values achieved by the considered techniques, and it draws the main research directions for
the near future.
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1. Introduction

In general terms, radio-based passive human sensing refers to the ability to remotely
discern the presence and, possibly, the activities, of human beings, without the need for
them to bring or wear any device and for the sensing device to emit a probing signal [1]. In
fact, the sensing device relies on external sources for the generation of the probing signal by
exploiting the radio signal emitted by the most common wireless communication devices
(e.g., WiFi and Bluetooth). More specifically, the radio signal is received, processed and
the required information is extracted from the deformation and degradation that affect the
signal when the presence of a human body obstructs its trajectory (see Figure 1a).

Comparing with conventional, computer-vision based approaches, such as those
described in [2–5], passive remote sensing offers several important advantages. First, there
is easier user acceptance, as wireless networks are not able to record images, and therefore,
they are not perceived as privacy-invasive by the perspective users. Second, they have
wider applicability, as wireless networks do not suffer from Line-of-Sight (LoS) obstruction
and bad illumination conditions and may also support through-the-wall sensing. LoS
sensing is shown in Figure 1a), whereas non-LoS sensing and through-the-wall visibility
are illustrated in Figure 1b).

Finally, deployment efforts and costs may be reduced, as passive sensing may take
advantage of the existing wireless communication infrastructures and sensor networks [6],
such as the ones used for public utility and safety [7].

Sensors 2022, 22, 3523. https://doi.org/10.3390/s22093523 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22093523
https://doi.org/10.3390/s22093523
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-1275-7433
https://orcid.org/0000-0002-2935-0763
https://orcid.org/0000-0001-6257-5529
https://orcid.org/0000-0002-0604-9783
https://doi.org/10.3390/s22093523
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22093523?type=check_update&version=2


Sensors 2022, 22, 3523 2 of 20

(a) (b)

Figure 1. Line of Sight (LoS) visibility (a). Non-Line of Sight and through-the-wall (b).

In the literature, passive (also called deviceless) remote sensing of human beings
was first developed using ad hoc RF transmitters and receivers. Next, WiFi off-the-shelf
technology, already successfully applied to a variety of other applications, such as patient
monitoring [8–10] and factory automation [11], was adopted for this goal. The reason for
relying on WiFi mainly resides in the high transmission rate, which allows high-frequency
sampling, and in the availability of very detailed Channel State Information (CSI), which
allows a stable and reliable extraction of the presence, position and activity information
of the human subject. Nevertheless, the Bluetooth technology offers some interesting
advantages over WiFi, which suggest the investigation of its application to the passive
remote sensing area. In fact, recent studies demonstrated that Bluetooth represents a valid
alternative for several reasons:

• Bluetooth is integrated in most portable devices (such as tablet, smartphone, PDA, etc.),
and it is often used for personal health monitoring [12–14].

• It is energy-efficient (its power consumption is lower than WiFi), in particular after
the introduction of the Bluetooth Low Energy specifications in Bluetooth 4.0.

• Its deployment in business, industrial and home environments is simple and flexible,
as Bluetooth devices are small, minimally invasive and less expensive than other
solutions [15].

Despite the aforementioned advantages, the number of studies that have investigated
the application of Bluetooth to passive human sensing so far is significantly lower than
the number of works based on WiFi. This consideration motivates this paper, which
presents an overview of the most relevant works dealing with Bluetooth-based passive
human sensing. The paper provides a thorough analysis of the data preprocessing and
classification techniques proposed in the literature, which is followed by a comparison of
the reported accuracy results. Building on the presented results, the paper identifies and
discusses the multiple factors and operating conditions that explain the different accuracy
results achieved by the considered techniques. On the basis of this discussion, the paper
draws the main research directions for the near future.

To the best of our knowledge, there are no other reviews, in the literature, dealing with
Bluetooth-based wireless passive human sensing at the time of writing this work.

The paper is structured as follows. Section 2 discusses related work on human
body passive sensing through wireless communication technologies, with a special fo-
cus on Bluetooth.

Section 3 addresses the Bluetooth protocol features that are relevant to the considered
application, describing how the human body affects the received Bluetooth signal.

Section 4 discusses data collection, analysis and preprocessing techniques, while
Section 5 analyzes the classification methods adopted in the relevant literature.

Section 6 proposes a performance comparison of the results presented in the considered
literature, while Section 7 discusses the results obtained by each described technique,
deriving insights on the factors that affect their accuracy. Finally, Section 8 provides
conclusive remarks and hints for future research.
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2. Related Work

Most of the literature dealing with Bluetooth indoor signal propagation and the effect
of the human body focuses on active (or device-based) indoor localization [16–27], where
the human to be localized carries, or wears, a Bluetooth device that can track, or can be
tracked by, other Bluetooth devices in the environment. This approach belongs to the active
sensing class, where either the sensing devices are equipped with both a transmitter and a
receiver (see Figure 2 on the left), or the sensed human carries an active device (see Figure 2
on the right).

Figure 2. Two classes of active sensing. On the left, the sensing device is equipped with both internal
probing signal transmitter and receiver. On the right, the sensed human brings an active device that
receives the probing signal and produces the sensing result.

Device-based sensing approaches can as well be used to detect and track human
beings and their activities [28,29]. However, requesting the subjects to carry a traceable
device all the time is not always feasible or desirable. Passive, device-free sensing systems,
instead, take advantage of the human body’s property of disturbing the radio signals
when partially or totally obstructing their trajectory, thus causing signal fluctuations. In
principle, by analyzing such fluctuations, it could be possible to separate the influence of
the human body from both the original signal and other causes of noise, thus allowing
human detection, positioning and activity recognition. However, modeling the “baseline”
noise and signal fluctuations that can be expected in the absence of the obstructing human
body, thus allowing a reliable detection and tracking, is not a trivial process [30]. The
Bluetooth standard stack only allows to measure the Received Signal Strength Information
(RSSI), which is a scalar indication of the intensity of the received signal at a given time and
is subject to fluctuations and fading during normal operation. The WiFi standard, instead,
allows the measurement of the much more informative Channel State Information that,
for the most recent devices, is a 3D matrix of complex values representing the amplitude
attenuation and phase shift of multi-path WiFi channels [31]. Moreover, the CSI provides
more stable information than the RSSI [32,33]. Consequently, the literature regarding the
use of WiFi for passive human detection and activity tracking is much wider than the
literature on Bluetooth for similar applications.

