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Abstract—Deep Transfer Learning (DTL) is a new paradigm of machine learning, which can not 

only leverage the advantages of Deep Learning (DL) in feature representation, but also benefit from 

the superiority of Transfer Learning (TL) in knowledge transfer. As a result, DTL techniques can 

make DL-based fault diagnosis methods more reliable, robust and applicable, and they have been 

widely developed and investigated in the field of Intelligent Fault Diagnosis (IFD). Although several 

systematic and valuable review articles have been published on the topic of IFD, they summarized 

relevant research only from an algorithm perspective and overlooked practical applications in 

industry scenarios. Furthermore, comprehensive review on DTL-based IFD methods is still lacking. 

From this insight, it is particularly important and more necessary to comprehensively survey the 

relevant publications of DTL-based IFD with the goal of helping readers to conveniently understand 

the current state-of-the-art techniques and to quickly design an effective solution for solving IFD 

problems in practice. First, theoretical backgrounds of DTL are briefly introduced to present how the 

transfer learning techniques can be integrated with deep learning models. Then, major applications of 

DTL and their recent developments in the field of IFD are detailed and discussed. More importantly, 

suggestions on how to select DTL algorithms for IFD in practical applications, and some future 

challenges and research trends are shared. Finally, conclusions of this survey are given. As last, we 

have reason to believe that the works done in this article can provide convenience and inspiration for 

the researchers who want to devote his/her efforts in the progress and advance of IFD. 
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Abbreviations (Abbr.) 

Abbr. Terminology Abbr. Terminology 

Adagrad Adaptive Gradient IMS Intelligent Maintenance Systems 

Adam Adaptive Moment Estimation JDA Joint Distribution Adaptation 

ADDA Adversarial Discriminative Domain 
Adaptation 

k-NN k-Nearest Neighbors 

AI Artificial Intelligence KL Kullback-Leibler 

ANN Artificial Neural Network LSTM Long short-term memory 

CNs Capsule Networks MMD Maximum Mean Discrepancy 

CWRU Case Western Reserve University MVD Maximum Variance Discrepancy 

CMD Central Moment Discrepancy MAE Mean Absolute Error 

CMS Condition Monitoring System OSDA Open Set Domain Adaptation 

CMMD Conditional Maximum Mean Discrepancy PSO Particle Swarm Optimization 

CNNs Convolutional Neural Networks PK-MMD polynomial kernel induced MMD 

CORAL Correlation Alignment PHM Prognostics and Health Management 

DACN Deep Adversarial Capsule Network RNNs Recurrent Neural Networks 

DADAN Deep Adversarial Domain Adaptation 
Network 

RKHS Reproducing Kernel Hilbert Space 

DBNs Deep Belief Networks RMSE Root Mean Square Error 

DBM Deep Boltzmann Machines SAN Selective Adversarial Network 

DDCNN Deep Decoupling Convolutional Neural 
Network 

SAE Sparse Auto-Encoder 

DL Deep Learning SGD Stochastic Gradient Descent 

DNNs Deep Neural Networks SVM Support Vector Machine 

DTL Deep Transfer Learning TrAdaBoost Transfer Adaptive Boosting 

DANN Domain Adversarial Neural Network TCA Transfer Component Analysis 

GK-MMD Gaussian kernel induced MMD TL Transfer Learning 

GANs Generative Adversarial Networks TCNN Transferable Convolutional Neural 
Network 

GRL Gradient Reversal Layer WATN Weighted Adversarial Transfer Network 

GNNs Graph Neural Networks WCs Working Conditions 

IFD Intelligent Fault Diagnosis WD Wasserstein Distances 

1. Introduction 

Powerfully driven by advanced computing, sensing, measuring and communicating technologies, 

the manufacturing industry is characterized by an irresistible trend from automatic to digital and to 

intelligent, and it has embraced the new era of the fourth industrial revolution (Industry 4.0), whose 

ultimate goal is to make precise self-perception, to enable autonomous decision-making, and to 

realize intelligent networking for machines during the process of manufacturing [1]-[3]. Industrial 

equipment (IE), one of the most crucial carriers for manufacturing industry in such trend and 
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revolution, has been devoting itself to generating economic benefits such as quality improvement, 

efficiency enhancement, energy conservation and cost reduction. Meanwhile, the IE is typically 

asked to accomplish the herculean tasks that often have harsh operating environment and need 

providing long-term services [4]-[6]. To ensure the safety and reliability of the industrial environment, 

the health status of IE has to be monitored and diagnosed in time, which can reduce equipment 

downtime, formulate scheduled maintenance, increase economic benefits, and avoid tragic 

catastrophes [7], [8]. Because of the complexity and dynamicity associated with the manufacturing 

processes, which inevitably leads to degradation, failure and damage, how to precisely make fault 

diagnosis for IE in time was and remains a great challenge. 

In past decades, more and more attention has been paid to timely and precise IFD from 

academics and industry researchers since it has been listed as a key concern by many governments 

and organizations. Fortunately, owing to the rapid development of Artificial Intelligence (AI) 

technologies, especially in deep learning and transfer learning, abundant intelligent algorithms have 

been developed by researchers and engineers to address various practical problems in industrial 

scenarios, and have also brought successful breakthroughs for intelligent fault diagnosis (IFD) of IE. 

Deep learning, a branch of machine learning in AI, broadly refers to methods that utilize 

hierarchical architectures, such as Deep Neural Networks (DNNs), Deep Belief Networks (DBNs), 

Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs) and Graph Neural 

Networks (GNNs) [9]-[13], to learn higher-level representations from raw inputs which are images of 

pixel data, files of audio data, documents of text data, etc., [14]. On one hand, deep learning 

technology has been proven to be a promising tool in many applications of manufacturing industry 

due to its phenomenal advantages in massive data processing, discriminative feature learning and 

effective pattern recognition, constructing intelligent models by mapping relationships between 

health conditions of IE and industrial data in an end-to-end way [15]-[18]. On the other hand, deep 

learning technology has limitations which inhibit its further progress, advance and application in 

complex real-world scenarios. The ideal and hypothetical application scenarios of deep learning 

present the following characteristics: 

(1) Deep learning requires abundant labeled samples in advance for model training. One of the 

limitations of deep learning methods is that they learn how to perform tasks through 

observations. That is to say, deep learning methods heavily rely on large amounts of labeled 

training data, without which these methods are prone to overfitting and will lack a robust 

generalization performance. 

(2) Deep learning has strict requirements for the distributions between training and testing data. 

If a deep learning model is trained on data that present distributions discrepancy with the 

target data, the performance of the model will decrease dramatically and even will not work. 
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 4 

Considering the practical applications in many industrial scenarios, however, it is 

time-consuming, labor-intensive and even unrealistic to collect sufficient labeled data, especially 

labeled fault data, because the IE is always kept in a good status with time- or condition-based 

schedule maintenance. More importantly, it is often the case that the IE operates at harsh, varying and 

complex environments, which makes the distributions of the data in future testing situations different 

from that of the data of the pretrained model. 

Transfer learning, another branch of machine learning that focuses on learning common 

knowledge from one or more related but different application scenarios to help AI algorithms to 

obtain more powerful performance in an application scenario of interest, has been demonstrated as a 

promising methodology for helping deep learning to overcome the limitations mentioned above [19]. 

In analogy with the ability of human beings that can leverage only a few examples or previous 

experience to help tackle unforeseeable problems, transfer learning can endow an AI model with 

better learning performance even when training data is sparse and limited, and with robust 

generalization performance from the related but different application scenarios to a new one [20]. 

However, the traditional machine learning approaches might not be able to learn the discriminative 

representations in an effective way, which is a major roadblock for fulfilling the potential of transfer 

learning. 

Combining the advantages of deep learning in feature representation and the benefits of transfer 

learning in knowledge transfer, Deep Transfer Learning (DTL), a new paradigm of machine learning 

developed in recent years, leverages deep learning technology for transfer learning, which can learn 

hidden transferable knowledge and capture complex patterns more effectively [21]. DTL would be 

better preferred in practical application scenarios for manufacturing industry because it can be easier 

integrated with deep learning models that are widely developed for IFD of IE and can make the 

deep-learning-based methods more reliable, robust and accessible [22], [23]. 

The goal of this survey is to offer an in-depth overview of DTL for fault diagnosis in industrial 

scenarios, which can provide a comprehensive guidance for the readers who want to devote his/her 

efforts in the progress and advance of IFD. Historically, several systematic review articles have been 

published on the topic of fault diagnosis. For instance, Jay Lee, the founding director of the National 

Science Foundation Industry/University Cooperative Research Center (NSF I/UCRC) for Intelligent 

Maintenance Systems (IMS), conducted a comprehensive overview for Prognostics and Health 

Management (PHM) of rotary machinery systems from designing PHM methodology to selecting 

appropriate algorithms and to making accurate diagnosis decision, in 2014 [24]. That literature 

review placed much emphasis on the traditional fault diagnosis and prognosis algorithms, which 

cannot reflect the state-of-the-art techniques at present. Chen et al. gave a broad comprehensive 

literature survey of AI algorithms in the fault diagnosis of rotating machinery from the aspect of 
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theory and application, in 2018 [25], which mainly focuses in the following algorithms: k-Nearest 

Neighbors (k-NN), Naive Bayes, Support Vector Machine (SVM), Artificial Neural Network (ANN) 

and Deep Neural Network (DNN). Yan and Gao summarized the deep learning-based research work 

published before 2019 for machine health monitoring [26], in which the popular deep learning models, 

such as Sparse Auto-Encoder (SAE), Deep Belief Network (DBN), Deep Boltzmann Machines 

(DBM), Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN), have been 

systematically reviewed and the corresponding data and codes have been opened for replicating the 

reported results. Lei and Nandi presented a review and roadmap for IFD methods based on machine 

learning [27], in which the development of IFD methods was divided into three periods: the past 

(traditional machine learning), present (deep learning) and future (transfer learning). Besides the 

survey articles mentioned above, there are some other related articles which focus on the deep 

learning-based [28], transfer learning-based [29], convolutional neural network-based [30], [31], 

AI-Enabled-based [32] or special components-based [33]-[35] methods for machine fault diagnosis, 

which will not be enumerated here in detail. Admittedly, as the valuable and systematic scholarly 

sources on the IFD, these literature reviews have contributed to the development of fault diagnosis 

from many aspects and guided the researchers towards a clearer future direction [36], [37]. 

Nevertheless, there are still some aspects that have not yet been comprehensively summarized by the 

previous literature articles: 

(1) The historical reviews mainly concerned IFD on either traditional machine learning, deep 

learning or transfer learning. As a new promising tool to solve the problems faced by the 

engineer and researcher in the real industrial scenarios, there is still a lack of systematic 

review on DTL-based IFD methods.  

(2) Throughout the above discussion, it is clear that almost all the reviews categorized the 

relevant research from the perspective of algorithm and analytic technology, resulting in the 

difficulty to select appropriate algorithms for engineers in specific industrial applications. 

Therefore, it is particularly important and more necessary to overview the relevant publications of 

DTL with the goal of helping readers to conveniently understand the current state-of-the-art 

techniques related to IFD and to quickly design an effective solution for some challenges in practice. 

To overcome the limitation forementioned, this review article attempts to provide a 

comprehensive survey on DTL for fault diagnosis in industrial scenarios. First, different from the 

existing review articles which mainly focused on the IFD methods using either traditional machine 

learning, deep learning or transfer learning, this review article aims at focusing on the IFD methods 

using the new paradigm of machine learning, i.e., DTL. Second, in contrast to the existing review 

articles summarized the related publications from the algorithm perspective, this review article 

categorizes the DTL-based IFD methods from the perspective of practical industrial scenarios, which 
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could provide suggestions to select appropriate algorithms for engineers in specific industrial 

applications. Last, the existing review articles mainly covered the related publication before 2020. It 

is the fact that there are many new articles have been published in recent years since the IFD have 

attracted lots of attentions from both academics and industry researchers, but, by contrast, this review 

article has included most of the state-of-the-art DTL techniques before it summitted to the Journal. 

