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ABSTRACT

Topological photonic systems, with their ability to host states protected against disorder and perturbation, allow us to do with photons what
topological insulators do with electrons. Topological photonics can refer to electronic systems coupled with light or purely photonic setups.
By shrinking these systems to the nanoscale, we can harness the enhanced sensitivity observed in nanoscale structures and combine this
with the protection of the topological photonic states, allowing us to design photonic local density of states and to push towards one of the
ultimate goals of modern science: the precise control of photons at the nanoscale. This is paramount for both nanotechnological applica-
tions and fundamental research in light matter problems. For purely photonic systems, we work with bosonic rather than fermionic states,
so the implementation of topology in these systems requires new paradigms. Trying to face these challenges has helped in the creation of
the exciting new field of topological nanophotonics, with far-reaching applications. In this article, we review milestones in topological
photonics and discuss how they can be built upon at the nanoscale.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5086433

I. OVERVIEW

One of the ultimate goals of modern science is the precise
control of photons at the nanoscale. Topological nanophotonics
offers a promising path towards this aim. A key feature of topologi-
cal condensed matter systems is the presence of topologically pro-
tected surface states immune to disorder and impurities. These
unusual properties can be transferred to nanophotonic systems,
allowing us to combine the high sensitivity of nanoscale systems
with the robustness of topological states. We expect that this new
field of topological nanophotonics will lead to a plethora of new
applications and increased physical insight.

In this perspective, as presented schematically in Fig. 1, we begin
(Sec. II) by exploring topology in electronic systems. We aim this
section towards readers who are new to the topic, so we begin at an
introductory level where no prior knowledge of topology is assumed.

In Sec. III, we introduce light, first by discussing how topolog-
ical electronic systems can interact with light (Sec. III A), then
moving onto topological photonic analogues (Sec. III B), in which
purely photonic platforms are used to mimic the physics of topo-
logical condensed matter systems.

In Sec. IV, we discuss paths through which topological pho-
tonics can be steered into the nanoscale. Excellent and extensive
reviews already exist on topological photonics,1–4 and many plat-
forms showcasing unique strengths and limitations are currently
being studied in the drive towards new applications in topological
photonics, such as cold atoms,5 liquid helium,6 polaritons,7 acous-
tic,8 and mechanical systems,9 but in this work, we restrict our-
selves to nanostructures. We discuss efforts up until now in this
very new field, and in Sec. V, we review how topological photonic
analogues can be built upon and surpassed in order to create pho-
tonic topological systems with no electronic counterpart, and we
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outline the open questions and challenges which must be faced and
overcome in order to master topological nanophotonics. We
include two interludes in which we introduce case studies and
background theory, which are complementary to the main text.

II. TOPOLOGY IN CONDENSED MATTER SYSTEMS

Much of modern physics is built on the concept of symmetries
and the resulting conserved quantities. We are most familiar with
the symmetries and phases of matter characterised by local order
parameters within the Landau theory of phase transitions10,11 [as
in Fig. 2(a)], but in the last few decades, the exploration of topolog-
ical phases of matter has led to many new developments in our
understanding of condensed matter physics, culminating in a
Nobel prize for Thouless, Haldane, and Kosterlitz in 2016 and a
Breakthrough prize in fundamental physics for Kane and Mele in
2019. The notion of topology in physics was introduced by von
Klitzing and his discovery of the 2D quantum Hall (QH) state,12

with Thouless et al. explaining the quantization of the Hall conduc-
tance in 1982.13 Whereas QH states explicitly break time-reversal
(TR) symmetry, new topologically non-trivial materials obeying TR
symmetry have been discovered. The first proposals of the 2D topo-
logical insulator (TI)—otherwise known as the quantum spin Hall
state (QSH)—were remarkably recent (Kane and Mele14,15 and
Bernevig and Zhang16). The 3D generalisation came soon after in
2007,17 and experiments have shown that these new phases of
matter are both realisable and accessible.18–20 Other systems can
have topology associated with another symmetry, such as the Su,

Schrieffer, and Heeger (SSH) model,21 which owes its topological
properties to sublattice symmetry.

A. Topological invariants and band structures

Before the concept of topology was connected to condensed
matter systems, phase transitions could be characterized only by
local order parameters; for example, a disordered liquid, which
when cooled will solidify to a crystal with a long range order [as
illustrated in Fig. 2(a)]. A local order parameter such as mass
density ρ(r) can be defined and constructed by looking only at a
small neighbourhood around r. A small deformation of the
Hamiltonian may trigger ρ(r) to grow discontinuously from 0, sig-
nalling a local phase transition.

1. Topological phase transitions

In contrast to theories of local phase transitions, topological
phases of matter cannot be described with a local order parameter.
Unlike the previously described system in which only the local
neighbourhood around a point r contributes to the local order
parameter, in a system exhibiting topology, the whole system must
be measured to ascertain the phase. For a system which can exist in
multiple topological phases, no local order parameter can be con-
structed which will distinguish between the phases, and we must
instead rely on the idea of topological invariants. In condensed
matter, a topological invariant is a global quantity which character-
izes the Hamiltonian of the system, and a topological phase transi-
tion must occur to change the value of the invariant. Topologically
trivial phases have a topological invariant equal to 0.

2. Topological band structures and edge states

For an insulating system described by the Hamiltonian H, we
may smoothly deform our system to the one described by a new
Hamiltonian H

0, as illustrated in Fig. 3(a). If the bandgap remains
open during the transformation [as shown in Fig. 3(a)(i)], the
number of states residing in the valence band is necessarily con-
served, as although these states can mix among themselves during
the transformation, the only way for the number of states to
increase is to close the gap and allow states to enter from or leave
to the conduction band. The number of states in the valence band
is a topological invariant and will only change the value if the
bandgap closes during a transformation [see shown in Fig. 3(a)(ii)].
The bandgap closing signals a topological phase transition, as it is
at this point that the topological invariant can change the value. In
this case, H and H

0 exist in different topological phases. If the gap
remains open during the transformation, then H and H

0 remain
in the same topological phase. The gap remaining open is often
enforced by a system symmetry, and so in order for a topological
phase transition to occur a symmetry breaking must occur. If the
symmetry is preserved, then no topological phase transition will
take place.

The topological invariant described above is a bulk quantity
(and is intimately linked to the bulk Hamiltonian). For an insulat-
ing material with a non-zero topological invariant surrounded by
vacuum, we have a boundary on the interface of these two insula-
tors with differing topological order parameters. The change in

FIG. 1. Schematic overview of topics in this perspective.
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topological invariant at the boundary requires the bandgap to close,
while remaining gapped in the bulks of both media. This results in
localized boundary states, which necessarily traverse the bandgap.
Physically, the picture we then have is of an insulating bulk, with
conducting states localized on the boundary of the material as

illustrated in Fig. 3(b). Many materials with topological band struc-
tures (such as HgTe/CdTe wells18 and Bi2Se3 family materials22–24)
owe their topological properties to spin-orbit coupling, causing an
inverted band order and subsequently for edge states to appear in
the gap [see Fig. 3(c)].