Human presence can influence a wireless signal in its spatial, temporal and frequency
domains [34]. In particular, human motion can affect the frequency and temporal domains,
whereas the location of the human body in the environment can affect the signal’s phase.
The RSSI alone does not provide phase information, and therefore, some other source of
information is needed when the CSI is not directly available. Recently, Bluetooth v5.1 [35]
introduced the possibility to measure the signal’s Angle of Arrival and Angle of Departure,
which can be used to improve both the positioning and activity tracking accuracy. However,
to the best of the authors’ knowledge, such an approach has not been reported in the
literature so far.

Multiple RSSI samples can be used to extract more information, either in time or in
space. In time, for example, by measuring through a fixed, static receiver a time sequence
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of RSSI samples emitted by a fixed, static transmitter, it is possible to track human body
motion and recognize specific activities (see Figure 3a).

In space, instead, by deploying several transmitters and receivers, a very accurate
positioning of a human body can be obtained by exploiting geometrical considerations [36]
(see Figure 3b).

(a) (b)

Figure 3. Moving humans counter and multi-transmitter, multi-receiver configurations. (a) Moving
humans counter. The RSSI undergoes an abrupt change when a human body traverses the signal
trajectory. (b) Multiple transmitters, multiple receivers.

A special case is based on the radio tomographic approach, where a very high number
of transmitter/receiver couples over a spacial grid (see Figure 4) allows to use imaging
techniques to obtain an extremely detailed and accurate positioning of the subject [37].

Figure 4. Tomographic sensing.

In principle, any wireless transmission technology can support some form of remote
human sensing approach. In particular, an interesting comparison is reported in [6], where,
curiously, Bluetooth is not mentioned. Table 1 summarizes the main pros and cons of
exploiting some of the most popular communication technologies for wireless remote
human sensing, such as the ones listed below.

Radio Frequency Identification (RFID) is a technology for contactless, short-range, two-
way communications that is mainly used for tag detection and identification as well as for
low datarate short message exchange. The main advantages of RFID technology are the
reasonable resilience to radio frequency noise and the low cost of RFID tags. Conversely,
the RFID reader is quite expensive [6]. The main disadvantage of using RFID for passive
human sensing is the very short sensing range.

Frequency Modulated Continuous Wave (FMCW) radars are instead active sensing de-
vices in which the sensor contains both a transmitter and a receiver [38,39]. The main
advantages of applying FMCW to human sensing are the high sensitivity and distance accu-
racy [6]. However, FMCW-based devices are specifically aimed at sensing, and therefore, a
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human sensing approach based on this technology cannot leverage existing communication
infrastructures, but a separate deployment is needed. Moreover, FMCW-based human
sensing is not in the scope of this study, as the focus here is on passive human sensing.

Bluetooth and its low-energy version (BLE) are among the most widely adopted wireless
communication technologies. Their main advantages are low power consumption, which
allows the installation of battery-operated nodes, and the relatively low deployment costs,
even in case a specific infrastructure is required. Moreover, such technologies have the
ability to support both regular communications and passive human sensing at the same
time, as regular advertisement signals are exploited for sensing (see, for example, [40,41]).
The main disadvantages of Bluetooth and BLE are that they currently do not provide CSI
and an effective way to cope with the abrupt RSSI changes due to Frequency Hopping (see
Section 3.2).

WiFi is the wireless communication technology that is most widely adopted for pas-
sive human sensing. Early works in the literature exploited the WiFi RSSI values, but the
most accurate and effective applications are based on the ability of some recent devices
to provide Channel State Information (CSI) multidimensional samples, thus supporting a
more detailed extraction of human activity information [31]. The main advantages of using
WiFi for human sensing are the wide diffusion of the WiFi communication technology
and the reliable and fine-grained information provided by the CSI, which allows sensing
low-amplitude activities (e.g., hand gestures) and vital signs (e.g., breathing). However,
WiFi devices cannot be used for communications and passive sensing at the same time [6],
and therefore, a separate infrastructure is needed for sensing or the same infrastructure
must be multiplexed in time, thus reducing the time available for both services. Moreover,
WiFi power consumption is sensibly higher than Bluetooth power consumption (this is
particularly true for Bluetooth Low-Energy), and the deployment cost of an ad hoc infras-
tructure is also higher. Finally, WiFi is relatively less robust to changes in the environment
and noise than other signals [6].

Visible Light Communication (VLC) technology is also being exploited for human sens-
ing [42]. VLC technology uses low-cost, high-efficiency photodiodes (LED), is resilient to RF
noise, and it can leverage the existing lighting infrastructure. However, such a technology
requires a complex light sensing infrastructure that is hardly justifiable by its application to
human sensing, as a large number of photodiodes need to be installed on the sensorized
environment floor [6].

LoRa [43] is a radio frequency transmission technique based on a spread spectrum
modulation, which enables long-range transmissions with low power consumption [44].
Both properties are interesting for human sensing. In the work in [45], LoRa is used for
active remote human sensing in a radar-like fashion, by equipping the sensing device
with both a transmitter and a receiver modified and adapted to the specific application.
However, LoRa requires a dedicated infrastructure for sensing.

The LTE (long-term evolution) mobile communication system [46], which seamlessly
covers almost all areas, both indoor and outdoor, can act as a diffused external illuminator
for wireless human sensing [47].