The main contributions of this article are outlined as the following three aspects: 

(1) Basic concepts and theories of DTL are introduced, including instance-based DTL, 

model-based DTL and feature-based DTL, which can present a comprehensive overview 

about the DTL from the algorithm perspective.  

(2) Applications of DTL approaches are summarized into four categories from the perspective of 

practical industrial scenarios, and each category in IFD are detailed, which would be 

instructive for engineers in specific industrial applications to select the appropriate 

algorithms. 

(3) Future challenges and potential directions of DTL for IFD are concluded, attempting to 

provide new insights on the future works for potential newcomers and seasoned researchers. 

 
Fig. 1.  Flow chart showing the overall logic of this literature review 

 
As show in Fig. 1, the rest of this review article is organized as follows. In Section 2, the 

theoretical backgrounds of DTL, including basic definition of DTL and three categories of DTL, are 

briefly introduced to present how the transfer learning techniques can be integrated with deep 

learning models. Section 3 details the major applications of DTL and its recent developments in the 

field of IFD from the perspective of practical industrial scenarios, in which four application scenarios 

are formulated according to the task of fault classification. More importantly, suggestions that on how 
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to select DTL algorithms for IFD in practical industrial applications and some future challenges are 

shared in Section 4 and 5, respectively. Finally, the conclusions of this survey are given in Section 6. 

2. Theoretical Backgrounds of DTL 

In this section, the basic definitions related to DTL are firstly introduced for convenience. The 

theories of DTL that explain how the transfer learning technologies can leverage the powerful 

representation ability of deep learning to extract and transfer knowledge, are summarized from the 

perspective of algorithm to allow readers understand the mechanisms and strategies of DTL 

approaches. 

2.1 Basic Definitions of DTL 

According to the book of Transfer Learning [38], some basic definitions related to this survey, 

such as Domain, Task and Transfer Learning, are listed as follows: 

Domain, denoted as { , ( )}P= X  , consists of two components: a feature space   and a 

marginal probability distribution ( )P X , where { | 1, , }
i

i N= ∈ = ，X x x    is a dataset that 

contains N instances. Generally, different domains are defined based on the fact that there are 

different feature spaces or different marginal probability distributions between these domains. In the 

scenarios of machinery fault diagnosis, different working conditions (WCs), locations and machines 

can be regarded as different domains. 

Task, denoted as { , ( )}f=    when giving a specific domain  , consists of two components: 

a label space   and a mapping function ( )f  , where { | 1, , }
i

i N= ∈ = ，Y y y    is a label set for 

the corresponding instances in  . The mapping function ( )f  , also denoted as ( ) ( | )f P= yx x , is a 

non-linear and implicit function that can bridge the relationship between the input instance and the 

predicted decision, which is expectedly learned from the given datasets. Similarly, different tasks are 

defined as there are different label spaces between these tasks. Different fault classes and types can be 

regarded as different tasks. 

Transfer Learning, given a source domain { , ( )}S S S SP= X   with the source task 

{ , ( )}S S Sf=    and a target domain { , ( )}T T T TP= X   with the target task { , ( )}T T Tf=   , 

aims to learn a better mapping function ( )Tf   for the target task T  with the transferable knowledge 

gained from the source domain S  and task S . Contrary to the tradition machine learning and deep 

learning in which the domain and task between the source and target scenarios are identical (that is, 
S T=   and S T=  ), the transfer learning counters the problems where the domain and/or the 

task between the source and the target scenarios could be different (i.e., S T≠   and/or S T≠  ). 
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Based on the definition mentioned above, a definition of deep transfer learning can be 

formulated as: Given a transfer learning task ( ) :S T T Tf → → X Y  based on [ S , T , S , T ], 

deep transfer learning aims to learn the mapping function ( )S Tf →
  by leveraging the powerful deep 

learning model, that is, deep neural networks, in which the transfer learning technique and the deep 

learning model can be integrated to a more robust AI method. 

2.2 Categorization of DTL 

Fig. 2 shows a typical concept of DTL process that is capable of transferring the valuable 

knowledge by further exploiting the representation learning ability of deep neural networks. The 

literature on deep learning or transfer learning has gone through a considerable number of iterative 

updates. In contrast, few literatures focus on deep transfer learning as a new emerging technique. 

There is no mutual consensus on how to classify the categorization of DTL. According to the survey 

published by Tan et al. [21], the DTL approaches have been divided into four categories, that is, 

instances-based, mapping-based, network-based and adversarial-based DTL. However, these types of 

DTL approaches are associated and inter-related with each other, which makes it difficult to be 

well-categorized. 

 
Fig. 3.  Categorization of DTL 

In this survey, from a viewpoint of the mechanism with which the deep learning model bridge 

the generalization errors between target and source domains by leveraging the transfer learning 

 
Fig. 2.  An illustration of DTL 
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techniques, the DTL approaches are divided into three groups: instance-based, model-based and 

feature-based DTL. The categorization of DTL is illustrated in Fig. 3. Instance-based DTL 

approaches are typically based on instance select or re-weight strategies. Model-based DTL 

approaches mainly share the neural network structure and parameters between target and source 

domains. Feature-based DTL approaches share or learn the common feature representation between 

target and source domain. In the following parts of this section, the theorical backgrounds of each 

category of DTL will be introduced from the perspective of algorithm in detail. 

2.2.1 Instance-based DTL 

Instance-Based DTL aims to train a more precise deep model under a transfer scenario where the 

difference between source and target domains/tasks only comes from either the different marginal 

probability distribution, i.e., ( ) ( )S S T TP P≠X X , or the conditional probability distribution, i.e., 

( ) ( )S S S T T TP P≠Y | X Y | X , which also assumes that the labeled instances in the target domain are 

too limited to train a satisfied diagnosis model. An intuitive motivation behind instance-based DTL 

approaches is that directly merging the source data into the target data might deteriorate the 

performance of the target deep model and result in a negative transfer during the model training 

because some labeled instances in the source domain are significantly different from the target 

domain ones. Inspired by such motivation, the goal of the instance-based DTL approaches is to single 

out the instances in the source domain that are positive for target model training and to augment the 

target data by adapting the instance weighting strategies. A promising solution in terms of deep 

learning models is to automatically learn the instances weights of the source domain in the objective 

function. The general objective function of an instance-based DTL task can be formulated as 

 ( ) ( )*

1

1 ( ), ( ),ω
=

= +∑  x X Y
SN

S S S
i i iS

i
f y f

C
 (1) 

where 
i

ω  is the weighting coefficient of the corresponding source instance, 
1

SNS
ii

C ω
=

= ∑ , S  

represents the risk function of selecting the source instance, and *  denotes the second risk function 

related to the target task or the parameter regularization. The theoretical value of 
i

ω  is defined as the 

ratio of the marginal probability distributions between the target domain and the source domain at the 

input instance 
i

x  

 ( ) ( ).ω = x xT S
i i iP P  (2) 

However, it is well known that such ratio is difficult to be directly computed with the marginal 

probability distribution. In this way, many effective methods have been developed to approximately 

estimate the aforementioned ratio bypassing the estimation step of the marginal probability 

distribution. 
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From the perspective of deep model training, the instance-based DTL can be further divided into 

the following two subcategories by considering whether the labeled instances are available in the 

target domain: the weight-estimation and the heuristic-reweighting method. 

The weight-estimation method, which mainly focuses on the situation where there is a lack of 

labeled instances in target domain, convers the instance transfer problem into a weight estimation 

problem by leveraging the kernel embedding techniques. For instance, based on the theory of 

Maximum Mean Discrepancy (MMD) between distributions, the weights of source instances can be 

estimated by matching the means between the reweighted sources instances and the target instances 

in a Reproducing Kernel Hilbert Space (RKHS) [39], which can be obtained by optimizing the 

following objective 

 
( ) ( )

2

1 1

1

1 1arg min

1s.t. 0,  1

ω

ω ω ε

= =

=

Φ − Φ

≥ − ≤

∑ ∑

∑

x x
S T

S

N N
S S T T

i i jS T
i j

N

i iS
i

C N

C


ω

 (3) 

where ε  denotes a positive real number. There are some other tricks to estimate the weights by 

utilizing the Kullback-Leibler (KL) divergence [40]. With the weight of each source instance being 

estimated, Eq. 3 can be integrated into the objective function of the target task to learn a deep model. 

It is worth mentioning that the weight estimation of the source instances can be integrated into the 

training process of the deep model. 

The heuristic-reweighting method, which is suitable for implementing the DTL task when some 

labeled instances are available in the target domain, aims to identify negative source instances by 

using instance reweighting strategies in a heuristic way. One of the most popular instance reweighting 

strategies is the Transfer Adaptive Boosting (TrAdaBoost) algorithm proposed by Dai et al. [41], in 

which the different weighting strategies are applied for the labeled instances in the source-domain 

and the target-domain to reduce the impact of negative source instances. Similar to the boosting-style 

algorithms, the weights of the source instances and the target instance can be updated through a lot of 

iterations, whose updating strategies are described as 

 ( ) ( )( ),

1 2 ln / ( )
S S S

i if y
S S S S T
i i

N N Nω ω
−

= + +
 x

 (4) 

 
( ) ( )

( )

( ),

1 1

/ (1 )

( ),

T T T
j j

T T

f yT T
j j

N N
T T T T T
j j j j

j j

f y

ω ω ε ε

ε ω ω

−

= =

 = −


=


∑ ∑





x

x
 (5) 

where [1, , ]Si N=  , [1, , ]Tj N=  , and ε  denotes the mean loss of all target domain instances. It 

should be highlighted here that each iteration will learn a new weak deep model, and therefore 
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ensemble techniques are used to form a final classifier by integrating all weak deep models. Besides 

the TrAdaBoost algorithm and its variations, the other heuristic-reweighting methods make full use 

of not only the labeled instances in the source and the target domain but also the unlabeled instances 

in the target domain. An intuitive solution of these methods is to decompose the objective function 

into three parts: 

 
( ) ( )

( )

( )

( )

( ) ( ) ( )

( )
1 1

( ) ( ) ( )

( )
1

1 1
( ), ( ),

1
ˆ( ),

S T L

T U

N N
S S S T L T L T L

i i i j jS T L
i j

N
T U T U T U

k k kT U
k

f y f y
C C

f
C

ω

γ

= =

=

= +

+

∑ ∑

∑ y

  



x x

x
 (6) 

where the superscript of S , ( )T L  and ( )T U  denotes the labeled source, the labeled target and the 

unlabeled target, respectively. 
1

SNS
ii

C ω
=

= ∑ , ( ) ( )T L T LC N= , 
( )

( )

1

T UNT U
kk

C γ
=

= ∑ , 
k
γ  denotes the 

weight for the unlabeled target instance, and ( ) ( )ˆ ( )T U T T U
k k

P y=y | x  is the true conditional 

distributions of the unlabeled target instances. Generally, the optimal values of 
i

ω , 
k
γ  and ( )ˆT U

k
y  are 

unknown for computing these loss terms. Therefore, several techniques can be used during the deep 

model training to learn these parameters in a heuristic way. The typical procedure can be concluded 

as the following steps: 

(1) An auxiliary classifier is firstly trained on the labeled target instances and then used to 

classify the labeled source and the unlabeled target instances to obtain the predicted 

probability of each instance. 

(2) The labeled source and the unlabeled target instances are ranked based on its predicted 

probability, respectively. 