FIG. 2. Topology in condensed matter systems (a) liquid-solid transition parameterised by a local order parameter. (b) Quantum Hall system, supporting topologically pro-
tected edge states. (c) Quantum spin Hall system (2D topological insulator). (d) Photonic topological insulator displaying edge states.

FIG. 3. Topology and band structures.
(a) (i) Gap remaining open during
Hamiltonian transformation means that
the systems described by the two
Hamiltonians are in the same topologi-
cal phase, while (ii) a topological
phase transition will result in the gap
closing during the transformation. (b)
For a finite system comprising of a
topologically non-trivial bulk surrounded
by a trivial background, a topological
phase transition occurs on the surface
and the gap is closed. Gapless topo-
logical edge states exist on the
surface, traversing the gap. (c) Band
inversion due to the mechanism such
as spin-orbit coupling.
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B. Time-reversal symmetry and TIs

The pioneering example of topology in condensed matter is
the 2D quantum Hall (QH) effect12,13 [schematically illustrated in
Fig. 2(b)]. For a 2D electronic system at low temperature subjected
to large magnetic fields, the Hall resistivity ρxy exhibits plateaus,
characterized by a topological invariant known as the Chern
number, which takes integer values. The large magnetic field
results in electrons in the bulk being localised in small cyclotron
orbits, while electrons at the edge experience truncated cyclotron
orbits and travel along the edge of the system giving conducting
edge states. The time-reversal symmetry in this system is explicitly
broken by the magnetic field.

In contrast to the case of the QH state, in QSH and TIs, con-
ducting edge states are only present when TR symmetry is pre-
served such that the fermionic time-reversal operator Tf commutes
with the system Hamiltonian [H, Tf ] ¼ 0, and the fermion condi-
tion T2

f ¼ �1, is obeyed. The TR symmetry enforces Kramers
degeneracy, that is, for every eigenstate jni, its time-reversed
partner Tf jni is also an eigenstate and has the same energy, but is
orthogonal. This can be demonstrated using the anti-unitary nature
of Tf and the fermion condition such that

hn, Tf ni ¼ hTf n, T
2
f ni* ¼ �hTf n, ni* ¼ �hn, Tf ni (1)

and so hn, Tf ni ¼ 0. Consequently, in the presence of time-reversal
symmetry, these counter-propagating states cannot backscatter into
one another. If a TR breaking perturbation is applied (such as a
magnetic impurity in a topological insulator), a gap will open
within the dispersion relation of the edge states and they will no
longer conduct, reducing the TI to a trivial insulator. However, if a
non-TR breaking perturbation is applied the states will remain
gapless and will be robust against the perturbation.

III. TOPOLOGICAL PHOTONICS

When discussing topological photonics, there are two distinct
topics to consider. The first is that of topological electronic systems
and their interaction with photons,25–28 and the second is that of
purely photonic systems with a non-trivial topology.1–4 In this
second area, we have photonic analogue systems that aim to mimic
the band structure and topological properties of a known electronic
topological system, as well as topological photonic systems with no
electronic counterpart.

Photonic platforms that can support topological systems exist
over a vast range of frequencies; however, miniaturization to the
nanoscale still proves difficult as some of the platforms are funda-
mentally limited in size, or if there are no fundamental issues then
there are technical hurdles to overcome in downsizing the systems.
We review some major milestones in topological photonics and the
challenges of their corresponding platforms.

A. Topological insulators interacting with light

We review 3D topological insulators (as introduced in
Sec. II B) and their response when irradiated with light. Due to the
presence of TR symmetry, a new term can be added to the action

of the system,29 given by

S(ϑ) ¼ �
α

16πμ0

ð

d3xdtϑ(x, t)εμνρτFμνFρτ , (2)

where μ0 is the permeability of free space, α is the fine structure
constant, and εμνρτ is the fully anti-symmetric 4D Levi-Civita
tensor. Fμν is the electromagnetic tensor, and ϑ(x, t) is an angular
variable, which we assume to be constant in order to preserve
spatial and temporal translation symmetry. Normally, this term
would not be considered in a theory of electromagnetism as it does
not conserve parity, which the electromagnetic interaction is
known to do. However, if ϑ is defined modulo 2π and is restricted
to take the values 0 and π only, we find a theory that conserves
both parity and time reversal symmetry. These two values of ϑ give
us either a topologically-trivial insulator (ϑ ¼ 0) or a topological
insulator (ϑ ¼ π), where ϑ is the topological invariant. Expanding
this leads to a new term in the Lagrangian /E � B. This additional
term in the Lagrangian leads to modified Maxwell equations

r �D ¼ ρþ
αε0c

π
rϑ � Bð Þ,

r�H�
@D

@t
¼ j�

α

πμ0c
rϑ� Eð Þ,

r� Eþ
@B

@t
¼ 0,

r � B ¼ 0,

(3)

where D ¼ εE and H ¼ 1
μ
B. To write D and H in these forms, we

have assumed a linear material such that polarisation is given by
P ¼ ε0χE and magnetization by M ¼ χmH, where χ and χm are
electric and magnetic susceptibility, respectively. H is the magnetic
field, and D is the electric displacement. ε is the material permittiv-
ity, and μ is the material permeability (which for all materials we
will cover in this work is given by μ ¼ μ0). j describes free currents,
while ρ gives the charges. To be expected, when in a topologically
trivial phase (such that ϑ ¼ 0), the equations reduce to the ordi-
nary Maxwell equations. As an alternative to the topologically
modified Maxwell equations, we can also write the usual Maxwell
equations with modified constituent equations29 such that

D ¼ εE�
ϑε0cα

π
B,

H ¼
1

μ0
Bþ

ϑα

πμ0c
E:

(4)

There have been various successful theory and experimental pro-
posals on this topic.27,30–32 This elegant method of using modified
Maxwell equations to characterize the optical properties of TIs is
valid when the surface states are well described classically (i.e., long
wavelength), which holds well for a TI slab as we shall study in
Interlude 1. In Sec. IV, we discuss spherical TI particles. For nano-
particles (with particle radius R , 100 nm), a classical description
of the surface states is no longer valid, and we must invoke
quantum mechanics to fully describe them and their interaction
with incoming light.25 We presently move to Interlude 1, where we
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describe a new proposal in which a layer of the topological insula-
tor material is added to an Otto surface-plasmon-resonance (SPR)
configuration in order to demonstrate that the conducting surface
state of the TI can be probed with light. This is due to the unique
E � B coupling of the system and the corresponding new boundary
conditions [see Fig. 4(a)]. A plasmon mode excited with purely
p-polarised incoming light will rotate out of the plane of the mate-
rial and a small component of s-polarised light will be transmitted
or reflected. We also direct readers to the prospective paper on
experimental methods for creating films of 3D TI materials and the
existence of 2D Dirac plasmons in these systems.33