The 6G communication networks also promise localization and human activity de-
tection among their most relevant services [48]. The two main disadvantages of using
LTE and 6G for remote human sensing are the long distance between the transmitter, the
receiver and the human, which require complex filtering techniques to remove the noise
and separate the signals [6], and the significant risk of privacy violation due to both the
non-locality of the probing signal and the potential for receiving the sensing signal from a
long distance, which would allow for mass monitoring.
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Table 1. Pros and cons of the most relevant applications of wireless communication technologies to
wireless remote human sensing, as reported in the literature.

Wireless Technology Advantages Disadvantages

RFID Resilience to RF noise Very short range

FMCW High sensitivity; High
distance resolution

Active approach; Ad
hoc infrastructure

Bluetooth, BLE

Widespread use for
communications; Low power

consumption; Low
deployment cost;

Simultaneous communication
and sensing

No support for CSI; Abrupt
changes in RSSI due to FHSS

WiFi
Widely adopted for

communications; High spatial
resolution; Reliability

Not all devices provide CSI;
Non-simultaneous

communications and sensing;
Relatively high deployment

cost; Relatively high
power consumption

VLC
Resilience to RF noise;

Relatively cheap
sensing devices

Complex ad hoc
sensing infrastructure

LoRa Long sensing range; Low
power consumption Active approach

LTE, 6G
Wide availability of the

illuminating signal; Stability
and reliability

Complex noise filtering and
signal separation techniques;

Severe privacy concerns

One of the earliest and simplest applications of Bluetooth to deviceless human sensing
is to support remote elderly care, by allowing the remote caregivers to monitor that their
patients regularly take their prescriptions [40,41]. The described system consists of three
principal components:

• A Bluetooth beacon positioned under a medicine calendar (i.e., a tool used to norm
the assumption of the correct daily dose of drugs).

• A computer tablet positioned at fixed, short distance from the beacon.
• A smartphone for the remote caregiver.

In this application, the Bluetooth beacon periodically transmits a message with a
unique ID, while the tablet measures the received signal RSSI. When a human approaches
the medicine calendar, thus disturbing the signal sent by the beacon, the RSSI suddenly
drops, and the dedicated application running on the tablet records the event and sends a
notification to the caregiver’s smartphone. The detection accuracy obtained by the system
in a real environment is higher than 90%.

More recently, by measuring and analyzing the fluctuations in the received signal
RSSI, a passive device-free system based on a network of Bluetooth Low Energy (BLE)
beacons was able to detect the presence [49] and estimate the number [50] of humans in a
lecture room. With 24 beacons positioned under the seats in the room and four receivers
positioned on the ceiling laterally to the seats, the detection accuracy was higher than 95%,
while the accuracy of the number of people estimated was about 82%, with an average
room occupancy of about 30 attendees.

In [51], a system to detect the presence of humans in a waiting queue is presented.
Usually, waiting queues are controlled by barrier poles with retractable belts, which can be
moved if needed, and the system described in [51] is able to detect the transit of people
between two barrier poles so as to allow to estimate the queue waiting time. To this aim,
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the transmitting and receiving devices are positioned on the barrier poles, facing from the
two opposite sides of the queue path, and two detection methods are studied:

• Analysis of RSSI variance;
• Analysis of RSSI average.

The results reported in [51] show that the RSSI variance is better suited for detecting
the transit of people between the two poles, i.e., the motion of a body traversing the ideal
line connecting the two poles (see Figure 3a), while the RSSI average is more suitable for
detecting people standing between the two poles. The accuracy of this system in detecting
walking people is about 98% using variance and 96% using average. However, the second
algorithm is also able to detect motionless people standing in the monitored area, whereas
the first algorithm is only suitable for detecting moving people.

3. Human Body Influence on the Bluetooth Signal

In order to better understand the advantages and limitations of using the Bluetooth
technology for passive human detection and tracking, this section recapitulates some
relevant Bluetooth features.

3.1. Bluetooth Recapitulation

Bluetooth is a short-range wireless protocol that supports connections within a range
from a few meters to a few dozen meters (depending on the antenna gain, the environment
and the specific PHY adopted) [52].

The Bluetooth Classic protocol, also referred to as Bluetooth Basic Rate/Enhanced
Data Rate (BR/EDR), works in the globally unlicensed Industrial, Scientific and Medical
(ISM) 2.4 GHz short-range radio frequency band, which is divided into 79 channels with
1 MHz spacing. The Bluetooth technology is designed to work well even in very noisy
environments, copying with fading and interference. To this end, Bluetooth uses the
Frequency Hopping Spread Spectrum (FHSS) [53] technique, that forces two connected
devices (master and slave) to frequently change the dedicated communication channel, so
the devices hop from one channel to another according to a pseudo-random sequence. The
channel sequence is maintained by the master device through a map in which the channels
are marked as ‘in use’ if they work properly and ‘unused’ otherwise. This map is updated
after a channel is found working well for a given time interval and is shared with the
secondary devices so as to have the same information at both ends of the communication.

Two types of Bluetooth connections are available:

1. Asynchronous Connection-Less: a uni-directional communication, in which a slave
device (also called advertiser or broadcaster) periodically sends packets, while a
master device (also called hub or scanner) continuously scans the channels while
waiting for packets.

2. Synchronous Connection-Oriented: a bi-directional communication, in which a con-
nection between a master and a slave is established over a dedicated channel.

The most relevant advantages of the Bluetooth technology are the resilience to noise
and interference, thanks to the FHSS technology, the low cost of the devices, and the low
power consumption compared to other technologies. In particular, the introduction of
Bluetooth Low Energy (BLE) has further reduced the power consumption, thus improving
the lifetime of battery-powered devices. For this reason, BLE is also widespread in Internet
of Things (IoT) applications.