(3) The 
i

ω  of top n instances from the labeled source domain that are incorrectly predicted by the 

auxiliary classifier are set to zero, and the weights of others are set to one. 

(4) The top n instances from the unlabeled target domain that have the highest prediction 

confidence are selected, for which the 
k
γ  is set to one and the ( )ˆT U

k
y  is assigned to a pseudo 

label according to its predicted probability. Additionally, for all other instances from the 

unlabeled target domain, 
k
γ =0. 

With the steps mentioned above, the whole loss can be calculated with the objective function 

presented in Eq. 6. Note that the selected labeled source and the unlabeled target instances can be 

used to train the auxiliary classifier again in the next iteration. 

2.2.2 Model-based DTL 

Model-Based DTL focuses on the transfer assumption that the tasks between the source and the 

target domains share some common knowledge in the model level, which means that the transferable 
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knowledge is well embedded into a pretrained source deep model whose structure and parameters are 

general and helpful for learning a powerful target model. The goal of model-based DTL approaches is 

to exploit which part of the deep learning model pretrained in the source domain can help improving 

the model learning process for the target domain. Model-based DTL algorithms are based on the 

assumption that some labeled instances in the target domain should be available during the target 

model training. According to the way of training of the target deep model, the model-based DTL can 

be further divided into two subcategories: sequential training and joint training. 

Sequential training establishes the target deep model by pretraining a deep learning model on 

auxiliary domains which have much richer and larger labeled instances and then fine-tuning the 

well-trained source model on the target domain which often lacks sufficient labeled instances. 

Specifically, sequential training-based DTL approaches typically contains two stages. In the first 

stage, i.e., the pretraining on auxiliary domains, a well-trained source model ( ; )S Sθ  has been 

learned from the source data, which can be defined as 

 ( )( ; ) arg min ( ; ),θ θ=  X YS S S S S S Sf  (7) 

where 
1

{ }
SS S L

i i
θ θ ==  is the model parameter set of the pretrained source model, SL  denotes the layer 

number of the source model, S  denotes the risk function for the source task. In the second stage, 

that is, the fine-tuning on the target domain, the target deep model ( ; )T Tθ  can be obtained by 

freezing some components of the well-trained source model and fine-tuning the rest components with 

the target domain data, or by reusing all the parameters of the well-trained source model to initialize 

the target deep model and retraining the whole target model with the target domain data. The 

processes of this stage can be formulated as 

 ( )
*

( ; ) arg min ( ; ),
s.t.   initialized/frozen with 

θ θ
θ θ

=  X YT T T T T T T

T
f  (8) 

where * { , [1, , ]}S S
i

i Lθ θ= ∈   is a subset of Sθ  learned in the first stage, Tθ  denotes the model 

parameter set expectedly learned in the second stage, T  denotes the risk function for the target task. 

It is worth mentioning that the higher-level layers are prone to learn the task-specific representations 

and the lower-level layers are able to capture general representations in a deep learning model. 

Therefore, it is a classical fine-tuning strategy to freeze n lower-level layers learned from auxiliary 

domains and retrain the higher-level layer with limited target domain data. 

Joint training tries to implement the source and the target tasks simultaneously. Different from 

the multi-task learning approaches which equally optimize the performance over all tasks, joint 

training-based DTL approaches focus on improving the performance of the target task by leveraging 

common knowledge from the source task. More specifically, there are two ways to joint training 
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target task with source task. The first one is hard parameter sharing which shares the hidden layers 

directly while keeping the task-specific layers independently. The second one is soft parameter 

sharing which simply change the weight coefficient for the source and the target tasks or add 

regularization terms in the risk function. The processes of the soft parameter sharing can be defined as 

 
( ) ( )
( )

( ; ) argmin[ ( ; ), ( ; ),

            ( , ; , ) ]

T T S S S S S T T T T T

R S T S T

f f

f

θ α θ β θ

γ θ θ

= +

+

  



X Y X Y

X X
 (9) 

where S , T  and R  are the risk functions of the source task, the target task and regularization 

terms, respectively; and α , β  and γ  are the weight coefficients for the corresponding task. 

2.2.3 Feature-based DTL 

Feature-Based DTL endows deep models with the ability to transfer knowledge by learning the 

common representations in the feature space level, rather than in the instances or the model level, 

which further relaxes the assumption in the instance-based DTL transfer learning scenario to allow 

the differences of feature spaces to exist in the source and target domains. An intuitive solution 

behind feature-based DTL approaches is to learn the mapping function as a bridge to convert the raw 

data in source and target domains from the different feature spaces to a common latent feature space, 

where the difference between domains can be reduced and the deep feature representations that are 

discriminative for the main learning task and indiscriminate with respect to the shift between different 

domains can be obtained. With these good representations, the performance of deep models can be 

significantly improved in accomplishing the target task. 

From a broader perspective, feature-based DTL approaches intuitively covers two transfer styles 

without or with adaptation to target domain. The approaches without adaptation firstly extract the 

lower-level representations by using a pretrained source model, and then directly take the extracted 

representations as inputs for the target model, which are suitable and effective only when the target 

domain is closely related to the source domain. The approaches with adaptation adapt the feature 

representations across different domains through domain adaptation techniques, which can obtain a 

well performing model even if there is a shift or gap between source and target domains. Since the 

approaches without adaptation are easily implemented and their assumption may be too strong to be 

satisfied in most practical transfer scenarios, the following part mainly focus on the approaches with 

adaptation. 

A crucial problem of feature-based DTL with domain adaptation in learning domain invariant 

features is how to estimate and learn representation invariance between source and target domains. 

The ways of constructing representation invariance measures generally include three strategies: 

leveraging criterions based on the discrepancy to the reduce difference of distribution, adding domain 

discriminative architectures to encourage the domain confusion through the adversarial mechanism, 
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and combining the data reconstruction as an auxiliary task to help improving representations 

invariance. Therefore, the feature-based DTL with domain adaptation approaches can be further 

summarized into the following three subcategories. 

The first subcategory is discrepancy-based domain adaptation, which aims to align the feature 

distribution shift and to improve the ability of learning transferable representations by reducing the 

discrepancy based on distance metrics or criterions defined between corresponding-level 

representations of the given source and target domains. The criterions that are proven to be successful 

for discrepancy-based domain adaptation include MMD [39], KL divergence [40], multiple kernels 

MMD (MK-MMD) [42], Correlation Alignment (CORAL) [43] and Wasserstein Distances (WD, 

also known as Earth-Mover distance) [44], among others. Taking the most commonly one, MMD, as 

an example, and given two domain representations Sh  (source) and Th  (target), the criterion based 

on MMD can be empirically estimated as follows: 

 
2

1 1

1 1( , ) ( ) ( )ϕ ϕ
= =

= −∑ ∑h h h h
S TN N

S T S T
i j

i jS T

MMD
N N



 (10) 

Another common criterion is the Wasserstein Distances. The criterion based on the WD can be expressed as: 

 ( ) ( ), ~ ~ ~
1

inf sup S TS T
L

S T

f
WD f fγγ∈Γ ≤

 = − = −       ( , )
( , ) ( ) ( )x y x h x hh h
h h x y x x    (11) 

The more details about WD can be found in [44]. 

In the process of model training, the deep neural network can be optimized by minimizing the 

classification loss on the labeled instance, ( , )
C L L
 X Y , while the domain invariant representations 

are measured by one/multiple adaptation layer(s) with such criterion. The objective function of 

discrepancy-based domain adaptation is formulated as 

 
1

( , ) ( , )λ
=

= +∑  X Y h h
AL

S T
C L L i i i

i
MMD  (12) 

where AL  denotes the number of adaptation layers and the coefficient 
i
λ  is a penalty parameter for 

the i-th adaptation layer. 

The second subcategory is the adversarial-based domain adaptation, which is inspired by the 

Generative Adversarial Networks (GANs) [45] and seeks to endow the deep neural network with the 

ability of learning domain-invariant representations. The GAN is typically composed of two 

components, that is, a generator (G) that generates fake data from noise and a discriminator (D) that 

distinguishes whether an instance is real or generated, which can be optimized by iteratively training 

D to maximize correct assignment of (real, fake) labels and training G to minimize the differences of 

real and generated data to confuse the discriminator: 

 ( ) ( )
minmax ( , ) [log ( )] [log(1 ( ( )))]

data zP PG D
D G D D G= + −

 

 x x z zx z   (13) 
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In adversarial-based domain adaptation, such adversarial mechanism has been introduced into 

the deep neural network to ensure that the characteristics resulting from the difference of diverse 

domains cannot be distinguished. In light of whether to generate synthetic data, the historical 

adversarial-based domain adaptation approaches can be summarized as generative or non-generative 

adaptation model. 

The generative adaptation model focuses on generating new data that are similar to the real data 

of the target domain by directly using GANs. More specifically, in the generative adaptation model, 

the generator ( )SG x , z  generates an adapted instance Gx  taking a source instance Sx and a noise 

vector z  as inputs, and the discriminator tries to distinguish between the generated instances Gx  

(fake) and the target instances Tx  (real). It is worth noting that, in contrast to the standard GANs in 

which the input of the generator is only a noise vector, the generative adaptation model’s generator 

takes both a noise vector and a source instance as inputs. The generative adaptation model and its 

variants could be divided into two types from the perspective of neural network structure. The first 

one has two stages during model training: (1) generates the synthetic instances to augment the 

training dataset; (2) trains an extra classifier with both real and generated instances. The second one is 

usually augmented with a task-specific classifier (T) apart from the G and D, such that the goal of the 

generative adaptation model is to alternatively optimize the following minimax objective: 

 ,
min max ( , , ) ( , ) ( , )α β= +  adv taskG T D

G D T G D G T  (14) 

where α  and β  are coefficients of the corresponding loss, 
adv
  and 

task
  denotes the adversarial 

loss and task loss, respectively. 

The non-generative adaptation model pays more attention to learn the domain-invariant 

representations, rather than generating new data, by introducing the minimax loss or the 

domain-confusion loss into the deep model which typically consists of three parts: the feature 

extractor (instead of the generator), the domain discriminator and the task-specific classifier. One of 

the promising solutions in implementing the non-generative adaptation is to introduce a special 

Gradient Reversal Layer (GRL) between the feature extractor and the domain discriminator, which 

first was introduced in the Domain Adversarial Neural Network (DANN) [46]. DANN ensures that 

the representations learned from different domains are as closer as possible by maximizing the 

domain confusion loss through the GRL. The GRL function as an identity transformation during the 

forward propagation, while during the backward propagation it receives the gradient from the 

subsequent layer and reverses the sign of the gradient before delivering to the preceding layer:  

 
( )        forward propagation

-       backward propagationα

=



=

，

，

h h

I
h

GRL
dGRL  (15) 
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With such GRL, the parameters of the feature extractor and the domain discriminator can be 

globally optimized and simultaneously updated. Another promising solution is to splits the 

optimization into two independent objectives: the parameter of the feature extractor 
FE
θ  and the 

parameter of the domain discriminator 
D
θ , and to perform iterative updates for the two objectives 

given the fixed parameters from the previous iteration: 

 ( )min ( , , ; ) ,
θ

θ θ = − x x h
D

S T D
D FE D D Dy  (16) 

 ( )min ( , , ; )
θ

θ θ = − x x h
FE

S T conf
conf D FE D  (17) 

where ( ( ; ); )
D FE D

D FE θ θ=h x  denotes the output of the domain discriminator, D  is the risk 

function for the domain classification where the Cross-entropy loss function is commonly used, and 
conf  is the risk function for the domain confusion where the probability density function of a 

uniform distribution is adapted based on the cross entropy between the predicted domain labels. Thus, 

the deep model can be optimized by adversarial training through minimizing the Eq. 15 only for 

updating 
D
θ  and minimizing the Eq. 16 for updating 

FE
θ , which can ensure that the learned 

representations is domain invariant. 