Interlude 1
Case study exploring Dirac plasmons with prism couplings

It is instructive to see how an extremely widespread system in
nanophotonics can be used to study TIs and, in particular, the exci-
tation of Dirac plasmons. A typical prism coupling system is shown

in Fig. 4(b). A prism (silicon, n ¼ 3:5) is positioned on top of a
dielectric spacer (e.g., benzocyclobutene34 with ε ¼ 2:5 and thick-
ness 200 μm), a thin film of a topological insulator (Bi2Se3 with
ε ¼ �3:4þ 36:7i at 1 THz,25 thickness 8 μm) all on top of a sub-
strate with the same refractive index of the spacer. The light
coming from the prism at a grazing angle will excite surface modes
in the film below the spacer by a tunneling effect. Such a system is
widely used in plasmonics, where a metal film replaces the TI.35 In
such experiments, abrupt reduction of the reflectivity is observed
for angles of incidence in the zone of the total reflection. In fact,
with the right conditions it is possible to convert the entirety of the
incident light into a surface plasmon polariton (SPP).36

Here, we utilise the same idea but instead of a SPP, we excite
something similar to a surface exciton-polariton in an absorbing
media, i.e., the same phenomenon as observed for silicon in the
near UV.37 We utilise the high absorption due to the α-phonon in
the Bi2Se3.

25 The calculation can be done easily by modifying the
boundary conditions to include topology in the multilayer

FIG. 4. Topologically modified Maxwell’s
equations and SPPs. (a) Boundary con-
ditions at the surface of a topological
insulator. (b) Otto configuration com-
prised of a prism, spacer, and topologi-
cal insulator film on a substrate. (c)
Reflection, transmission, and absorption
of incoming light. (d) H near-field for
p-polarised light. (e) Transmitted
s-polarised light with and without prism
from p-polarised incident light.

Journal of
Applied Physics

PERSPECTIVE scitation.org/journal/jap

J. Appl. Phys. 125, 120901 (2019); doi: 10.1063/1.5086433 125, 120901-5

© Author(s) 2019

https://aip.scitation.org/journal/jap


system.38 Following the theory in Sec. III A, we enforce the follow-
ing topological boundary conditions,29 which are given diagram-
matically in Fig. 4(a),

E?
2 ¼

E?
1

εr2
þ
ϑcα

εr2π
B?
2 ,

E
k
2 ¼ E

k
1 ,

B?
2 ¼ B?

1 ,

B
k
2 ¼ B

k
1 �

ϑα

cπ
E
k
2:

(5)

We remark that the above boundary conditions mix the polarisa-
tions. For example, a p-polarized incident light can be partially
converted to s-polarization after the interaction with the TI. In
other words, the TI introduces a magneto-optical effect and a rota-
tion of the light polarization. The observation of the magneto-
optical effect using the prism coupling method could offer a
new way to study topological insulators. The result can be seen in
Fig. 4(c), where we show reflectivity (blue), transmission (orange
dashed), and absorption (green dotted) for a p-polarized incident
field at 1 THz. We can see that a sharp peak in the absorption is
obtained at ≏27�. At this angle, in the total reflection zone, we
excite a surface polariton in the thin film, as can also be seen from
the near fields in Fig. 4(d).

Let us now analyze the light rotated from p-polarisation to
s-polarisation. We see a strong conversion at the surface polariton
angle of excitation [blue curve in Fig. 4(e)]. In order to analyze the
enhancement of such a conversion, we also plot the light rotated to
s-polarisation when the prism is not present, i.e., when we do not
excite the surface polariton and see that no s-polarized light is
present. This study demonstrates that a fine-tuned optical device is
able to detect the topological characteristics of a topological elec-
tronic structure.

B. Topological photonic analogues

So far, we have discussed merging the physics of topological
electronic systems with light, but we now move to the concept of
topological photonic analogues, in which we aim to mimic the
properties of topological electronic structures using bosonic degrees
of freedom (i.e., photons). We begin by discussing how to construct
photonic band structures, before moving onto specific examples
both with and without time-reversal symmetry.

1. Photonic band structures

The first hurdle in emulating topological electronic structures
with photonic systems is by devising a way to create a band struc-
ture for light. Electrons in vacuum have a gapless, parabolic disper-
sion relation, but when presented with a periodic potential such as
a crystal lattice, gaps may open in which the electrons will not
propagate.39,40 Similarly, photons in vacuum exhibit a gapless,
linear dispersion relation which can become gapped on the intro-
duction of a periodic medium. We overview this analogy between

the Maxwell equations in a periodic medium and quantum mechanics
with a periodic Hamiltonian.41

We begin with the macroscopic Maxwell equations

r �H(r, t) ¼ 0 r�H(r, t)� ε0ε(r)
@E(r, t)

@t
¼ 0,

r � ε(r)E(r, t)½ � ¼ 0 r� E(r, t)þ μ0
@H(r, t)

@t
¼ 0,

(6)

written in terms of H and E fields, where both fields are dependent
on both r and t. We restrict ourselves to real and positive ε(r) and
linear materials (although the theory can be generalized for the
presence of loss). For mathematical convenience, we write the fields
as complex-valued fields such that we have a spatial-mode profile
multiplied by a time-dependent complex exponential

H(r, t) ¼ H(r)e�iωt , (7)

E(r, t) ¼ E(r)e�iωt , (8)

with the proviso that we must take only the real part of the fields
when we wish to recover the physical fields. In doing so, we can
substitute into the Maxwell equations and combine into a single
eigenvector equation for H(r)

r�
1

ε(r)
r�H(r)

� �

¼
ω

c

� �2
H(r), (9)

in which we can write the Hermitian operator Θ as everything that
acts on H(r) on the left-hand side of the equation such that

ΘH(r) ; r�
1

ε(r)
r�H(r)

� �

: (10)

The field, the eigenvector equation, and the Hermitian operator are
repeated in Table I, in which they are compared to their counter-
parts in quantum mechanics.41

In order to create a band structure from this eigenvalue
problem, we now introduce a discrete translation symmetry of the
material (equivalent to demanding periodic boundary conditions).
Mathematically, this results in ε(r) ¼ ε(rþ R), where R is an
integer multiple of the lattice step vector (i.e., the vector traversed
before the system pattern repeats). The field H(r) can still be con-
sidered as a plane wave, but now modulated by a periodic function

TABLE I. QM vs EM Quantities of quantum mechanics alongside their
photonic analogue counterparts.

Quantum mechanics Electrodynamics

Field Ψ(r, t) ¼ Ψ(r)e�iEt
�h H(r, t) ¼ H(r)e�iωt

Eigenvalue problem HΨ ¼ EΨ ΘH ¼ ω
c

� �2
H

Hermitian operator H ¼ � �h2

2mr
2 þ V(r) Θ ¼ r� 1

ε(r)r�
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due to the periodicity of the lattice such that

Hk(r) ¼ eik�ruk(r), (11)

where u(r) is a function with the same periodicity as the lattice and
k is the Bloch wave vector, a conserved quantity so long as the dis-
crete translation invariance of the system holds. This result is
known as Bloch’s theorem and is analogous to the periodicity of
the electron wave function in a crystal lattice. Putting Eqs. (10) and
(11) together, we obtain a new eigenproblem for uk(r);

Θkuk(r) ¼
ω(k)

c

� �2

uk(r), (12)

where the new eigenoperator is given as

Θk ; (ik þr)�
1

ε(r)
ik þrð Þ � : (13)

Media with a periodic dielectric function can be manufactured in a
multitude of ways. Photonic crystals may be formed of periodic
dielectric, metallo-dielectric, gyroelectric, or gyromagnetic struc-
tures. To diffract electromagnetic waves of a given wavelength λ,
the periodicity of the photonic crystal structure must be � λ

2. In
order to diffract visible light (400 nm , λ , 700 nm), the photonic

nanostructure becomes increasingly more difficult to construct.
Photonic devices made of arrays of optical resonators and coupled
waveguides are also of interest, but again miniaturization is a chal-
lenging goal.