3.1.1. Bluetooth Low Energy

Bluetooth Low Energy divides the ISM band into 40 channels with 2 MHz spacing.
Three channels are used as advertising channels (or primary channels) for broadcasting,
while the remaining 37 data channels (or secondary channels) are used for data exchange
after a connection event. Mobile devices can be designed to support both Bluetooth Classic
and BLE (dual-mode device) or to only support BLE (single-mode device). Single-mode
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devices are generally used in applications that require low power consumption as a major
constraint. Moreover, the BLE stack is thinner compared to the Bluetooth Classic one, to
reduce the firmware footprint and protocol management complexity for the applications
that run directly on sensors [54].

The first version of BLE protocol was introduced with Bluetooth v4.0, and then, it was
updated up to Bluetooth v5.3.

Comparing with the previous versions, in Bluetooth v5.0, major improvements were
introduced. First, the coverage range was extended from about 50 m to more than 200 m
for outdoor environments, whereas in indoor environments, the range changed from about
10 m to about 40 m. Furthermore, the Bluetooth Core Specification v5.0 [55] introduced a
new way to perform advertising, called Extended Advertising, which allows the 37 channels
previously reserved for data communication to be also used as secondary advertising
channels. Traditional advertising transmits the same payload on the three primary channels,
whereas the Extended Advertising transmits payload data only once on a secondary
channel. This way, the total amount of transmitted data is lower, and therefore, the duty
cycle is reduced. Another benefit of the Extended Advertising is that using a secondary
channel to transmit the payload, 255-byte-long packets can be broadcast. In the previous
versions of the protocol, instead, only 31-byte-long packets could be broadcast. With this
version of BLE, it is also possible to chain packets together and transmit each chained
packet on a different channel.

Bluetooth v5.0 also introduced the Periodic Advertising, which allows the receivers
to synchronize their scanning for packets with the schedule of the transmitter device. In
the previous versions, the advertising process included a degree of randomness in the
timing of the advertising packet transmission to avoid repeated packet collisions. However,
this implies that scanners could lose some packets, i.e., those transmitted out of their
round of scan. In the Periodic Advertising, scanning is performed within the transmission
window of the transmitter, thus avoiding such packet losses, and therefore in a more
power-efficient way.

In addition, Bluetooth v5.0 reduced the minimum allowed Advertising Interval from
100 ms to 20 ms, thus allowing a rapid recognition of the advertising beacons.

Bluetooth v5.1 [35] introduced a new feature that allows Bluetooth devices to deter-
mine the direction of a Bluetooth incoming transmission.By equipping either the receiver
or the transmitter with an array of antennas, the receiver can determine either the Angle of
Arrival (AoA) or the Angle of Departure (AoD), respectively [56].

In both methods, a special signal, called a direction-finding signal, is transmitted by
the transmitting device and used by the receiving device to calculate the direction of the
received signal, which in ideal conditions corresponds to the direction along which the
transmitting device lays. In the AoA method, the receiving device (that is connected to an
array of antennas) receives different copies of the same signal from different consecutive
antennas in the array. The received signals are phase-shifted due to the different distances
of the receiving antennas to the single transmitting antenna. The Angle of Arrival θ is
computed from the phase difference according to Equation (1), where λ is the wavelength,
ψ is the phase difference and d is the distance between two consecutive antennas in the
array [56].

θ = arccos(
ψλ

2πd
) (1)

In the AoD method, instead, the transmitting device is equipped with an antenna array
which emits a signal from each of the antennas. The receiving device, which is equipped
with a single antenna, given that λ is the wavelength and d is the distance between two
consecutive antennas in the transmitting array, determines the phase difference ψ from two
received signals and computes the direction θ according to Equation (2).

θ = arcsin(
ψλ

2πd
) (2)
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In Bluetooth 5.1, the direction-finding signals are generated by both defining a new
Link Layer Protocol Data Unit (PDU) for direction finding between two connected devices,
and a way to use the existing advertising PDUs for connectionless direction finding. In
both cases, a special field, known as the Constant Tone Extension (CTE), is added to the
end of the PDUs.

Bluetooth v5.1 also introduced the Randomized Advertising Channel Indexing, which
allows the devices in advertising state to randomize the selection of advertising channels
so that they are not selected in strict order (37, 38, 39) as in the previous Bluetooth versions
but in a random order. This feature improves packet collision avoidance.

In Bluetooth v5.2 [57], the LE Power Control feature was introduced. This new feature
allows the transmitting devices to dynamically change their transmission power level
and inform the receiving device that this has happened. This process is useful to keep
high the signal quality and low the error rates, respectively. Moreover, the process also
improves coexistence in general, thus benefiting all the protocols working in the 2.4 GHz
frequency band.

Bluetooth v5.3 [58] introduced some improvements in the Periodic Advertising, i.e.,
the host of a receiving device can inform the controller that a packet has been found
to contain data that has already been received in an earlier packet. The controller can,
therefore, disregard the current periodic advertising packet and immediately switch to
another channel.

3.2. Influence on Bluetooth Signal

Numerous studies proved that radio signals in the 2.4 GHz frequency band are easily
influenced by the human body. An experiment explicitly aimed at demonstrating the effects
of a human body occluding the Line-of-Sight between a transmitter and a receiver (see
Figure 1a) was reported in 2014 [59], where the received signal power was measured with
and without obstruction, and the measured attenuation was approximately 10 dB. However,
signal fluctuations were exploited to detect the presence of people in an environment
already in 2006 [60].