The third subcategory is the reconstruction-based domain adaptation, which combines the 

auto-encoder neural networks with a task-specific classifier to jointly optimize a private encoder that 

captures domain-specific representations and a shared encoder that learns common representations 

between the domains. The reconstruction-based domain adaptation model integrates a shared decoder 

which learns to reconstruct the input instances with a reconstruction loss by taking both the private 

and the common representations as inputs. The reconstruction losses that have widely used in DTL 

are the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE). The task-specific 

classifier is trained on the common representations learned by the shared encoder, which will be able 

to generalize across domains better since its inputs have been separated from the representations that 

are special to each domain. 

Note that, besides the categories of DTL mentioned above, there exist many hybrid methods to 

build a DTL model using several of the aforementioned techniques simultaneously. The core idea of 

the hybrid methods is that the domain-invariant knowledge between source and target domain can be 

learned in any two or more of the levels, that is the instance-, model- and feature-level. Since the main 

definitions and theories of hybrid methods are almost the same with those mentioned above, this 

survey will not enumerate them in detail. 

3 Formulations and Applications of DTL for Fault Diagnosis in Industrial Scenario 

In the past few years, scientific researchers and engineers from both academic and industrial 
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communities have already brought many impressive achievements and successful real-world 

application across a lot of DTL algorithms in implementing complex tasks. Examples include object 

recognition and detection based on image data collected in different conditions [47], speech 

recognition based on audio data sampled from different speakers [48], text classification and 

translation based on document data written in different languages [49], etc. Compared to the vast 

literature focused on the application in the field of computer vision and natural language processing, 

few surveys focus on the relative developments of DTL in industrial scenarios for the task of fault 

diagnosis. Therefore, in this section, the literature historically published in addressing the fault 

diagnosis problems with the DTL approaches is systematically reviewed, including the problem 

formulation of DTL for fault diagnosis in industrial scenarios and its main applications of each 

scenario. 

3.1 Problem Formulation of DTL for Fault Diagnosis 

Within industrial scenarios, there exist many exact problems that have attracted considerable 

attentions and much emphasis has been placed on solving such problems. Understanding what type of 

problems have been faced with IFD and how to solve them is of great significance for researchers and 

engineers to correctly understand the reasons we survey this topic from the perspective of practical 

industrial scenarios, and to formulate the pattern of the DTL for fault diagnosis. 

In the phase of current manufacturing industry, the major problems encountered in applying 

intelligent methods for machines are summarized as follows: 

(1) The deep models learned from the given training data are not robust enough to be generalized 

from one application to a new or similar one, so it is difficult to deal with the uncertainty 

caused by the varying environment during machines working. For instance, the WCs of 

machines are various during long-term operation, and the health status is also declining with 

the degradation of crucial components. However, the generalization performance of deep 

models is insufficient in the face of changeable WCs and diversified data. 

(2) Considering the fast upgrading and updating of the manufacturing products, the deep models 

also require periodic updates for the performance improvement. However, it is hard to collect 

and annotate the training data from scratch for the application of new products while reusing 

the labeled historical data collected and accumulated from the old products is relatively easy. 

(3) The deep models learn how to make a fault diagnosis through the observations of given 

labeled data, so they encounter difficulties to recognize unknown patterns or faults. In order 

to step into the real industrial applications, it is a significant function that the fault diagnosis 

models can automatically detect a new anomaly since the unseen faults inevitably occur 

during the long-term services of the complex mechanical equipment. 
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(4) The vast majority of researchers and engineers are concerned about the improvement of 

precision and accuracy for classifying the different faults. The compound fault, as a primary 

failure leading to expensive maintenance costs and tragic catastrophes in industrial scenarios, 

often emerges and evolves when multiple crucial components are simultaneously degraded 

or even broken. However, few time and effort have been paid to investigate the task of 

decoupling compound faults in an intelligent manner. 

Aiming at solving the four problems mentioned above, the industrial application of DTL can be 

defined as four scenarios: generalization performance improvement, partial domain fault diagnosis, 

emerging fault detection, and compound fault decoupling, respectively. As descripted in the previous 

section and shown in Fig. 4, given a DTL task defined by ( ) :S T T Tf → → X Y  based on [ S , T , 

S , T ], the four application scenarios can be formulated from the perspective of fault 

classification as follows: 

Generalization performance improvement: In this scenario, the label space of target domain is 

identical with the label space of the source domain, that is, T S≡  , which imposes strict restriction 

on the fault types of domains and mainly focuses on improving the generalization performance of 

DTL model under varying environments. Such scenario is called as generalization performance 

improvement. 

Partial domain fault diagnosis: In this scenario, the label space of target domain is a proper 

subset of the label space of the source domain, that is, T S⊂  , which relaxes the same label space 

  
(a) (b) 

  
(c) (d) 

Fig. 4.  Illustration of the four application scenarios for DTL (a) Generalization Performance Improvement, (b) Partial 
Domain Fault Diagnosis, (c) Emerging Fault Detection, (d) Compound Fault Decoupling 
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requirement and mainly focuses on transferring knowledge from a large-scale but redundant source 

domain to an unknown small-scale target domain. Such scenario is referred to as partial domain fault 

diagnosis. 

Emerging fault detection: In this scenario, the label space of the target domain is a proper 

superset of the label space of the source domain, that is, T S⊃  , which also relaxes the assumption 

on the same label space and mainly focuses on detecting the new faults that never exist in the source 

domain. Such scenario is known as emerging fault detection. 

Compound fault decoupling: In this scenario, the label space of the target domain is different 

from the label space of the source domain, but each fault in target domain is coupled by multiple 

single faults in the source domain. More specifically, a fault in the target domain T
i

y  is a compound 

fault which is coupled by two or more single faults in the source domain & &S S
j k

y y . Such 

scenario is defined as compound fault decoupling. 

 
Fig. 5.  Illustration of the motivation behind the scenario of generalization performance improvement 

3.2 Generalization Performance Improvement 

3.2.1 Motivations and goals 

As illustrated in Fig. 5, the motivation behind this scenario is that, in the real-world application, 

if the common knowledge, which does not contain the uncertainty information caused by varying 

environments, can be learned with limited source data for a specific task, a deep model with 

satisfactory generalization performance can be obtained for the same task even when it faces a new 

environment. Thus, as depicted in Fig. 4 (a), the ultimate goal in this scenario is to learn a robust deep 

model that should be able to implement the objective task under varying environments. Table I 

concludes the current solutions using the DTL-based fault diagnosis approaches for the 

generalization performance improvement from three application scenarios, that is varying WCs, 

across different machines, and other scenarios. 
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3.2.2 Solutions for varying WCs 

One of the main factors leading to distribution shift between training and testing data is that the 

WCs of IE are complex as the frequently changing of speeds, loads or operations. Therefore, in this 

case, a lot of solutions based on DTL have been investigated for enhancing the generalization 

TABLE I Solutions for Generalization Performance Improvement 

Application 
Scenarios 

Categorization 
of DTL References Common algorithms 

used 
Varying 
Working 

Conditions 

Instance-based Zhang et al. [50] , Shen et al. [51], Song et al. [52], Pan et al. 
[53] 

Weight-estimation 
with MVD/MMD, 

Heuristic-reweighting 
with pseudo-label, 

TrAdaBoost 
Model-based Shao et al. [54], Zhou et al. [55], Lu et al. [56], Zhang et al. 

[57], Hasan et al. [58], [59], Han et al. [60], He et al. [61], 
[62], Zhao et al. [63], Du et al. [64], Chen et al. [65], Li et al. 
[66], Wang et al. [67], Shao et al. [68], Cao et al. [69] 

Sequential training 
(DL+Fine-tune),  

Joint training (Y-Net) 

Feature-based Lu et al. [70], Li et al. [71], Tong et al. [72], [73] Zhang et 
al. [74], Xiao et al. [75], An et al. [76], Li et al. [77], 
Azamfar et al. [78], [79], Zhang et al. [80], Zhu et al. [81], 
Singh et al. [82], Li et al. [83], Han et al. [84], [85], Wei et 
al. [86], Wang et al. [87], Shen et al. [88], Li et al. [89], Wu 
et al. [90], Yang et al. [91], Qian et al. [92], [93], Wang et al. 
[94], An et al. [95], Xiong et al. [96], Li et al. [97], Bao et al. 
[98], Xu et al. [99] Huang et al. [100] 

Discrepancy-based 
(MMD, CMMD, 

MK-MMD, 
KL Divergence, 

CORAL, CMD, MCD) 

Li et al. [101], Zheng et al. [102], Liang et al. [103], [104], 
Tao et al. [105], Shao et al. [106], Guo et al. [107], Shi et al. 
[108], Han et al. [109], Jiao et al. [110], Shao et al. [111], 
Chai et al. [112], Chen et al. [113], Li et al. [114], Mao et al. 
[115], Liu et al. [116], Li et al. [117], [118], Zhang et al. 
[119], Li et al. [120], Zhang et al. [121], Jiao et al. [122], 
[123], Cheng et al. [124], Wang et al. [125], Zou et al. [126], 
Han et al. [127], Wang et al. [128], Yu et al. [129], She et al. 
[130], Ragab et al. [131], Liao et al. [132] 

Adversarial-based 
(GAN, DATN, 

DANN, GRL, ADDA, 
W-GAN) 

Pang et al. [133], Liu et al. [134], [135], Wen et al. [136], 
Wan et al. [137], Tang et al. [138] 

Reconstruction-based 
(SAE+TL) 

Across 
Different 
Machines 

Instance-based Zheng et al. [144], Yang et al. [145], Wu et al. [146] Instance-based 
discriminative loss 

Model-based Wang et al. [147], Shao et al. [148], Li et al. [149], He et al. 
[150], Chen et al. [151] 

VGG-19/SAE+Fine-tu
ne 

Feature-based Guo et al. [152], Yang et al. [139], [153], Li et al. [154], Wu 
et al. [155], Zheng et al. [156], Lv et al. [157], Zhao et al. 
[158], Li et al. [159], Tan et al. [160], Chen et al. [161], 
Zhang et al. [162], [163], [164] 

Discrepancy-based 
(MMD, PK-MMD, 

MCD, Mutual 
information) 

Wang, et al. [165], Feng et al. [166], Zhu et al. [167], Liao et 
al. [168] 

Adversarial-based 
(GAN, DATN) 

Lu. et al. [169] Reconstruction-based 
(SAE+MMD) 

Others 
(Imbalanced 

instances, 
Across 

sensors, etc.) 

Instance-based Xiao, et al. [170] TrAdaBoost 
Model-based Li et al. [171], Kim et al. [172], He, et al. [173] CNN/SAE+Fine-tune 
Feature-based Zhang et al. [174], Zou et al. [175], Zhang et al. [176], Li et 

al. [177], Zareapoor et al. [178], Zhang et al. [179], Li et al. 
[180], Li et al. [181], Siahpour et al. [182], Pandhare et al. 
[183], Qin et al. [184], Wu et al. [185]  

GAN and its variants, 
DANN, One-shot 

learning, Unsupervised 
parallel data alignment 
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performance of deep models which can effectively deal with the uncertainty caused by varying WCs 

during the long-term services of machines. 