When incorporating topology into the photonic band struc-
ture, we mirror the concepts found in topological condensed
matter systems. We focus on the two main types of system: those in
which time-reversal symmetry is explicitly broken in order to
support topological states and those in which we aim to preserve
time-reversal symmetry.

2. Explicit time-reversal breaking

The first theoretical proposal for a photonic analogue of the
quantum Hall effect came in 2008,42,47 in which the interface
between gyroelectric photonic crystals of differing Chern number
was studied. The proposed system comprised of a hexagonal array
of dielectric rods exhibiting a Faraday effect, with the Faraday-effect
enabling the time-reversal breaking and opening the bandgap. The
interface between the photonic crystals creates a domain wall across
which the direction of the Faraday axis reverses. The Faraday effect
vanishing at the domain wall results in Dirac-like edge states at this
point [as illustrated in Fig. 5(a)]. These unidirectional photonic
modes are the direct analogue of chiral edge states in a quantum
Hall system. While this work was limited to photonic band struc-
tures containing Dirac points, another study48 noted that a Dirac
cone is not imperative for a system to support edge states, merely
that the band structures of materials of either side of an interface

FIG. 5. Proposals and realisations of topological photonic systems. (a) The first proposal of the PQH state. Reprinted with permission from Haldane and Raghu, Phys.
Rev. Lett. 100, 013904 (2008). Copyright 2008 American Physical Society.42 (b) The first experimental realisation of PQH and (c) the edge states from this work. Both
figures reprinted with permission from Wang et al., Nature 461, 772 (2009). Copyright 2009 Springer Nature.43 (d) Proposal and experimental demonstration of a photonic
Floquet topological insulator. Reprinted with permission from Rechtsman et al., Nature 496, 196 (2013). Copyright 2013 Springer Nature.44 (e) Time-reversal symmetry for
(i) electrons, (ii) photons, and (iii) a scheme for pseudo-fermionic TR symmetry. (f ) First proposal for a 3D photonic TI using the pseudo-fermionic time reversal scheme
shown in (e). Reprinted with permission from Khanikaev et al., Nat. Mater. 12, 233 (2013). Copyright 2013 Springer Nature.45 (g) The first proposal for 3D all-dielectric pho-
tonic TI. Reprinted with permission from Slobozhanyuk et al., Nat. Photonics 11, 130 (2017). Copyright 2017 Springer Nature.46
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have different Chern numbers of bands below the gap. They put
forward a new proposal using a square lattice gyromagnetic crystal
operating at a microwave frequency, resulting in time-reversal
breaking strong enough for the effect to be easily measured. Both
proposals also note that the phenomenon of chiral edge states
should be independent of the underlying particle statistics as the
Chern number is defined in terms of single-particle Bloch func-
tions. The number of chiral edge states is equal to the sum of the
Chern numbers of all bands below the bandgap, and the Chern
number may only be non-zero if the system explicitly breaks time-
reversal symmetry.

The first experimental observation of photonic chiral edge
states came in 2009,43 utilising a magneto-optical photonic crystal
in the microwave regime. The gyromagnetic, 2D-periodic photonic
crystal consisted of a square lattice of ferrite rods in air bounded on
one side by a non-magnetic metallic cladding to prohibit radiation
leakage [illustrated in Fig. 5(b)]. The experimental study demon-
strated unidirectional edge states [shown in Fig. 5(c)], which were
robust against scattering from disorder, even in the presence of
large metallic scatterers. An experimental realisation using a 2D
honeycomb array of ferrite rods in 201149 showed that an auxiliary
cladding is not necessary as edge states can be constructed such
that they necessarily evanesce in air. The gyromagnetic effect
employed in this system is limited by the Larmor frequency of the
underlying ferrimagnetic resonance, which is on the order of tens
of gigahertz.

3. Fermionic pseudo-time-reversal symmetry and
photonic topological insulators

The photonic analogues of the quantum Hall effect outlined
above exhibit photonic edge states which are topologically pro-
tected, but can be challenging to manifest experimentally as a
strong magnetic field is usually needed. Systems in which time-
reversal symmetry is not broken do not require external biasing
such as an applied magnetic field, but can pose their own chal-
lenges. We now discuss photonic analogues of quantum spin Hall
states and topological insulators. As covered in Sec. II B, the time-
reversal invariance in electronic systems is intimately linked to the
fermionic condition T2

f ¼ �1, and the topological protection from
backscattering directly emerges from this condition. Photonic
systems are constructed from bosonic degrees of freedom (namely,
photons) and bosonic time-reversal symmetry (which obeys the
condition T2

b ¼ 1) does not give protection from back-scattering.
In photonic systems, it has instead been proposed to construct a
pseudo-fermionic time-reversal operator TP , by combining the
bosonic time-reversal operator with some other symmetry of the
structure, for example, a crystal symmetry.50 The platforms we will
now discuss construct TP either with the use of polarisation degen-
eracy or by relying on a lattice symmetry.

The first theoretical proposal for a photonic QSH state came
in 2011,51 using a two-dimensional array of ring resonators
coupled with waveguides, which produce phase shifts that are
non-commensurate with the lattice. Degenerate clockwise and
anti-clockwise modes of a 2D magnetic Hamiltonian behave analo-
gously to spins with spin-orbit coupling in the electronic quantum
spin Hall effect. The proposal was then realised experimentally in

2013,52 and another proposal using optical ring-resonators followed
soon after, eradicating the need to fine-tune the inter-resonator
couplings.53

The first metamaterial proposal for a photonic analogue of a
Z2 topological insulator was presented in 2013,45 using a metacrys-
tal formed of a 2D superlattice of subwavelength metamaterials.
The spin degeneracy leading to pseudo-fermionic time reversal
invariance is constructed by enforcing ε ¼ μ, resulting in TE and
TM modes in the system propagating with equal wavenumbers.
This allows one to write linear combinations of the fields which
propagate with equal wavenumber and are doubly degenerate.
These states are connected with a pseudo-fermionic time reversal
operator [as depicted in Fig. 5(e)] and will act analogously to spin
degenerate states in an electronic system. The photonic band struc-
ture of such a system is shown in Fig. 5(f).