Received signal fluctuations can be caused by changes in the environment, in the
state of the transmitter or the receiver, or by design, e.g., because the protocol requires
actions that produce such fluctuations. In order to exploit the signal fluctuations for passive
human sensing, it is mandatory to exclude the unwanted causes or, at least, to find a
way to separate their effects from the effects of the targeted human body. Compared to
WiFi, Bluetooth appears to be better suited for this purpose, because it is less subject to
electromagnetic noise thanks to the FHSS technique. However, the FHSS itself by design
generates fluctuations in the received signal due to the communication channel switch.
In fact, measurements at the receiver side of the signal emitted by a Bluetooth beacon in
advertising mode showed that different channels have different noise and attenuation
characteristics [20]. To reduce the influence of the channel hopping on the signal RSSI,
each Bluetooth channel should be modeled and processed separately [16]. In the reported
experiments, four BLE beacons were used. In particular, three beacons were modified
to allow a separate RSSI measurement for each advertising channel, while the other one
was not modified. After measuring the RSSI values of all beacons, the RSSI variance was
calculated for each beacon. The modified beacons allowed the calculation of separate
variances for each channel, while the non-modified beacon only allowed the calculation
of the variance of the hybrid signal resulting from the channel hopping. As the Bluetooth
protocol does not allow the determination of the time instant at which the hopping takes
place, and it does not report the current advertising channel, it was not possible to filter out
the RSSI fluctuations produced by the hopping. Consequently, the hopping contributed to
the overall RSSI variance. As it was expected, the RSSI variance calculated over the signal
transmitted by the unmodified beacon was significantly larger than the per-channel RSSI
variances obtained by the modified beacons.
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The described study demonstrated that the FHSS causes a significant increase of the
RSSI fluctuations, which would heavily impact the reliability of a passive human detection
approach based on a set of unmodified Bluetooth devices. For this reason, most of the
research works in this area rely on some way to manage each advertising channel separately.

4. Data Preprocessing

The demonstration that the wireless signal generally suffers from the noise due to the
surrounding environment is introduced in [61]. Moreover, endogenous fluctuations, i.e.,
the ones coming from inside the device, always affect the received signal. The aim of the
preprocessing stage is ideally the elimination, and more in general the attenuation, of noise
and endogenous fluctuations, so that the only fluctuations present in the signal after this
step are those generated by the human presence between the connected devices.

In [62], a Kalman filter was used for signal noise reduction. The Kalman filter uses
linear models, i.e., linear transformations both in the transitions from the current state to
the next state and in the transformation from state to measurement, and it also assumes
that the noise associated to both the measurements and state of the system is Gaussian.
Unfortunately, the hypotheses of linearity and Gaussian noise are not always satisfied in
wireless passive human sensing, as shown in [61], where the Kalman filter and the Moving
Average filter were compared.

In [62], the Kalman filter performed well with the available data, whereas in [61],
such a filter performed poorly, flattening the signal to the point where relevant peaks
corresponding to the presence of a human body were deleted. The Moving Average filter,
instead, is simpler and less accurate than the Kalman filter under linearity and Gaussian
noise hypotheses, but it performed better on RSSI data [61].

An advanced version of the Moving Average filter, i.e., the Exponential Weighted Mov-
ing Average filter, was adopted in [22]. Unlike the Moving Average filter, this filter assigns
different weights to the values of the considered time series according to an approximated
exponential law. The filtered RSSI value is computed according to Equation (3), where
α ∈ [0, 1] is the smoothing factor. In particular, the value of α in [22] is 0.05.

fi,j[n] = αRSSIi,j[n] + (1− α) fi,j[n− 1] (3)

A similar principle is used in [51], where data preprocessing consists of computing
the weighted average according to Equation (4), where α = 0.9 produces a larger weight
for the previous values than for the current value, thus reducing the effect of noisy outliers.

Meancurrent = αMeanold + (1− α)RSSIcurrent (4)

In [63], a passive detection system is described, in which the signal is preprocessed
using an α-trimmed mean filter. The α-trimmed filter is generally used in very high noise
conditions. In this case, calculating the mean of the signal as the average of the samples
is not recommended, because an outlier might significantly alter it. Instead, given a
sliding window with q RSSI values, this filter sorts the RSSI values and then removes α
extremes. After this process, the average of the remaining values is computed according to
Equation (5), where 0 ≤ α ≤ 0.5.

f (q; a) =
1

q− 2dαqe

q−dαqe

∑
i=dαqe+1

RSSi (5)

The described process has an offline phase, which produces an estimate of the initial
parameters of the system, and an online phase, which produces an estimate of the detected
human bodies location, according to the received RSSI samples. Since the environment may
significantly change between the offline estimation phase and the online phase, the Analysis
of Variance (ANOVA) [64] is adopted to check if the estimate of the initial parameters is
still valid.
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In [16], a localization system is discussed that uses BLE beacons with a modified
firmware able to select a specific channel (either 37, 38, or 39) to send the advertising
packets through. This way, one of the causes of increased RSSI variance is removed, but a
new problem is introduced. In fact, some packets may get lost in some channels during
a scan round due to the fact that the transmitter might send its packet out of the receiver
scan interval. At each scan round, the receiver stores the RSSI values from each channel in
a vector of RSSI values that represents the RSSI sample for that round. If a packet is lost,
the vector has one component missing, and this leads to errors in the analysis steps. As a
consequence, some method to fill the missing component of the vector is needed. First, the
missing sample component must be detected, and then, an adequate value must be selected
to replace the missing value. The chosen solution is that the missing sample component is
replaced by the median value of the last WL1 samples from the same channel.

Other preprocessing methods based on statistic techniques are available in the litera-
ture. The works in [49,50] describe a passive system that is able to detect the presence, and
count the number, of human beings in a lecture room. To train and test this system, three
datasets were used:

• DS1, containing raw RSSI values.
• DS2 and DS3, containing preprocessed data.