Instance-based DTL solutions: Combining the maximum variance discrepancy (MVD) and the 

maximum mean discrepancy (MMD), Zhang et al. [50] proposed a weight-estimation method for 

bearing fault diagnosis to calculate the adaptation matrix between the source and target instances, 

which is used to reweight and down-weight the source instances that are negative for the target model 

training. As the most popular instance reweighting strategy, the fast TrAdaBoost algorithm was 

introduced by Shen et al. [51] as an instance reweighting strategy that can weaken the weight of the 

low-quality instances and enhance the weight of high-quality instances through iteratively update, 

which successfully employed to enhance the generalization performance for the fault diagnosis 

model of a gearbox operating under varying working conditions. Song et al. [52] proposed a 

retraining strategy-based domain adaption network (DAN-R) for IFD, which annotates the unlabeled 

instances in the target domain with pseudo-labels and then retrains the classification network using 

both training instances and pseudo-labeled testing instances. According to these instance-based DTL 

solutions [50]-[53], it can be found that instances-based approaches are effective and applicable for 

the application scenario of varying WCs. However, the performance of these methods discussed 

above are depended to some extent on the number or the quality of target instances, and they may 

have difficulty to tackle the problems in more challenging but complex scenarios which have 

significant discrepancy between source and target domain. 

Model-based DTL solutions: One of the major model-based DTL solutions for varying WCs is 

to pretrain a deep model (such as VGG-16 [54], VGG-19 [55] and AlexNet [56]) on source WCs and 

sequentially fine-tune it using the labeled instances in the target working condition [57]-[68]. For 

instance, Han et al. [60] finetuned a well-trained CNN with three transfer learning strategies at 

different levels of the CNN architecture: (1) just finetuning the classifier, (2) just finetuning the 

feature extractor, and (3) finetuning the whole CNN model, where the characteristics of each strategy 

are discussed and compared. The experimental validations show that the proposed transfer strategies 

can effectively transfer the useful features of the well-trained CNN for the target task and achieve the 

highest accuracy for the generalization problem of WCs. Another method is to jointly implement the 

source and target tasks in a deep model with multi-branches. Cao et al. [69] developed a multi-branch 

deep model, named Y-Net, to transfer knowledge for the fault diagnosis of planetary gearboxes, 

which consists of three components: two convolutional classification networks (one for the source 

task and another for the target task, and sharing weights with each other) and a reconstruction 

network. Compared with other solutions training a model from scratch, model-based DTL solutions 

benefit from the faster convergence rate and the reduction of the risk of overfitting. Additionally, 
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these solutions have its inherent limitation that the fine-tune algorithm heavily relies on the 

dependence of labeled training data in the target scenario. 

Feature-based DTL solutions: For the application scenario of varying WCs, the feature learned 

by deep models is expected to be speed-insensitive and load-insensitive. Generally, the more 

insensitive to working conditions the features are, the better the generalization performance of deep 

model will be. Researchers, therefore, have been placed many efforts on how to learn universal 

features under varying WCs from the following three aspects. 

From the aspect of discrepancy-based domain adaptation, a variety of criteria, such as MMD 

[70]-[83], Conditional Maximum Mean Discrepancy (CMMD) [84]-[88], MK-MMD [89]-[91], KL 

Divergence [92], [93], CORAL [94], [95], Central Moment Discrepancy (CMD) [96], [97], 

Maximum Classifier Discrepancy (MCD) [98] and others [99], [100] have been widely introduced 

into the objective function to measure the features discrepancy between the source and the target WCs. 

Specifically, Lu et al. [70] proposed a Deep neural network for domain Adaptation in Fault Diagnosis, 

named DAFD. The DAFD introduced the MMD term into the objective function of deep neural 

network for reducing the distribution discrepancy between different WCs in 2017, which was the first 

time that the transfer learning technique, i.e., the domain adaptation, was applied to train the deep 

model in the field of IFD. Aiming at minimizing the discrepancy of marginal and conditional 

distributions simultaneously, a deep transfer network (DTN) with joint distribution adaptation (JDA) 

was proposed by Han et al. [84] through the integration of marginal MMD and conditional MMD. 

Experiments carried on three practical industry datasets show that, comparing with the traditional 

deep learning- and transfer learning-based methods, the DTN with JDA achieves state-of-the-art 

diagnosis results regarding the application scenario of diverse operating WCs. In contrast to 

constructing a single layer with linear MMD in deep model, a multilayer domain adaptation (MLDA) 

method was proposed by Yang et al. [91]. The MLDA that matches the shift in both marginal and 

conditional distributions across WCs by adding MK-MMD and pseudo-label learning in multiple 

adaptation layers, can effectively extract working-condition-insensitive features for bearing fault 

diagnosis. Apart from using the MMD and its variations, Qian et al. [92], [93] utilized the KL 

Divergence to align the first and higher order moment discrepancies, Wang et al. [94] and An et al. 

[95] adopted CORAL to minimize the distribution gap between source and target WCs by aligning 

the second-order statistics, and Li et al. [96] employed CMD to reduce the discrepancy between 

different working conditions. 

From the aspect of adversarial-based domain adaptation, the mechanism of GAN has been 

employed to help the deep model to learn task-sensitive but domain-insensitive features for the target 

tasks in the generative or non-generative adaptation ways. In the case of generative adaptation, deep 

GANs and its variants have been exploited to generate different types of data, such as frequency 
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domain data [101], [102] and time-frequency domain data [103]-[105], with the help of available 

source data, and then these generated and real data are used to train an extra deep model, achieving 

reliable diagnosis results when testing data in target WCs are not available during model training. 

Shao et al. [106], Guo et al. [107] and Shi et al. [108] added an auxiliary classifier into the GAN, 

rather than training an extra classifier, to fully utilize the label information, hence, the enhanced 

models achieved higher diagnosis accuracy with few training data. However, one particular challenge 

for generative adaptation is the difficulty in evaluating the quality of the generated data with effective 

metrics quantitatively. In the case of non-generative adaptation, motivated by GAN, several deep DA 

frameworks such as the Domain Adversarial Transfer Network (DATN) [109]-[115], the DANN 

[116]-[119], the Adversarial Discriminative Domain Adaptation (ADDA) [120], the Wasserstein 

GAN (W-GAN) [121]-[128] and others [129], [130], have been developed and applied for fault 

diagnosis of machines under varying WCs. For instance, Chen et al. [113] exploited the discriminator 

of GANs as a domain classifier that performs binary domain classification and introduced a domain 

confusion loss, that is, the inverted label loss, to encourage the source and the target distributions to 

be a uniform distribution as close as possible. Liu et al. [116] utilized the DANN that integrates a 

GRL into the standard GAN to construct the deep model for bearing fault diagnosis, which largely 

enhances the generalization performance of diagnosis model under different speeds and loads. 

Following the principle of ADDA, a knowledge mapping-based adversarial domain adaptation 

(KMADA) method was proposed by Li and Shen et al. [120], which ensures that the feature space 

mapping from the target domain data can be updated until it is indistinguishable with the feature 

space mapping from the real source data. The KMADA achieved strong diagnosis results on an 

experimental bearing dataset and a locomotive bearing dataset. Wang et al. [128] proposed a Deep 

Adversarial Domain Adaptation Network (DADAN) for fault diagnosis of bearings and hard disk 

datasets collected from real-case data center, which employed a discriminator to measure the 

empirical Wasserstein distance between two domains instead of using a discriminator to classify the 

domain label. In addition to the methods mentioned above, some explorations have been proposed to 

deal with the problems of multiple target domains [131] and domain generalization [132]. Liao et al. 

[132] developed a deep semi-supervised domain generalization network to deal with a challenging 

diagnosis scenario where the well-trained model can generalize to an unseen working condition. 

From the aspect of reconstruction-based domain adaptation, there are also some applications that 

utilized encoder–decoder reconstruction to enhance the generalization capability of diagnosis model 

under different WCs [133]-[138]. Wen et al. [136] constructed a three-layer SAE to learn the 

common representations from the raw data of different WCs in a reconstruction manner. An IFD 

method based on an autoencoder with adaptive transfer learning was proposed by Tang et al. [138], 
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which use a shared encoder to learn transferable features using the reconstruction loss of RMSE and 

the adaptation loss of MMD. 

3.2.3 Solutions for across different machines 

Compared with the application scenario of varying WCs where the data used for model training 

and testing are both measured on the identical machine under different speeds, loads or operations, 

the main difference in the application scenario of across different machines is that those data are 

measured on related but different machines and suffer from more complicated factors, such as 

different mechanical structures, diverse material and various sizes. Such factors inevitably lead to 

more significant distribution shift between the training and testing data than the application scenario 

of varying WCs. Therefore, it is a more challenging task to transfer diagnosis knowledge across 

different machines. There are three typical applications of across different machines: transfer from 

laboratory to industry [139], transfer from simulation to reality [140], [141], and transfer from past to 

future [142], [143]. Once the bridge of transfer knowledge across different machines can be built, it 

will not only largely eliminate the dependency of the fault data collected from the target machine but 

also potentially reduce the economic cost spent for the maintenance of the target machine. With such 

demand increasing exponentially, fortunately, some solutions have been developed and investigated 

for further improving the practicability and generalization performance of diagnosis model. 

Instance-based DTL solutions: A Deep Domain Generalization Network for Fault Diagnosis 

(DDGFD), optimized with an instance-based discriminative loss, was proposed by Zheng et al. [144], 

aiming to explore the more challenging but practical across different machines scenarios where only 

normal samples are available in the dataset of the target machine. Yang et al. [145] developed a 

metric, named Optimal Transport-embedded Similarity Measure, for analyzing the transferability of 

diagnostic knowledge across machines, in which cluster-conditional distributions are explored to 

assign cluster labels for the target instances. Wu et al. [146] proposed a hybrid DTL method that 

combines the instance- and feature-transfer learning techniques to solve the diagnosis problem of 

bearings when sufficient labeled fault data in the practical engineering is lacking, which was 

validated in the application scenario of transfer from the Case Western Reserve University (CWRU) 

dataset to a locomotive bearing dataset collected in real industry.  

Model-based DTL solutions: Taking the rolling bearing fault diagnosis as a case study, Wang 

and Gao [147] adapted the VGG-19 network as the backbone model that was pretrained on 

non-manufacturing data, and then was finetuned on manufacturing machine for transferring common 

latent features among different machines. A Novel Stacked Transfer Auto-encoder (NSTAE), 

optimized using Particle Swarm Optimization (PSO), was proposed by Shao et al. [148] and was 

applied for IFD based on bearing and gear data collected from different rotating machines. Unlike the 

previous methods which focus on selecting the backbone model [149], [150], Chen et al. [151] 
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proposed a novel model-based DTL strategy for training a Transferable Convolutional Neural 

Network (TCNN), which exploits the knowledge learned from different source machines to improve 

the generalization performance of the target task. Its core idea is that the layers and the parameters of 

the pretrained TCNN are firstly subdivided into several blocks, and then each block is finetuned in 

reverse order. With respect to the model transfer, such strategy is suitable not only for the CNNs but 

also for other deep models such as DBN, SAE and Long short-term memory (LSTM). The 

model-based DTL solutions, especially the fine-tune algorithm, are comparatively easy to implement 

in the scenario of across different machines. But their performance would decrease dramatically if the 

labeled instances are insufficient or unavailable. 