Photonic topological crystalline insulators obey pseudo-
fermionic TR symmetry enforced by the bosonic TR symmetry of
the photons and a crystal symmetry. In 2015, a purely dielectric
scheme was proposed,50 which does not require a magnetic field
and is constructed from cylinders in a honeycomb lattice which is
distorted such that a triangular lattice emerges with a hexagon of
cylinders at each site. The system has C6 symmetry and helical edge
states at the Γ-point. This structure was used in 2017 to experimen-
tally demonstrate that deep subwavelength scale unidirectional
modes can be supported by crystalline metamaterials.54

It is interesting to note that finite crystals using the same
scheme of dielectric cylinders forming photonic topological
insulator particles present modes that are topological whispering
gallery modes, as was first theoretically proposed55 and later experi-
mentally realized.56 Rather than a continuous spectrum of edge
states as seen in an infinite system, these particles exhibit a discrete
spectrum of edge states which (like the infinite system) support
unidirectional, pseudospin-dependent propagation. The discrete
nature of the edge states agrees with the observation of discrete
peaks in experimental transmission measurements. Actually, in any
experimental realization of a topological photonic crystal, there is a
low number of unit cells compared with the Avogadro number of
electrons in a electronic topological insulator; this has an important
repercussion in the number of discrete states, i.e., in any realistic
experiment with a topological photonic crystal only few states are
possible.

The first proposal of a 3D photonic TI (PTI) came in 2016,57

relying on a crystal symmetry (the nonsymmorphic glide reflection).
The complicated nature of the structure would make it challenging
to realise experimentally, whereas an all-dielectric proposal for a 3D
photonic topological insulator came in 2017,46 using a 3D hexagonal
lattice of “meta-atoms” (dielectric disks) as displayed in Fig. 5(g). A
3D photonic TI composed of split-ring resonators with strong
magneto-electric coupling was experimentally realised in 2019.58

So far, we have discussed the two types of topological pho-
tonic systems—those which explicitly break time-reversal symmetry
(leading to a quantum Hall system) and those which conserve it
(giving a quantum spin Hall system). When inversion symmetry is
broken in a 2D honeycomb lattice, the two valleys of the band
structure exhibit opposite Berry curvatures. These two valleys can
be interpreted as pseudo-fermionic spins, giving rise to a time-
reversal invariant effect known as the valley Hall effect. Proposed
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for photonic systems in 2016,59 this effect has been experimentally
observed in surface plasmon crystals at low frequencies60 and pho-
tonic crystals,61,62 with the demonstration of chiral, topologically
protected valley Hall edge states at the domain wall between two
valley Hall photonic insulators of differing valley Chern numbers.

Another important class of photonic topological insulators is
the photonic Floquet topological insulator. Floquet topological insu-
lators induce topological effects not by explicitly breaking time-
reversal symmetry, but by time-periodic modulation (driving).
Topologically protected edge states may arise at the boundary of two
Floquet systems much in the same way that they would in the usual
topological insulators, although topological invariants relating to
bands (such as the Chern number) are replaced by gap invariants.
Photonic Floquet topological insulators were first realized in 2013,44

using a platform of coupled helical waveguides (whose cross section
has diameter ≏ μm), arranged in a honeycomb lattice structure [as
shown in Fig. 5(d)]. The helicity of the waveguides break inversion
symmetry in the z direction (the axis of propagation), which acts
analogously to the breaking of TR symmetry in a solid state system
(but is periodic in nature, in the spirit of Floquet TIs), which is
evident from the equivalence between the paraxial wave equation in
EM and the Schrödinger equation in QM. The structure results in
topologically protected, unidirectional edge states.

Floquet topological insulators demonstrate that topologically
protected edge states may be present in a system even when the
topological band invariant is trivial, indicating a trivial phase.
Modelling photonic topological insulator systems (such as those
studied in Ref. 51) as Chalker-Coddington-type networks68 allow
them to then be mapped onto the Bloch-Floquet states of driven
periodic lattices, and it can be shown that topologically protected
edge states can be present due to an adiabatic pumping invariant,
despite all bands having a zero Chern number. Anomalous Floquet
photonic topological edge states have been realised in surface
plasmon structures at low frequencies,69 photonic waveguide lat-
tices,70 and ultrafast-laser-inscribed photonic lattices.71

IV. TOPOLOGICAL NANOPHOTONICS

We now arrive at topological nanophotonics. Some of the plat-
forms we will describe are nanoscale versions of systems already
described in Sec. III. However, many of these systems have

fundamental size limits or are simply very difficult to engineer at
the nanoscale. In some of the schemes already described, the opera-
tion frequency of the systems is fundamentally limited by the
strength of the time-reversal symmetry-breaking mechanism
employed, as the frequency at which the mechanism operates is too
low to be used in THz platforms. We discuss some new platforms
that support topological states. As described so eloquently by
Toumey,72 “nanotechnology has no single origin and spans multi-
ple disciplines and subdisciplines all united by the same aim to
control matter at the nanoscale.” As such, there are many platforms
on which to develop nanostructures and consequently many routes
through which we can arrive at topological nanophotonics, some of
which we now outline.

A. Topological insulator nanoparticles interacting with
light

We saw in Sec. III A that electronic topological insulators will
behave differently to their trivially insulating counterparts when
irradiated with light. When dealing with large bulk samples of
materials, the band structure of the system will exhibit a finite bulk
gap, bridged by continuous, conducting topological surface states.
These surface states display spin-momentum locking and as such,
are extremely robust against backscattering and so unidirectional
surface currents can be observed. When shrunk to the nanoscale,
the surface to bulk ratio of the system becomes significant, and we
can expect surface effects to have a greater impact on both the elec-
tric and optical properties of the material.

While the large TI structures of Sec. III A and their interac-
tions with light can be treated classically, for much smaller struc-
tures it is no longer possible to treat the states of the structure
classically, and we must instead treat the surface states quantum
mechanically. As shown by Siroki et al.25 in 2016, in the case of
small (R , 100 nm) topological insulator nanoparticles (TINPs),
the continuous Dirac cone becomes discretized due to quantum
confinement effects (as illustrated in Fig. 6). The discretized surface
states are linearly separated by energies inversely proportional to
R. If irradiated by light of commensurate frequency, single states
within the Dirac cone can be excited to new localised states. This
results in a new term in the absorption spectrum of the system,
which (for a spherical particle of radius R, permittivityε, suspended

FIG. 6. Topological insulator nanoparti-
cle interacting with light. (a) Schematic
of topological insulator nanoparticle
irradiated with light along the material
c-axis. Bulk states and surface states.
(b) Discretisation of the Dirac cone,
with linear spacing between states
inversely proportional to the particle
radius, R. A is a material dependent
constant.
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in a background dielectric, permittivity εout) is given by