The first dataset was produced by collecting five measurement sessions for each
lecture, thus obtaining a total of 80× 5 = 400 sessions. The installation was composed of
24 transmitting beacons and four receivers. Provided that each beacon sent one frame per
second, and that each session lasted 300 s, for each session, a total of 24× 4× 300 = 28,800
samples were collected. To reduce the dataset size, a summarized dataset DS2 was built
by calculating, for each measurement session, four features, i.e., mean, variance, trimmed-
mean, and trimmed-variance, which were calculated according to Equation (5). Next, the
position of the beacons was taken into account by introducing a weighting factor depending
on the receiver–transmitter distance. The weighting factor was a normalization matrix W,
which is used to apply a Min/Max normalization to the data. The set of normalized data
was the third dataset DS3. Experimental results show that with the described preprocessing
approach, the performance improved from 70% to 98%.

Recently, Deep Neural Networks are being applied also to passive human sensing.
The main advantage of deep learning techniques is that they do not need, in general, to
manually build specific features for the classification process. Instead, such features are
calculated by a neural network that is adequately trained over large amounts of data [65],
thus consistently reducing the amount of preprocessing. In [66], for example, raw RSSI
values are simply averaged over one-minute intervals and then fed to a deep neural network
that is trained to output an estimate of the initial and final position of a human moving in
the monitored area.

5. Classification Methods

The lack of protocol support to gather the Channel State Information (CSI) sensibly
reduces the amount of information that can be obtained by analyzing the received signal.
Most likely for this reason, to the best of the authors’ knowledge, as reported in Section 6,
the current literature regarding human body sensing through Bluetooth mainly focuses
on indoor passive people detection, counting, and approximate motion tracking, whereas
complex activities recognition and vital signs sensing have not yet been investigated.

For the considered applications, statistic techniques, Machine Learning techniques,
and Artificial Neural Networks are adopted in the literature, as described in the follow-
ing subsections.

5.1. Statistical Methods

The approaches defined as “statistic” use methods based on the analysis of either
the mean or the variance of the RSSI values. In [51], two algorithms based on these
techniques are presented. The first algorithm, based on the analysis of the variance of a



Sensors 2022, 22, 3523 12 of 20

stream (sequence) of RSSI values, is more suitable to detect the motion of a human body,
for example, when entering an area of interest. In this case, the RSSI values are detected
in subsequent time instants, and therefore, their sequence represents the evolution of the
Bluetooth signal perturbation when a human body moves in the area between the receiver
and the transmitter devices.

In general, the RSSI variance is calculated over a sliding window always containing
the last n samples according to Equation (6), where xi represents the current RSSI value
and µ is the average of all the RSSI values within the sliding window.

Var(x) =
1
n

n

∑
i=1

(xi − µ)2 (6)

The size n of the sliding window must be chosen according to the specific application.
If n is too large, too old RSSI values are considered in the calculation, and this could
lead to delayed detection. If n is too small, the smoothing effect of previous samples on
the calculation is not sufficient to remove the measurement noise, thus leading to false
positives or false negatives in the classification. In [51], the optimal value of n is 10. It
was determined considering the time it takes a human to cross the monitored area and the
number of messages received for second. Moreover, the mean µ in Equation (6) is replaced
with a weighted average computed according to Equation (4).

In the second algorithm reported in [51], the weighted average calculated according to
Equation (4) is subtracted from each new RSSI sample and, if the resulting value exceeds
a given threshold Tm, then a detection event is triggered. The weighted average is not
updated when a detection event is triggered, because the average is intended to represent
the “background” condition, where no human body is present in the monitored area.

The threshold Tm is critical and requires a complex calculation involving a preliminary
calibration, which is repeated every time something changes in the system deployment,
and an initial stabilization time interval that is needed every time the system is turned on
or reset. Moreover, the formulation of Tm includes some constants that were experimen-
tally determined on the basis of the available data and setup and that might potentially
undermine the generality of the proposed approach.

5.2. Machine Learning Methods

Machine Learning techniques include both classification and regression algorithms,
so they can be used both for presence detection and counting people. For example, K-
Means and Gradient Boosting were adopted in [67], whereas Artificial Neural Networks,
regression models and Decision Trees (Random Forest) were adopted in [68], and Random
Forest were applied in [69]. Passive, BLE-based presence detection systems in the literature
exploit Logistic Regression, k-Nearest Neighbor (KNN), and Support Vector Machine (SVM)
with linear, polynomial and Radial Basis Function kernel. In [49], a presence detection
system was developed, and the algorithms mentioned above were compared on three
different datasets. Such datasets, here called DS1, DS2, and DS3, were built according to
the process formerly described in Section 4, i.e.,

• DS1, containing the raw RSSI data.
• DS2, containing data resulting from the first preprocessing step.
• DS3, containing data resulting from the second preprocessing step.

The best accuracy was obtained with the (SVM) algorithm [70] using a Radial Basis
Function (RBF) kernel applied to the third dataset. An RBF kernel [71] is a function used
when the boundaries of the classes are hypothesized to be curve-shaped and nonlinear. An
RBF kernel involves the choice of two hyperparameters, i.e., the penalty parameter and the
kernel width. In [49], such parameters are auto-optimized in the SVM implementation. In
98.97% of cases, this algorithm recognized the presence of a subject between two nodes.
The KNN algorithm, instead, was more efficient with the first and second datasets and
obtained higher accuracy than the other algorithms.
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In general, all the analyzed algorithms performed similarly when applied to the same
dataset, apart from a few exceptions. In particular, for the dataset DS1, the highest accuracy
obtained was 70.15% with the KNN algorithm, while the Logistic Regression algorithm
obtained 69.81%. If we look only at the accuracy that the two algorithms achieve, the KNN
performed better than the Logistic Regression, but the KNN is a parametric algorithm
in which the execution time increases with an increasing amount of data. The Logistic
Regression algorithm, instead, is a linear algorithm and is faster than the KNN. The SVM
algorithm performed slightly worse than the other algorithms on DS1, especially with the
linear kernel (62.67%). The reason for this could lay in the distribution of the data. The
linear SVM algorithm assumes that a linear boundary can be found between two classes,
whereas the kernel trick supports different, nonlinear models of the data. However, in
some cases, even the nonlinear kernels struggle in approximating the strongly nonlinear
distribution of real data.