Feature-based DTL solutions: For feature-based DTL, the discrepancy-based domain 

adaptation is still one of the most popular and promising solutions for fault diagnosis in the scenario 

across different machines and brings successful breakthroughs compared with traditional DL 

methods [152]-[164]. For example, Lei et al. have proposed several IFD methods based on 

discrepancy-based domain adaptation for transferring knowledge from laboratory to real industrial 

bearings [139], [152], [153]. A feature-based transfer neural network (FTNN) was proposed in [139] 

to learn transferable representation by combining multi-layer domain adaptation and pseudo label 

learning. In FTNN, a domain-shared CNN was trained by simultaneously minimizing three 

discrepancies: the classification discrepancy of the labeled instances in the source domain, the 

classification discrepancy of the unlabeled instances in the target domain with the help of the pseudo 

label learning, and the multilayer MMD discrepancy of the learned representations between across 

domains. In [153], a distance metric named polynomial kernel induced MMD (PK-MMD) was 

proposed to overcome the weakness of the Gaussian kernel induced MMD (GK-MMD). The 

experimental results showed that the PK-MMD based DTL method can not only improve the 

computation efficiency but also can achieve better performance for IFD in the across different 

machines scenario compared with other algorithms such as the Transfer Component Analysis (TCA), 

the DAFD, and the GK-MMD-based method. Meanwhile, Tan et al. [160] proposed a deep coupled 

joint distribution adaptation network (DCJDAN) to reduce the domain discrepancy between artificial 

and real damages, which has been validated on the dataset provided by Konstruktions- und 

Antriebstechnik (KAt) Bearing Data Center, Paderborn University. In addition, there are a few 

published methods which provide other solutions to solve the problems in across different machines 

scenarios by exploring the adversarial-based [165]-[168] and reconstruction-based domain 

adaptation techniques [169], which may not be as popular as the methods based on the 

discrepancy-based domain adaptation. 

3.2.4 Solutions for other scenarios 

Besides varying WCs and across different machines, there are other application scenarios as 
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well, including across sensors and imbalanced instances. As for IFD methods, the locations, types and 

sampling frequency of sensors, as well as the number of training instances of each class, result in a 

huge distribution diversity between realistic industrial data. Many impressive studies have been 

applied to the application scenarios of imbalanced instances [170]-[180] and across different sensors 

[181]-[185], and paid much attentions to the investigation of how to improve the generalization 

performance of IFD models. 

For the scenario of imbalanced instances, Zareapoor et al. [178] proposed a Minority 

oversampling Generative Adversarial Network (MoGAN) to deal with the problems where the 

number of each fault class are imbalanced during model training. The MoGAN converts the 

imbalanced problem into the balanced scenario by generating the minority instances through the 

GAN, which provides a potential solution for the scenarios where some labeled data are available in 

the target domain but they are not enough to train a satisfactory model. A one-shot learning method 

for fault diagnosis of 3D printers was proposed by Li et al. [180], which only requires one instance of 

each fault condition to accomplish the model training. Another scenario encountered in real industry 

is across different sensors. Prof. Jay Lee and his group have proposed several solutions for 

transferring diagnosis knowledge across sensors at different locations [181]-[185]. The proposed 

solutions are based on the unsupervised parallel data which are utilized to align the conditional 

distribution of the different health conditions. The experimental results showed that such solutions 

are promising to transfer common knowledge between the data from different locations of machines, 

and they can further improve the generalization performance of deep models in practical industry 

applications. Similarly, aiming at transferring the diagnosis model from one sensor to another, Qin et 

al. [184] designed a new transfer strategy for domain adaption, called Multi-Scale Transfer Voting 

Mechanism (MSTVM), which combines multi-scale feature learning and plurality voting operation 

techniques. The MSTVM can be used to the traditional domain adaption models, and the model’s 

performance will be well improved. 

3.3 Partial Domain Fault Diagnosis 

3.3.1 Motivations and goals 

As illustrated in Fig. 6, the strong motivation behind this scenario is that, under the industrial big 

data environment, it is a promising solution to utilize the labeled historical data and the open-source 

industrial data which are collected from related scenarios, for training a diagnosis model that can 

transfer knowledge from large-scale but redundant source domain to unknown small-scale target 

domain. The challenges for partial domain fault diagnosis are due to the following two factors: 

(1) Label space information of the target domain is lacking. In the trend of Industry 4.0, a large 

amount of monitoring data can be collected and stored for the target scenario. However, it is 
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expensive and unrealistic to annotate these large amounts of data, therefore the numbers and 

the types of faults are unknown. 

(2) Outlier source faults may lead to negative transfer. From the viewpoint of big data, the 

large-scale but redundant source dataset is diverse enough to subsume all fault classes of the 

small-scale target dataset. 

Thus, directly transferring between the entire source and target domains as the popular DTL methods 

is not an optimal and effective solution for the partial transfer scenario. 

 
Fig. 6.  Illustration of the motivation behind the scenario of partial domain fault diagnosis 

As illustrated in Fig. 4 (b), the key goal in this scenario is to build an effective diagnosis model 

for partial domain fault diagnosis by aligning the distribution of source and target domains in the 

scope of the shared label space and singling out the outlier source data in the scope of the private label 

space. The DTL-based solutions developed for the partial domain fault diagnosis in recent years have 

been summarized in Table II. According to the experiments presented in the publications, these 

solutions not only have the capability to promote the positive transfer of the relevant data and to 

alleviate negative transfer of irrelevant data, but also can address the practical and challenging issues 

under the industrial big data environment. 

 
3.3.2 Solutions for partial domain fault diagnosis 

As mentioned before, the assumption behind this scenario is that the label information of target 

data is unknown. Up to now, model-based DTL approaches are hardly applied to the problems in the 

scenario of partial domain fault diagnosis because they inherently rely on the label information of 

target instances. Therefore, in this case, most current DTL solutions have been developed on the basis 

of the instance-based and feature-based DTL methods. 

TABLE II Solutions for Partial Domain Fault Diagnosis 

Application 
Scenarios 

Categorization of 
DTL References Common algorithms used 

Partial 
Domain Fault 

Diagnosis 

Instance-based Jiao et al. [187], Li et al. [188], Li et al. [189], 
Liu et al. [190] 

Class weight-estimation 
strategy 

Feature-based Li et al. [191], Han et al. [192], Deng et al. [193], 
Yang et al. [194], Wang et al. [195] 

SAN, 
GAN+Attention/PK-MMD 
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Instance-based DTL solutions: An intuitive solution to transfer knowledge from large-scale 

source dataset to small-scale target dataset is to select out the outlier instances in sources domain that 

are negative for building target model. Such an idea can be implemented by adapting the 

instance-level or class-level weighting strategies during the process of model training. Aiming at 

transferring knowledge from a large-scale dataset to a small-scale dataset (e.g., from ImageNet to 

Caltech-256), a Selective Adversarial Network (SAN) was firstly proposed by Cao et al. [186] in the 

Proceedings of IEEE Conference on Computer Vision Pattern Recognition (CVPR), 2018, for partial 

transfer learning. Inspired by the SAN, several class-level weighting methods have been proposed in 

the field of IFD [187]-[190]. For example, Jiao et al. [187] proposed a classifier inconsistency-based 

domain adaptation network (CIDA) for unsupervised partial domain fault diagnosis of planetary 

gearbox. The CIDA estimates the label space of target domain by calculating class weights through 

classifier inconsistency loss and selects out the source instances beyond the shared label space of 

source and target domains according to the class weights. The experimental results showed that the 

CIDA can implement the partial transfer diagnosis task from a working condition (containing all fault 

classes) to a target working condition (only containing a part of fault classes), and its performance is 

superior than that of the other popular DTL methods. Similarly, a Weighted Adversarial Transfer 

Network (WATN) was proposed by Li et al. [189] for partial domain fault diagnosis across different 

machines. In WATN, an auxiliary classifier is introduced to automatically learn the weight of each 

source instance, which can weight the contributions of each training instance to both feature learning 

and domain confusion. As a result, the role of irrelevant source instances can be effectively weakened 

during the knowledge transferring. However, these instance-based DTL methods are depended to 

some extent on the prediction distribution of the instances in the target domain. 

Feature-based DTL solutions: Besides the weighting mechanism described above, 

feature-based DTL solution have also been developed with promising results for partial domain fault 

diagnosis [191]-[195]. One example is that, inspired by GAN, Li and Zhang proposed an IFD method 

to address the partial domain adaptation problem by combining the techniques like conditional data 

alignment and unsupervised prediction consistency. Conditional data alignment is implemented by 

minimizing the distribution discrepancy between source and target domains through MMD. 

Unsupervised prediction consistency is achieved when the same prediction results of target domain 

data can be obtained after finishing the adversarial learning between multiple classification modules 

and the discriminator [191]. Similar application can be found in [192], which has been validated on a 

wind turbine fault dataset and achieved superior performance under different transfer scenarios than 

other traditional transfer learning methods. In addition, a double-layer attention based generative 

adversarial network (DA-GAN) was proposed by Deng et al. [193] for partial domain fault diagnosis 

of bearings, which aims to solve the problem, “where to transfer”, since the label space of target 
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domain is unknown. In DA-GAN, the attention mechanism is introduced into two layers, one for 

domain attention and another for sample attention, which can provide guidance for the model to focus 

which fault classes should be shared or singled out. Yang et al. [194] further extended the partial 

domain fault diagnosis to a more practical and challenging setting where the instances imbalanced 

between fault classes, exist in the target domain, and proposed a deep partial transfer learning 

network (DPTL-Net) to selectively transfer diagnosis knowledge for planet gearbox. In DPTL-Net, a 

domain discriminator is employed to automatically learn domain asymmetry factors via adversarial 

learning, which can be utilized to weight the PK-MMD. The domain adaptation based on weighted 

PK-MMD can focus on the distribution discrepancy of source instances in the shared fault classes and 

filter out the instances in the outlier classes.  

With the literatures surveyed above, the instance-based and feature-based DTL solutions have 

made significant breakthroughs to partial domain fault diagnosis, which can function as a bridge 

between the large-scale source domain to unknown small-scale target domain for the diagnosis 

knowledge transfer. However, it is obviously inappropriate to take all the labeled data as the source 

domain. Therefore, according to the characteristic of the target domain data, how to select the labeled 

source instances and determine the range of source domain from numerous low-quality industrial data 

is a challenging problem, which is ignored by the researcher as so far.  

 
Fig. 7.  An illustration of the motivation behind the scenario of emerging fault detection 

 

3.4 Emerging Fault Detection 

3.4.1 Motivations and goals 

As illustrated in Fig. 7, the critical motivation behind this scenario is that, in practical industry 

applications, if IFD model can detect the unknown faults which are absent in the labeled source 

dataset and annotate these faults with correct labels, the IFD model will be able to precisely monitor 

the health conditions of machines and to continually expand its diagnosis knowledge. In the process 

of the emerging fault detection, the following two factors that should be taken fully into account are: 

(1) Any knowledge about the faults is lacking. The unknown faults are emerging fault classes 

which newly occur in the target application scenario. More importantly, the unknown faults 
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never exist in the source domain. It is a challenging task to separate the known and unknown 

fault classes in an unsupervised manner. 

(2) The emerging fault classes may also jeopardize the knowledge alignment between the source 

and target domains due to the absence of emerging faults in the source domain. In other 

words, negative transfer will happen if the distribution of the target domain is directly 

matched with that of the whole source domain. 

Different from the partial domain fault diagnosis where knowledge is transferred from class-rich 

source domains to class-scarce target domain, the emerging fault detection aims at transferring 

diagnosis knowledge from class-scarce source domain to class-rich target domain. That is, as 

depicted in Fig. 4 (c), the main goal in this scenario is simultaneously to recognize the emerging faults 

as “unknown fault” classes and to classify the shared faults of two domains into the correct fault 

classes. Generally, unpredicted faults are prone to occur since the machines typically operate in 

complex and uncertain environments during long-term service. Such problem seriously restricts the 

practical application of the DTL-based methods. Consequently, it is an urgent demand for IFD 

methods to recognize emerging faults in practical engineering applications. However, there are only a 

few studies focusing on the emerging fault detection, for which Table III summarizes the current 

DL-based and DT-based solutions. 