σabs(ω) ¼ 4πR3nout
2π

λ
Im

εþ δR � εout

εþ δR þ 2εout

� 	

, (14)

where (for Fermi level EF ¼ 0) the delta contribution is given by

δR ¼
e2

6πε0

1

2A� �hωR
þ

1

2Aþ �hωR

� �

(15)

and A is a material-dependent constant. In the absence of surface
states (such as by applying a magnetic field term and thus destroy-
ing the surface states), δR = 0 and we return to the usual solution
of a dielectric sphere in a constant electric field. For materials in
the Bi2Se3 family, transitions between these topological, delocalised
surface states occur within the same frequency range as a bulk
phonon excitation. This results in a strong Fano resonance, referred
to as the surface topological particle (SToP) mode. This is a purely
quantum mechanical feature of the system, and the asymmetric
profile of this resonance creates a point of zero-absorption at a par-
ticular frequency, meaning that remarkably, the excitation of a
single electron occupying a topological surface state can shield the
bulk from the absorption of incoming light. This mode has been
theoretically predicted,25 and their observation in experiments is
within current experimental capabilities. Of course, a fine tuning of
the Fermi energy is needed.73

The robust and discrete nature of the TINP surface states
lends them to various new research paths. They may be of particu-
lar relevance in the areas of quantum optics and information, as
the discrete surface states are reminiscent of an atomic scheme of
energy levels, but with the additional quality of topological protec-
tion. This may make them a unique, topological type of quantum
dot which could have a host of applications in areas such as topo-
logical lasing and topological quantum computing. A natural ques-
tion arises as to how big a topological nanoparticle must be in
order to preserve its topological properties, which depend on the
bulk. This point has been addressed using a tight-binding model
and it was shown that a particle of diameter greater than 5 nm
already behaves as a topological insulator.74

Interlude 2
Chiral symmetry and the bulk-boundary correspondence within a
photonic SSH model

Here, we discuss the Su-Schrieffer-Heeger (SSH) model,21,75

whose topological properties are linked to sublattice symmetry. We
study a 1D chain of atoms with nearest-neighbour interactions
only, in which bond strength between atoms alternates [illustrated
in Fig. 8(a)]. This is a single electron Hamiltonian, written as

H ¼ v
X

N

m¼1

jm, Bihm, Aj

þ w
X

N�1

m¼1

jmþ 1, Aihm, Bj þ h:c:,

(16)

where for m [ {1, 2, . . . , N}, jm, Ai and jm, Bi are the states for
which the electron is on unit cell m, on either sublattice A or B,
respectively. We define projection operators for each sublattice PA,
PB, and the sublattice operator Σz ,

PA ¼
X

N

m¼1

jm, Aihm, Aj,

PB ¼
X

N

m¼1

jm, Bihm, Bj,

Σz ¼ PA � PB:

(17)

Applying the sublattice operator to the Hamiltonian, we see that
ΣzHΣz ¼ �H. This relationship holds for inversion of the sublat-
tices such that PA ! PB and PB ! PA. This tells us that if jψA, ψBi
is an eigenstate of the system with energy E, jψA, � ψBi will be an
eigenstate with energy �E. This means that for a system with a
bandgap around 0, there will be an equal number of states below
the gap as above the gap and this can only be violated if the gap
closes, causing a topological phase transition.

A photonic analogue of the SSH model can quite simply be
envisioned by studying a chain of dipoles65 with dipole moments

FIG. 7. Proposals and realisations of topological nanophotonic platforms. (a) Honeycomb lattice of metallic nanoparticles supporting Dirac plasmon. Reprinted with permission
from Han et al., Phys. Rev. Lett. 102, 123904 (2009). Copyright 2009 American Physical Society.63 (b) The SSH model demonstrated with dielectric nanoparticles. Reprinted with
permission from Slobozhanyuk et al., Phys. Rev. Lett. 114, 123901 (2015). Copyright 2017 American Physical Society.64 (c) Bipartite chain of plasmonic nanoparticles which can
exhibit edge states, reproduced from Ling et al., Opt. Express 23, 2021–2031 (2015). Copyright Optical Society of America 2015.65 (d) Introducing long-range hopping with retar-
dation and radiative damping creates a richer and more realisatic model. Figure from Pocock et al., ACS Photonics 5, 2271–2279 (2018). Copyright 2018 Pocock et al., licensed
under a Creative Commons Attribution 4.0 License. 66 (e) Experimental realisation of an all-dielectric metasurface which uses far-field measurements to confirm band inversion.
Reproduced from Gorlach et al., Nat. Commun. 9, 909 (2018). Copyright 2018 Gorlach et al., licensed under a Creative Commons Attribution 4.0 License.67
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pn and which are alternately spaced by distances a and b [as shown
in Fig. 8(b)], described by the coupled dipole equations

1

α(ω)
pi ¼

X

M

i=j

G(rij, ω)pj, (18)

where G(rij, ω) is the dyadic Green’s function, depending on the
separation of the dipoles rij ¼ ri � rj, and α(ω) is the polarisability
of whichever platform is being used to form the dipoles. In the
electrostatic, nearest-neighbour limit this system will obey the SSH
Hamiltonian.

The bulk-boundary correspondence is an important principle
that tells us that the number of edge modes equals the difference in
Chern numbers at that edge. For the SSH model, we begin by study-
ing the bulk. We first observe that the Hamiltonian of this system
[Eq. (16)] is a two band model (due to the two degrees of freedom
per unit cell) and use that any two-band bulk momentum space
Hamiltonian can be written in a Pauli basis such that H ¼ d(k)σ,
where we introduce the basis of Pauli matrices given by

σx ¼
0 1
1 0

� �

, σy ¼
0 �i
i 0

� �

, σz ¼
1 0
0 �1

� �

: (19)

For the SSH model, the components of the vector d(k) are given by
dx(k) ¼ v þ w cos(k), dy(k) ¼ w sin(k), and dz(k) ¼ 0.

When plotting the band structure as k goes from 0 to 2π, we
can also plot d(k). Due to the sublattice symmetry of the system,
dz(k) ¼ 0 for all k, and so the vector will trace out a line in the x-y
plane.

We illustrate the three possible systems s for v ¼ w, v . w,
and v , w in Fig. 8(c), and their corresponding band structures
and d(k) plots in Fig. 8(d). d(k) will be a closed loop due to the
periodic boundary conditions of the Hamiltonian. When describing
an insulator, the loop will not touch the origin (as touching the
origin indicates that the gap has closed and the bands have
touched, resulting in a conductor as in the case of v ¼ w). For
insulating phases (such as v . w and v , w), we can count the
number of times this loop winds around the origin. The number of
times it goes around the origin is the bulk winding number. Note
that the winding number v is calculated from the bulk Hamiltonian
and so is a purely bulk quantity. The bulk winding number is our
first example of a topological invariant. A topological phase transi-
tion occurs at v ¼ w, as the d(k) loop passes through the origin.