For the dataset DS2, containing four features for every transmitter–receiver couple, the
KNN resulted as the best performing algorithm with 96.90% accuracy, whereas the SVM
with an RBF kernel produced 96.46% accuracy.

The situation changed for dataset DS3, which was normalized to keep in account the
distance between the transmitter and the receiver. The SVM with the RBF kernel performed
better than the other algorithms (98.97%).

An analysis of the accuracy obtained by applying the described algorithms to all the
datasets evidences that the preprocessing stage is always useful to increase the classification
accuracy. In fact, as it is shown in Figure 5, the classification accuracy obtained with DS1 is
70%, with DS2 approaches 97%, and with DS3 approaches 99%.

Figure 5. Comparison of the classification models used in [49] with the datasets DS1 (without
any processing), DS2 (after aggregation and preprocessing), and DS3 (after normalization with
weight factors).

The regression algorithms used to develop the counting system, instead, are the
KNN Regression, the Least Squares Regression (LSR), the Polynomial Regression, and the
Support Vector Regression. These algorithms were compared in [50], in which a counting
system was developed and the same preprocessing approach of the previous paper was
adopted, obtaining similar performance improvements. In fact, for the dataset DS1, the
lowest Root Mean Square Error (RMSE) among all the considered approaches was 18.78,
for the second dataset DS2, it was 6.40, and for DS3, it was 5.42. Notably, for DS2 and DS3,
the LSR algorithm performed considerably worse than the others, as shown in Figure 6.
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Figure 6. Comparison of the regression models used in [50] with datasets DS1 (without any process-
ing), DS2 (after aggregation and preprocessing), and DS3 (after normalization with weight factors).
The error measure is the Root Mean Square Error (RMSE).

As a consequence, the selection of the best algorithm requires further considerations
regarding the resource requirements or other specific characteristics of the intended ap-
plication. In particular, the computational complexity of the considered approach, and
therefore its execution time and memory requirements, can sensibly influence the choice of
the approach, depending on the hardware that will be used for implementing the system.

5.3. Artificial Neural Networks

Artificial Neural Networks are still little used in Bluetooth-based passive counting and
detection, whereas the development of a Bluetooth-based localization system exploiting
Artificial Neural Networks is described in [66].

In [18], a system for obstruction detection between two nodes, aimed at RSSI signal
correction, was developed. Two Artificial Neural Networks were compared to detect
obstructions, i.e., a Multi-Layer Perceptron (MLP) network, with two hidden layers of
20 neurons, and a Radial Basis Function (RBF) network, with only one layer of 20 neurons.
The comparison demonstrated that both the neural networks detected the obstructions
between nodes with high accuracy, with the MLP performing better (91%) than the RBF
(89%) according to an estimate based on the data reported in the paper. The detection rate
of the proposed approaches in discriminating clear Line-of-Sight, i.e., when no human
body was present in the LoS between transmitter and receiver, was also measured. The
MLP obtained a 94% detection rate, while the RBF obtained a 92% detection rate.

6. Overall Performance Comparison

Table 2 provides a comparison of the different approaches addressed in this paper.
Presence detection refers to methods able to reveal the presence of a human body either still
or in motion, whereas motion detection refers to methods that only reveal moving human
bodies. People counting, instead, refers to methods able not only to reveal the presence of a
human body but also to count the number of human bodies present in the monitored area.
Finally, clean Line-of-Sight (LoS) detection refers to approaches able to detect the presence
of a human body obstructing the line of sight between the transmitter and the receiver (see
Figure 1a).

The approaches discussed in this section were trained and tested on different datasets
and with different sensors set up. As the codebase and the datasets of the cited studies are
not publicly available, the comparison is based on the data reported in the cited works.
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Table 2. Performance comparison of the considered approaches.

Application Preprocessing
Classification/

Regression
Techniques

Accuracy

Presence detection [40] - Statistical techniques 90%

Presence detection [51] Weighted Moving Avg. RSSI-mean 96%

Motion detection [51] Weighted Moving Avg. RSSI-variance 98%

Presence detection [49] α-trimmed filter and
normalization

Logistic Regression,
KNN, SVN (linear,

polynomial and
RBF kernel)

≈ 98%

People counting [50] α-trimmed filter and
normalization

Least Squares
Regression, NN

Regression, Support
Vector Regression,

Polynomial Regression

±5.42 miscalculation 1

Presence detection [18] - Neural Networks:
MLP and RBF (MLP) 91%, (RBF) 89%

Clean LoS
detection [18] - Neural Networks:

MLP and RBF
(MLP) 94%, (RBF) 92%

clean LoS detection rate 2

1 This value is not an accuracy value, but the Root Mean Square Error. In [50], such an error metrics was chosen
because it represents the misestimation in counting the number of people in the room. 2 These percentages are
detection rates and not accuracy values. Accuracy is the sum of the true positives and true negatives over the
whole set of samples, whereas here, the true positives over the whole set are considered.

The comparison shows that the accuracy of all the techniques is above 87%, and in
some cases, it approaches 100%. Nevertheless, some significant differences need to be
taken into account. In [40], a simple statistical approach was used for human detection, i.e.,
when the value of the average RSSI was above a threshold, a detection event was triggered.
With this approach, the detection rate was slightly above 90%. Conversely, in [51], a more
complex statistical approach was used, and two algorithms were implemented based on
the RSSI-variance and RSSI-mean. The first algorithm is more suitable to detect a human
crossing the LOS between two nodes, and it obtains an accuracy of 98%. The second
algorithm, instead, is best suited for detecting a human that stands between two devices,
and it obtains an accuracy of 96%.