 
3.4.2 Solutions for emerging fault detection 

Detecting new faults during the testing scenario is one of the key steps for IFD methods when 

implementing the task of emerging fault detection. In terms of similarity metric learning, several 

DL-based solutions are established without transfer learning techniques to detecting the emerging 

faults [196]-[198]. For instance, Zhang et al. [196] proposed an emerging new labels method based 

on SAE (ENL-SAE) for detecting the emerging fault conditions of gearbox. The ENL-SAE forms a 

prior distribution of known faults with the Gaussian Distribution by utilizing the features extracted by 

SAE from the training samples, which can be employed to identify the unknown instances whose 

distribution deviate from the prior distribution of the known faults. These unknown instances are 

annotated with a new label as the emerging fault and used to retraining the diagnosis model. 

Simulation and realistic experimental results showed that the ENL-SAE can effectively recognize 

new faults and improve its practicality. Similarly, a deep metric learning (DML) model was proposed 

by Wang et al. [197], which has capability to classify the new fault by retrieving similarities. In DML, 

TABLE III Solutions for Emerging Fault Detection 

Application 
Scenarios Categorization References Common algorithms 

used 
Emerging Fault 

Detection 
DL-based  Zhang et al. [196], Wang et al. [197], Feng et al. [198] Similarity metric 

DTL-based Li et al. [199], [200], Wang et al. [201], Zhang et al. [202], 
[203], Yang et al. [204], Li et al. [205], Yu et al. [206] 

Open set domain 
adaptation 
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the raw data of each instance are firstly mapped into cosine space, and then the cosine similarity is 

used to retrieve the most similar fault. The methods mentioned above break through the limitations of 

the traditional intelligent algorithms owing to the capability of emerging fault detection [198]. 

However, an obvious bottleneck behind these methods is that they cannot deal with the diagnosis task 

under complex application scenarios where the distribution shift exists between the training and 

testing data. Furthermore, some of them rely on a few labeled instances of new faults.  

Attempting to further break through the bottleneck mentioned above, the DTL-based solutions 

have been greatly developed for emerging fault detection in real industry application [199]-[206]. 

Inspired by the idea of Open Set Domain Adaptation (OSDA) [207], [208], Li et al. proposed an IFD 

method, called Deep Adversarial Transfer Learning Network (DATLN), for detecting the emerging 

faults of bearings and gearboxes [199], [200], which offered a highly successful attempts on this 

challenging diagnosis task. The DATLN consists of two components: a feature extractor and a 

classifier, which are trained by adversarial training. The feature extractor extracts features from input 

data, and the classifier outputs K+1 dimension probability, where K represents the number of known 

faults in source domain and the K+1 th of the classifier output indicates the probability of the 

unknown fault. On the one hand, the feature extractor aligns the features extracted from the source 

and target domains, which can deceive the classifier. On the other hand, the classifier can build a 

decision boundary to recognize the unknown fault in the target domain. The experiments carried on 

bearing and gearbox datasets showed that the DATLN can not only align the distribution discrepancy 

between the different domain in the scope of the shared faults, but also can detect the emerging fault 

with high accuracy. Wang et al. [201] proposed a Deep Prototypical Networks based on DA 

(DPDAN), in which a prototypical layer was applied to learn the prototypes of each fault class and the 

classification is implemented by finding the nearest class prototype. The DPDAN is another attempt 

to address the problem where the fault classes of the target scenarios are partially overlapped with that 

of the source scenarios. Besides the aforementioned feature-based DTL methods, an OSDA method 

based on Instance-Level Weighted Adversarial Learning was proposed by Zhang et al. [202] and 

applied for IFD of machinery. The instance-level weighted mechanism is introduced to reflect the 

similarities of testing instances with known faults, therefore, the unknown faults, as well as the 

known faults, can be effectively identified. Admittedly, these methods are promising for the 

emerging fault detection and largely improve the applicability of IFD algorithms in the practical 

engineering. Nevertheless, a major limitation of them is that it can only detect all unknown faults as 

one category even if there exist multiple emerging faults. 

To overcome such limitation, Li et al. [205] further extended the DATLN method to a 

Two-Stage Transfer Adversarial Network (TSTAN) for IFD of rotating machinery with multiple 

emerging faults. In the first stage, a DTL model is trained by the adversarial learning strategy and 
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employed to single out the unknown fault instances as outliers from the known ones. In the second 

stage, an unsupervised convolutional SAE with silhouette coefficient is built to further recognize the 

number of the emerging faults. The TSTAN was validated on two OSDA scenarios: two and three 

new faults exist in the target domain respectively, and it achieved the highest diagnosis accuracy for 

the emerging fault detection compared with other state-of-the-art methods. To move one step forward, 

Yu et al. [206] proposed an open set fault diagnosis (OSFD) method with bilateral weighted 

adversarial networks (BWAN) and extreme value theory for the application scenario where the 

source and target domains share partially fault classes but hold its private fault classes at the same 

time. Such assumption is more in accordance with the case of practical engineering in industry. The 

experimental results on the CWRU and the Traction Motor Bearing (TMB) Dataset illustrate the 

superior performance of the proposed OSFD approach for emerging fault detection. 

With the literature surveyed above, several excellent applications, have been witnessed the last 

years, addressing the challenging task of emerging fault detection for practical engineering. In terms 

of the more complex diagnosis task such as the across machines and sensors, however, there are still 

few or no solutions for the emerging fault detection. More efforts should be placed on these aspects. 

3.5 Compound Fault Decoupling 

3.5.1 Motivations and goals 

As illustrated in Fig. 8, the intuitive motivation behind this scenario is that, with the 

development of intelligent technology, the IFD model should certainly be endowed with the ability to 

decouple the compound fault in an intelligent manner by only leveraging upon the diagnosis 

knowledge learned from the data of the corresponding single faults. Such motivation, that is, 

intelligent compound fault decoupling, is inspired by the phenomenon that human beings are capable 

of separating the overlapping entities into multiple individual entities easily. As shown in the upper 

part of Fig. 8, taking the overlapping digits as a concrete example, humans can rapidly capture the key 

characteristics about each individual digit and can recognize multiple digits in the image even if digits 

overlap. 

However, such an “easy” task is difficult for the majority of IFD algorithms. The challenges for 

intelligent compound fault decoupling mainly came from the following aspects: 

(1) A compound fault occurs unpredictably when multiple key parts and components present 

defects or even damage at the same time. The monitoring signals become more complex 

since the fault characteristics of each component are coupled and exerted influence 

reciprocally, which dramatically increases the difficulties of IFD. 

(2) The completeness of compound fault data within the training dataset is hard to be ensured. 

The practical challenge that is hardly avoidable is that it is difficult and unrealistic to 
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accumulate single-fault data in industrial applications, let alone to completely collect all 

types of compound fault data. 

(3) The traditional classifier that utilizes the Softmax as the activation function of the last fully 

connected layer only outputs one label for a testing instance, which inherently determines 

that the compound fault is simplify regarded as an independent fault pattern for classification 

and the relationship between the compound fault and its corresponding single faults is 

ignored. 

 
Fig. 8.  Illustration of the motivation behind the scenario of compound fault decoupling 

 
Based on the core idea of transfer learning, as illustrated in Fig. 4 (d), the goal here is to develop 

an IFD model for compound fault decoupling which can learn and capture useful fault characteristics 

from only the single-fault instances (source domain) and transfer the learned knowledge to help in 

making a right decoupling of compound fault instances (target domain). Following this insight, as 

summarized in Table IV, several successful attempts have been made for intelligent compound fault 

decoupling to imitate the learning ability of humans. 

 
3.5.2 Solutions for compound fault decoupling 

Compound fault diagnosis was and remains a challenging but practical task in the field of fault 

diagnosis. Before the widely application of IFD, the traditional methods for compound fault diagnosis 

TABLE IV Solutions for Compound Fault Decoupling 

Application 
Scenarios Categorization References Common algorithms used 

Compound 
Fault 

Decoupling 

Supervised DL-based Huang et al. [222], Liang et al. [223], 
Jin et al. [224] 

DNN with multi-label 
classifier 

Unsupervised DL-based Huang et al. [226], [227], Dibaj et al. 
[228], Xing et al. [229] 

CNs, Triple probabilistic 
terms, Zero-shot learning 

DTL-based Huang et al. [230], [231] TCN, DACN 
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generally extract the fault characteristic frequencies of each single fault from the monitoring signals 

of compound fault to make an accurate diagnosis by utilizing the advanced signal processing 

algorithms [209]-[212]. For example, a compound fault diagnosis method based on multiple 

enhanced space decomposition was developed by Li et al. [211], which can extract the characteristic 

features of gear defect and bearing fault simultaneously. Cui et al. [212] proposed a method based on 

the Maximum Entropy Deconvolution Adjusted (MEDA) and Adapted Dictionary-free Orthogonal 

Matching Pursuit (ADOMP) to isolate the compound fault coupled by the gear and bearing faults. 

Although these solutions can be used to monitor the health states of IE, they heavily rely on the 

empirical knowledge and the engineering experience of experts, which is a major obstacle for its wide 

application in industry. 

Benefitted from the advantages of DL in representation learning and pattern recognition, some 

phenomenal solutions have been proposed and applied for the compound fault diagnosis [213]-[221]. 

For example, in [213], [214] and [215], several DBN-based IFD methods were proposed and applied 

to diagnose the compound faults of machinery, which mainly focus on enhancing the structure of 

DBN to improve the performance of diagnosis model. Shao et al. [216] developed a multisensory 

fusion strategy using a stacked wavelet AE structure with a Morlet wavelet function and applied to 

the collaborative fault diagnosis of planetary gearbox with compound fault. Combining with other 

techniques, such as adaptive separation, Euclidean matrix sample entropy and adversarial learning, 

CNN were developed and enhanced for intelligent compound fault diagnosis in many fields 

[217]-[221]. 

It can be seen from the publications mentioned above that most of these solutions lose sight of an 

importance aspect that the compound fault is anything but an individual pattern when it comes to the 

corresponding single faults. It is inappropriate to simply regard the compound fault as an independent 

fault class for fault classification. To overcome the shortcoming mentioned above, an intelligent 

compound fault diagnosis framework based on Deep CNN with multiple-label classifier 

(DCNN-MLC) was proposed by Huang et al. [222] and validated on a gearbox dataset. The core idea 

of DCNN-MLC is that the sigmoid function, which can transform the output value of each neuron 

into [0, 1], is employed to substitute the Softmax as the activation function of the last fully connected 

layer. As a result, the MLC can output single or multiple labels for a testing instance by priorly setting 

a confidential threshold. The DCNN-MLC is trained with the single faults and compound faults 

instances, which can decouple the compound fault in a supervised manner by outputting multiple 

labels. Such an idea has been further investigated and applied for the compound fault diagnosis of 

gearboxes and bearings [223], [224]. The diagnosis model with MLC is effective for compound fault 

decoupling by having the ability of outputting multiple labels. However, these models heavily rely on 
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the completeness of compound fault data, suffering setbacks when the labeled data of compound 

faults are incomplete or even unavailable. 