Now, if we consider an open system in the dimerised limit as
shown in Fig. 8(c), we see that PA � PB, the net number of edge
states on sublattice A at the left edge is a topological invariant. For
the trivial case (v . w), the winding number and net number of
edge states are both 0. In the topological case (v , w), both quanti-
ties are 1. This is an illustration of the bulk-boundary correspon-
dence, which tells us that the emergence of topological edge states
is related to the topological invariants of the bulk TI system.76

B. Systems of nanoparticles exhibiting topological
phases

Metallic nanoparticles can support localised surface plasmons,
and for a system of multiple nanoparticles, the near-field dipolar
interactions between the plasmons cause collective plasmons. For a
2D honeycomb lattice of nanoparticles [illustrated in Fig. 7(a)],
where the collective plasmon dispersion relation can exhibit Dirac
cones, with edge states derived from the Dirac points.63,77,78

In 2014, it was shown that a zigzag chain of metallic nanopar-
ticles can mimic the Kitaev wire of Majorana fermions.79 Majorana
edge states are topologically protected and their manifestation in
many platforms is of great interest as they are a promising candi-
date for topologically robust qubit states. This work shows that
localised plasmons at each edge can be excited selectively, depend-
ing on the polarisation of incident light.

For a bipartite lattice, there are various studies,65,66,80,81 which
demonstrate that this system can be used to construct a
photonic-analogue SSH model, the electronic theory of which can
be found in Interlude 2 [and illustrated in Fig. 7(c)]. By studying
the system at the edge of the Brillouin zone it has been shown that
the collective plasmons obey an effective Dirac-like Hamiltonian,
and the bipartite system is governed by a non-trivial Zak phase,
which predicts the topological edge states.

Recent work has considered the addition of long-range
hopping into the system, with retardation and radiative damping66

[shown in Fig. 7(d)]. The resulting non-Hermitian Hamiltonian
displays an altered band structure, but a Zak phase and edge states
which can survive. When the introduction of long-range hopping
breaks the symmetry which protects the edge states, the bulk

FIG. 8. SSH model. (a) Schematic of the SSH model. (b) Dipole analogue of
the SSH model. (c) The three cases: v ¼ w, v . w, and v , w in the dimer-
ised limit. Subsystems A and B are coloured blue and green, respectively. Only
the third case exhibits edge states, highlighted in yellow. (d) Visualization of the
band structure and function d(k) for �π , k , π. The closed d(k) loop only
encircles the origin in the last, corresponding to the existence of edge states.
Edge states in band structure are highlighted in red.
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topological invariant may still be preserved82 indicating a break-
down of bulk-boundary correspondence. While creating a more
realistic model, these studies reach towards richer and more
complex physics, crucial for experimental nanoscale schemes which
will necessarily be more affected than their larger counterparts by
the processes described.

The above collective works demonstrate the first proposals for
truly subwavelength topological states. It has also been shown that
systems of dielectric nanoparticles present promising topological
nanophotonic platforms. It is well known that some of the effects
achieved with plasmonic nanoparticles can be reproduced using
high-index dielectric particles with electric and magnetic Mie reso-
nances, which are already used as buildings blocks in larger pho-
tonic systems (referring back to Sec. III). It has been shown that
the SSH model can be translated into this new system of dielectric
nanoparticles64 [shown in Fig. 7(b)], as well as dielectric nano-
disks.83 Systems of dielectric nanostructures may even present a
better platform than their metallic counterparts, as they have negli-
gible Ohmic losses, low heating and can exhibit both electric and
magnetic multipolar radiation characteristics. Recent experimental
work using a zigzag array of dielectric nanoparticles has demon-
strated strongly enhanced, non-linear photon generation from
topological edge states.117

C. Graphene-based topological nanostructures

Graphene-based plasmonic crystals present another platform
with which we can study topological phases at the nanoscale. Their
unique plasmonic properties (tunable carrier densities, small Drude
mass, and long intrinsic relaxation times) allow us to study topo-
logical plasmon excitations in the THz regime. Even explicitly
breaking time-reversal symmetry with a magnetic field is possible,
as relatively weak magnetic fields can result in a high cyclotron fre-
quency when combined with a small Drude mass. At finite doping
of a 2D periodically patterned graphene sheet [as illustrated in
Fig. 9(a)], an external magnetic field will induce topologically-
protected one-way edge plasmons.84 These plasmons can exist at
frequencies as high as tens of THz. More complicated nanostruc-
tures can be constructed from graphene, such as nanotubes, nano-
cavities, and even toroidal structures.85 It has also been proposed
that honeycomb superlattice structures fashioned into ribbons and
pierced with a magnetic field [as shown in Fig. 9(b)] could present
another avenue in which to produce and guide topologically pro-
tected modes within a graphene-based nanostructure.86

D. Topological states in metasurfaces

Metasurfaces are the 2D derivative of 3D metamaterials. These
2D metamaterials are made up of meta-atoms, forming a structure
which is of subwavelength thickness. The spatially varying features
of a metasurface can give rise to various applications, such as arbi-
trary wave fronts and non-linear optical effects. The resistive loss of
a metasurface is lower than that of its 3D metamaterial counterpart
due to the absence of a bulk material, and in much the same way
that 3D metamaterials can be constructed to support topological
states, so can metasurfaces. Metasurfaces can be modulated both
spatially and temporally (such as via external voltages or optical
pumping), creating various paths towards topological phases. A

recent review of progress in metasurface manufacturing and their
applications has been compiled by Chang et al.87

As with any photonic system, photonic modes can leak from
the structure of a metasurface, allowing a path via which topologi-
cal characteristics of the structure may be measured. As an alterna-
tive to probing topological edge states of the system, it was
demonstrated in 201867 that the topological band inversion of a
metasurface structure can be confirmed from angle-resolved
spectra in the far-field [the experimental setup of which is shown
in Fig. 7(e)].67

E. Nanophotonic topological valley Hall

The valley Hall system shares many characteristics with the
quantum spin Hall system. Broken inversion symmetry in a time-
reversal symmetric 2D honeycomb lattice leads to a system in
which the two valleys of the band structure exhibit opposite Chern
numbers. This effect has been successfully realised using silicon
nanophotonic crystals operating at telecommunication wave-
lengths.88,89 A crystal structure of equally sized triangular holes will
have C6 symmetry and exhibit Dirac cones at the K and K 0 points.
By alternating the size of the triangles at each lattice point, the sym-
metry of the system will reduce to C3, the Dirac cones will become
gapped and the two valleys will exhibit equal and opposite valley
Chern numbers. Placing two crystals of differing orientation
together results in a difference in valley Chern number across the
interface, and counter-propagating edge states are necessarily local-
ised at this interface. The study demonstrates a comparison
between straight and twisted paths for the edge states, in which it is
shown that the modes are very robust to harsh changes in structure
such as sharp corners, and out-of-plane scattering is very low. Due
to time-reversal symmetry, disorder which flips the helicity of the
states can still result in backscattering; however, the work illustrates
that on-chip fabrication of topological nano-devices is very possi-
ble, giving robust topological protection at telecommunication
wavelengths. A similar setup has been achieved in Ref. 90, using
circular rather than triangular holes resulting in a bandgap for
TE-like polarizations rather than a direct bandgap.

V. GOALS AND PROSPECTS

Great strides have been made in the work on topological pho-
tonics, and it is now a well established and multifaceted field, but
as seen in Sec. IV, the road towards topological nanophotonics is
far less travelled.