In [49], different Machine Learning algorithms for human detection were compared.
The best result was obtained with the SVM algorithm using an RBF kernel (98.97%) on a set
of preprocessed data. However, the other algorithms perform similarly on the same type of
preprocessed data (≈98%). On raw RSSI data, all the tested algorithms performed worse,
with accuracy values between ≈70% and 62%. As stated in Section 5, this result supports
the observation that appropriate preprocessing is generally needed to improve the accuracy
of the classification and regression algorithms and reduce the size of the final dataset, thus
shortening the execution time of more complex algorithms, such as the k-Nearest Neighbor
one. In [50], a very similar approach was applied to human counting, obtaining an RMSE
of 5.42.

In [18], Artificial Neural Networks were used to detect a human body obstructing the
space between a transmitter and a receiver, although the system was indeed intended for
the correction of the RSSI signal in case of obstructions. The proposed networks, an MLP
and an RBF, reached 91% and 89% accuracy, respectively, thus underperforming compared
to the statistical approaches. However, the proposed Artificial Neural Networks were
only tested on raw data. In principle, they could benefit from data preprocessing, thus
further improving their performance. Consequently, more experiments are needed to better
understand which approach has the higher potential over the others.
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7. Discussion

In the previous sections, some applications of the Bluetooth technology (in partic-
ular, BLE) to passive human detection, counting and tracking in indoor environment
were described and analyzed. Moreover, a comparative overview of their performance
was provided.

As the signal RSSI depends on the position and distance between two Bluetooth
devices and on the geometric and physical characteristics of the environment, the devel-
opment of a “generic” passive human sensing system able to cope with all the possible
variations in the environment and spatial deployment of the transmitting and receiving
devices would require a generalization ability that is hardly obtainable.

Current approaches, instead, rely on some training or initialization process that builds
a model of the received signal RSSI that is able to explain all the possible fluctuations of
the RSSI values, thus allowing their classification. Such a model can be either explicit, e.g.,
defined in terms of statistical parameters, or implicit, e.g., obtained by training an ANN.

Building a data-driven model, however, requires that a suitable dataset is gathered
from the specific environment where the system will be deployed; i.e., a long data collection
process is needed to initialize the system. Furthermore, if Neural Networks are exploited,
the data collection process becomes longer and longer, because large datasets are needed
to train Neural Networks. The lack of universal datasets to train and test the developed
systems makes the comparison of existing techniques difficult.

Another issue often highlighted in the literature is the impossibility of independently
extracting the RSSI signal values from each advertising channel of the BLE beacons. The
BLE beacons need to be modified at the hardware or firmware level in order to transmit
on a certain preset channel and to allow the researcher to discriminate the variation in the
signal due to the presence of a human body from other fading effects.

According to Table 2, the RSSI-variance and RSSI-mean approaches used in [51] might
be considered as the best performers for presence detection. The reported accuracy results
are even better than those reached by more recent Artificial Neural Networks approaches.
However, in this study, the BLE transmitters were modified to transmit only on one
advertising channel, so that the channel information can be transmitted to the receiver into
the payload of the advertising message. Such a modification allows to separately analyze
each advertising channel, thus substantially reducing the variance in the RSSI signal and
dramatically improving the detection stability and reliability. However, the proposed
modification, although being frequently adopted in the relevant literature, is not allowed
by the Bluetooth standard, and therefore, it represents a substantial violation of the protocol.
In other words, the proposed approach would not work with off-the-shelf beacons.

The Machine Learning techniques used in [49] obtained about 98% accuracy. In
particular, as already stated in Section 5, 98% accuracy was reached by using the SVM
algorithm with an RBF kernel on a reduced and normalized dataset. In this case, unlike the
previous approach, only standard devices were used, and only four receivers were used
with 24 transmitters, instead of requiring the same number of receivers and transmitters.
As a consequence, the approach proposed in [49] can be applied to a much wider range of
cases and environments while performing close to best in class.

8. Conclusions

This paper provided a reasoned overview of the Bluetooth-based approaches for
passive remote sensing of the human body reported in the literature. The work illustrated
and commented on the pros and cons of each approach. Moreover, the experimental results
and performance of the considered approaches were described, compared and discussed.

Although the inherent limitations imposed by the Bluetooth protocol may affect its
applicability to passive human sensing, a number of recent research works proposed
specific preprocessing and non-parametric classification and regression techniques, and
they demonstrated the effectiveness and accuracy of the proposed approaches. In general,
the adoption of BLE-based remote passive wireless human sensing approaches should be



Sensors 2022, 22, 3523 17 of 20

preferred whenever the power consumption of the sensing devices, the deployment cost,
and the simultaneous communication and sensing capability are very relevant. However,
some interesting aspects still need to be investigated. In particular, the FHSS mechanism
significantly affects the reliability of RSSI-based human sensing, and therefore, several
works in the literature address modifications of the transmitting device original firmware
in order to either bypass the FHSS mechanism or include the channel information in the
transmitted frame. Such modifications, however, violate the Bluetooth protocol and should
be avoided, also because bypassing FHSS reduces the robustness to noise of the proposed
approach. A possible alternative approach can be to estimate, at the receiver side, the
transmitter channel mapping and, therefore, to foresee the next hop. Effective techniques
are available to obtain such an estimate, such as the ones in [72–74].

Furthermore, the recent introduction in the Bluetooth standard of the direction-finding
technology has a potential for supporting the development of novel approaches able to
extract more information from the BLE signal, thus allowing for more accurate and detailed
human sensing applications, similarly to what happened with WiFi. In particular, when
determining the Direction of Arrival (DoA) of the received signal (see Section 3.1.1), the
receiver can compute a suitable estimate of the phase shift of the reflected, scattered and
refracted signal components, and leverage such information to produce a more accurate
sensing, thus allowing for complex activity recognition, vital signs detection, and multi-
person tracking.
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