In order to deliver the goal of topological protection of
photons at the nanoscale, we look for platforms in which magnetic
fields need be only of modest size or are not needed at all (as mag-
netic effects at the visible/nanoscale are weak). Many of the tools
mastered in other frequency regimes (such as acoustic pumping or
the use of metamaterials to form photonic crystals) are outside
current capabilities at the nanoscale, so we look for platforms with
novel ways of demonstrating and controlling topological states.

Many of the systems in Secs. III and IV display Hermitian
behaviour, mimicking the physics of topological electronic systems.
This is because topological insulators originally emerged in the
context of quantum mechanics, in which operators are Hermitian
so that measurable parameters are real valued. However, the
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emulation of Hermitian systems is just one facet of topological pho-
tonics, which can also break Hermiticity through losses, gain, and
phase information. We must therefore understand how
non-Hermiticity affects TIs if we hope to fully harness the power of
topological protection for photonic systems.

Before their application to TIs, non-Hermitian systems have
been vastly explored in the case of parity-time symmetric scenarios,
where the eigenvalues of the operators are real valued despite the
lack of Hermiticity. In photonics, this behaviour emerges due to a
balancing act between loss and gain.91 Since then, parity-time (PT)
symmetric systems and those with different symmetries and
complex eigenvalues have been shown to exhibit topological protec-
tion, opening a door to new and exciting physics.92–94 Researchers
have predicted and observed phase transitions and edge states
apparently unique to non-Hermitian systems95,96 and are working
to develop a much-needed theory for non-Hermitian TIs.97–100

All Hermitian TIs are characterised by the ten-fold way, a sort
of topological insulator periodic table associating topological behav-
iour with matrix symmetry classes and dimensionality.101 Recently
a non-Hermitian equivalent with thirty-eight symmetry classes has
been proposed by two separate groups, paving the way for new and
exciting non-Hermitian topological experiments.102,103

The interplay between loss and gain in photonic systems
already described above is not only a topic primed for scientific
study but also an opportunity for new and exciting applications.
For example, the existence of robust edge states in topological
systems has allowed for the breakthrough concept of topological
lasing. By using topologically protected states for lasing modes, the
lasing mechanism is immune to disorder under many perturba-
tions of the system (such as local lattice deformations).104–106

Lasing from the edge states of a 1D SSH lattice has been dem-
onstrated using polariton micropillars in the strong coupling
regime.107 It was shown that the lasing states persist under local
deformations of the lattice, and although the experiment was
undertaken at low temperature (T ¼ 4K), microcavity polariton
lasing experiments have been accomplished at room tempera-
ture108,109 and so this avenue has the potential to produce room-
temperature lasing from topological states.

The cavity in conventional lasers has an important role, and a
lot of precision and care must be taken when building a cavity. In

fact, the amplification of optical modes can happen only with a
properly aligned, stable cavity. An alternative approach was recently
proposed,94,110 borrowing concepts from topological insulators.
The main idea is a laser whose lasing mode is a topologically pro-
tected edge mode. Or in other words, we can use photonic topologi-
cal crystals that present protected edge states. In this way, light which
propagates in only a single direction can be amplified, despite cavity
imperfections such as sharp corners or crystal defects. Such an idea
has been theoretically proposed110 and realized94 with an array of
micro-ring resonators, with coupling between rings designed to
follow a topological model.111 Allowing gain only on the edge, it is
possible to enforce that the topological edge mode lases first. Such
new lasing systems present interesting properties such as high slope
efficiency, unidirectionality, and single mode emission (even in the
high gain region) aside from the extreme robustness of the mode
due to topological protection. These systems also show that
non-Hermitian Hamiltonians have protected topological states, bol-
stering them against previous criticism.

Despite these exciting advanced, further theory, particularly
on the correspondence between bulk topological numbers and pro-
tected edge states, is still needed for a complete understanding of
non-Hermitian topological physics.

While they harbour great potential for robust lasing systems,
topological nanophotonic systems could also be of interest in the
field of topological quantum optics and information.

Topological insulator nanoparticles exhibit a quantum dot-like
structure of discrete edge states. These states can be tuned as a
function of particle size, ranging from 0.003 to 0.03 eV and can be
coupled with incoming light. These qualities give TINPs the same
functionality as that of a quantum dot but in the THz regime and
with delocalised rather than localised states. Such topological
quantum dots, if experimentally confirmed, could open new excit-
ing paths in quantum optics at room temperature. The braiding of
Majorana fermions in quantum wires112 has been proposed as a
method of topological quantum computation, so chains of nano-
particles that can model a Kitaev chain could also follow. Any
system that can robustly hold information could be of use in topo-
logical quantum computing.

Another development that will be crucial in the advancement of
robust quantum photonic devices is the development of interfaces

FIG. 9. Graphene (a) A doped, periodically patterned graphene sheet in an external magnetic field will exhibit unidirectional edge states. Reprinted with permission from
Jin et al., Phys. Rev. Lett. 118, 245301 (2017). Copyright 2017 American Physical Society.84 (b) More advanced schemes such as nanoribbon junctions have been pre-
sented as novel routes to topologically protected edge states. Reproduced from Pan et al., Nat. Commun. 8, 1243 (2017). Copyright 2017 Pan et al., licensed under a
Creative Commons Attribution 4.0 License.86
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between topological photonic systems and single quantum emitters.
First steps have been taken with an all-dielectric photonic crystal fea-
turing a band inversion at the Gamma point and momentum depen-
dent edge modes coupled to a single quantum emitter,113 generating
a robust source of single photons. It has also been shown that a
robust source of single photons can be generated from the edge states
realised in a 2D array of ring resonators.114

Time-modulation is a promising tool to induce topology,
which has not yet been explored in nanophotonics. Photonic
systems have already been used to demonstrate 4D quantum Hall
physics,115 with the use of topological pumping. In this work, 2D
arrays of evanescently coupled waveguides were used in the near-IR
regime and coupled in such a way that momenta associated with
two synthetic dimensions were sampled and a 2D topological
pump was realized. The resulting band structure of the light has a
second Chern number associated with a 4D symmetry, and the
photon pumping in this system is analogous to charge pumping in
an electronic system. Pumping in the visible range is difficult due
to the high operating frequency, but possibilities at the nanoscale
do exist—for instance, graphene can be modulated at hundreds of
GHz, while hosting plasmons in the THz. Time-reversal symmetry
breaking with acoustic pumping of nanophotonic circuits has been
achieved.116 The interplay of non-Hermiticity and topological gaps
associated with non-zero second Chern numbers has yet to be
explored, and nanophotonic systems provide a possible platform
from which to study this type of interplay and the related physics
of topological systems.

In order to obtain strong interaction between light and matter,
an important goal will be to move the topological insulator proper-
ties to higher frequencies as visible as near-UV.

The plethora of possibilities and new paradigms available in the
topic of topological nanophotonics (as illustrated in Fig. 10) make it
an exciting field to study that is brimming with theoretical and experi-
mental challenges. With technical feats of nanofabrication improving
steadily, the potential for topological protection and precise control of
photons at the nanoscale is extensive, and there is still much to be
accomplished in this new and rapidly developing field.
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