Aiming at eliminating the dependance of completeness of compound fault data, scientific 

researchers proposed several DL-based solutions for compound fault decoupling in an unsupervised 

manner, in which the diagnosis model is only trained on the healthy and single faults instances and 

then can be used to diagnose the compound fault instances [226]-[229]. For instance, inspired by the 

Capsule Networks (CNs), a Deep Decoupling Convolutional Neural Network (DDCNN) was 

proposed by Huang et al. [226] and applied for intelligent compound fault decoupling of an 

automobile transmission. In DDCNN, a decoupling classifier is constructed with two capsule layers, 

rather than a fully connected layer, and is optimized by an agreement-based dynamic routing 

algorithm, which can decouple the compound fault via outputting multiple labels. The DDCNN is a 

first successful effort to realize the intelligent compound fault diagnosis by transferring the 

knowledge learned from the data of healthy and single faults in the scenario that the compound fault 

data are unavailable during model training. To achieve a common goal, a similar attempt has been 

investigated by Dibaj et al. [228]. The main idea of the method proposed in [228] is that the CNN is 

trained without the compound fault data, and triple probabilistic conditions are used to restrict the 

output label of the classifier by judging whether the acquired probabilities of each neuron satisfy 

these conditions. Thus, the untrained compound fault can be recognized in an intelligent manner. A 

label description space embedded model for intelligent fault diagnosis (LDS-IFD) was proposed by 

Xing et al. [229] to recognize the compound faults just using the single-faults data during the model 

training, which is validated by two datasets collected from bearing and planetary gearbox. Admittedly, 

these solutions have brought successful breakthroughs in intelligent compound fault diagnosis 

because they eliminate an important problem: the dependance of the completeness of the compound 

fault data. Nevertheless, the methods mentioned above still lack a robust generalization performance 

when they encounter a varying and harsh environment, restricting its further practical application in 

industry. 

With the help of transfer learning techniques, the DTL-based solutions for intelligent compound 

fault decoupling have been attracted increasing attention and application in recent years. The 

compound fault diagnosis models are getting more generalizable and accessible under varying WCs 

[230], [231]. Huang et al. [230] further proposed a Transferable CN (TCN) for decoupling compound 

fault of rotating machinery under varying WCs. The TCN is a variant of DDCNN, which can reduce 

the distribution discrepancy between the source and the target domains by introducing the MMD into 

the last layer of the feature extractor and the decoupling classifier, respectively. The experimental 

results demonstrated that the TCN outperforms the DDCNN for the compound fault decoupling under 

varying WCs. To improve the practicality of diagnosis model, Huang et al. [231] further relaxed the 
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assumption on training data by considering that the data cannot be obtained in advance for some 

special and extreme WCs, and proposed a Deep Adversarial Capsule Network (DACN) which 

embeds the domain generalization task into the intelligent compound fault diagnosis task. The DACN 

consists of three parts: the feature extractor (FE), the decoupling classifier (DC) and the multidomain 

classifier (MC), which is designed for representation learning, compound fault decoupling and 

multidomain adaptation, respectively. Using the single fault data collected under multiple WCs, the 

adversarial training strategy is employed to train the DACN. The comprehensive experiments carried 

on an automobile transmission demonstrates that the DACN is endowed with the ability to decouple 

the compound fault in an intelligent manner, as well as the ability of strong generalization 

performance across unseen working condition. 

Through the literature surveyed above, the current solutions for intelligent compound fault 

decoupling have to some extent addressed the two problems: the dependence of data completeness 

and the lack of robust generalization performance. However, it seems that few studies focus on the 

more complex industrial scenarios, e.g., the compound fault coupled with three or more single faults, 

which might be more in accordance with the practical application in industry. 

4 Suggestions to Select DTL Algorithms for IFD in Industry Applications 

After the comprehensive literature survey in Section III, the recent development of DTL 

approaches in the field of IFD is systematically presented and discussed from the perspective of 

different industrial application scenarios. To provide a constructive guide for the readers who want to 

solve the practical industry problems via using DTL-based IFD methods, in this section, the general 

procedure of IFD based on DTL is concluded, as well as the suggestions to select DTL algorithms for 

IFD in industry applications. 

 
Fig. 9.  General procedure of IFD based on DTL 

 

4.1 General Procedure of IFD Based on DTL 

As demonstrated in Fig. 9, the general procedure of IFD based on DTL includes four crucial 

steps: data collection, data processing, model construction, and industry application. Following these 
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steps, a practical IFD project can be implemented in industry applications. 

Step 1: Data Collection. In a systematic DTL approach to apply IFD methodologies for a 

specific task, the first step mostly focuses in collecting the available data from the source and the 

target domain. Before a DTL algorithm is utilized to accomplish the specific task, it is absolutely 

necessary and extremely beneficial to familiarize the characteristics of the collected monitoring data 

and the information of the interested equipment in terms of the key components, WCs, service 

intensity and all other important physical attributes. In other words, no matter what type of data, such 

as vibration, electrical and acoustic emission signals, can be collected, the quantity and the quality of 

data will be fundamental for the subsequent steps in developing an effective solution with dependable 

diagnosis accuracy via combining appropriate algorithms. As mentioned before, one of the 

advantages of DTL is that the labeled data in the related but different domains can be used to help 

training the target model. Therefore, the characteristics of data in the source domain largely affect the 

performance of the target model. Generally, there are mainly two ways to collect the source domain 

data. The first way is to use the labeled historical data, collected from similar machines, while the 

second one is to select similar data from open-source industrial big data. The public datasets, which 

have been provided by the PHM data challenges that have been held by the PHM Society since 2008, 

are real data collected from practical industry scenarios. All the datasets are fully opened to all 

researchers and covered the diagnostics and prognostics tasks in many industry fields, and can be 

downloaded by the website of PHM Society [1]. 

Step 2: Data Processing. Contrary to the data collected from laboratory experiments, real 

industrial big data typically have four main characteristics: large volume, low value density, 

multi-source and heterogeneous data structure, and monitoring data stream [27]. Therefore, data 

processing is one of the key steps for improving the performance of the IFD model. Essentially, for an 

intelligent learning process, garbage data in inevitably leads to garbage results out. There is no one 

absolute way to prescribe the exact steps in data processing because the process would be better to 

combine some background information in the specifical scenario. Data cleaning, normalization and 

data fusion are popular and effective techniques for the processing of original industrial data [232], 

[233], which can remove errors and inconsistencies and improve the quality of the data that will be 

used to train the target model. 

Step 3: Model Construction. Along with the continuous progress in manufacturing industry, 

many advanced algorithms have been introduced, developed and benchmarked to implement the 

diagnostic and prognostic tasks in a supervised or unsupervised manner. Different algorithms are able 

to handle different problems depending on its adaptability. Therefore, a crucial step for developing an 

effective solution for IFD in industry scenarios is to select and adopt the most appropriate algorithms, 

based on available data and target tasks. The suggestions to select the DTL algorithms for IFD will be 
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detailly introduced in Section IV, Part B. Once the DTL algorithm is determined, the target model can 

be optimized according to the source and target data via using gradient-based optimizers, such as 

Stochastic Gradient Descent (SGD) [234], Adaptive Gradient (Adagrad) [235] and Adaptive Moment 

Estimation (Adam) [236]. 

Step 4: Industry Applications. After the diagnosis model has been constructed and optimized by 

feeding with the data, it can be ready for further application to monitor the health states of target 

equipment. In this step, it is important to use an Internet of Things (IoT) platform to support the IFD 

system to convey the useful information to the engineers through visualization tools.  

4.2 Suggestions to Select DTL Algorithms for IFD 

After the general procedure for IFD methods has been systematically introduced, this subsection 

will offer some guidance and suggestions to select DTL algorithms according to specific scenarios of 

the industry applications. 

It is an acknowledged truth that there is no general algorithm regarding to the IFD in industry 

application. At the beginning of selecting DTL algorithms, there are two factors which should be first 

considered. The first factor is to consider the circumstance of whether the labeled data are available in 

the target domain, while another one is to evaluate the similarity between the source and the target 

domain. As illustrated in Fig. 10, the corresponding algorithm selection strategies are provided 

according to the above two factors and the different industry application. 

As for the generalization performance improvement, the application scenario can be further 

divided into four sub-scenarios: the scenario 0 to 3, in which the appropriate algorithms can be 

selected by considering the following suggestions. 

 
Fig. 10.  Suggestions to select appropriate algorithms for practical industry applications 
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Scenario 0: Labeled data are available in the target domain, and the source and target domains 

are similar. Any DTL algorithms may work well in this situation. But, the most efficient and optimal 

option will be the model-based DTL algorithms, more specifically, the fine-tuning strategy. Since the 

labeled data are available, the target model can be trained in a supervised manner. Furthermore, since 

the gap between the source and target domain is small, the knowledge learned from the source 

domain will be also suitable to the target domain. therefore, it should be enough to directly merge the 

source and the target data as a training dataset or to fine-tune the top layers of the pre-trained deep 

model. 

Scenario 1: Labeled data are available in the target domain, and the source and target domains 

are different. In this situation, intuitively, instance-based DTL algorithms, e.g., TrAdaBoost, can be 

used to single out the similar instances in the source domain to augment the training dataset for the 

target task. However, such algorithms will be unsuccessful if the data are largely different between 

the source and the target domains. If the labeled data is sufficient for target model training, 

fortunately, another solution is to fine-tune all the layers of the pre-trained model. Further, if the 

labeled data is insufficient, it would be promising solutions to select the feature-based DTL 

algorithms, such as the discrepancy-based and non-generative domain adaptation. 

Scenario 2: Labeled data are unavailable in the target domain, and the source and target domains 

are similar. Implementing the target task in this situation will be a little bit more difficult than that of 

in the Scenario 0 due to the fact that the target instances are not annotated. However, since the 

instances in source and target are similar, the instance-based DTL algorithms, such as the 

weight-estimation based on kernel embedding techniques and the heuristic weighting strategy, would 

be a good choice to select out the positive instances in the source domain to help training the target 

model. 

Scenario 3: Labeled data are unavailable in the target domain, and the source and target domains 

are different. In this situation, the model-based and the instance-based DTL algorithms can hardly 

improve the generalization performance of the deep model because the label information of the target 

instances is lacking and the gap between the source and the target domain is large. Therefore, this 

situation will lead the engineer to the feature-based DTL algorithms (discrepancy-based and 

adversarial-based domain adaptation). The hybrid DTL algorithms which combine the 

instances-based and the feature-based domain adaptation will also be a promising tool in this 

scenario. 

As for the other three application scenarios, their basic assumption is that the labeled data in the 

target domain are unavailable. Therefore, the main factor that should be considered for selecting 

algorithms is the domain similarity. Each application scenario can be further divided into two 
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sub-scenarios, that is, scenario 4 & 5 (Partial Domain Fault Diagnosis), scenario 6 & 7 (Emerging 

Fault Detection), and scenario 8 & 9 (Compound Fault Decoupling). 

Scenario 4: Source and target domains are similar. It is important to use the similar data as the 

source dataset for partial domain fault diagnosis. For example, data collected from similar working 

conditions or same machines are perhaps the best option. As a result, the instance-based DTL 

algorithm, e.g., the class weight-estimation strategy, is recommended to single out the instances in the 

shared classes, and then used to train the target model. 

Scenario 5: Source and target domains are different. In this situation, since the similar source 

data are difficult to be collected, it is a potential solution to use the different but related data collected 

from related industry applications. Considering the demand for reducing the domain discrepancy and 

avoiding the negative transfer, the feature-based DTL algorithms, especially the adversarial-based 

domain adaptation (SAN or GAN+PK-MMD), should be given priority.  

Scenario 6: Source and target domains are similar. As for emerging fault detection, if the 

instances in the target domain are similar to those in the source domain, an effective method would be 

to apply the traditional DL-based methods that detect the new faults by calculating the similarity 

metric between the testing and the labeled instances. 

Scenario 7: Source and target domains are different. In the practical industry application, it is 

more common that the domain shift exists between the source and the target domains. Therefore, the 

OSDA algorithm and its variants would be more practical and effective to address the problems of 

emerging fault detection. 

Scenario 8: Source and target domains are similar. Even under an identical working condition 

and the same machine, it is a challenging task to intelligently decouple the compound fault via using 

a target model that just trained by single fault instances. If the labeled compound fault data is 

available, the DNN with MLC can be trained in a supervised manner and further applied for 

compound fault detection. Otherwise, the deep model can be trained only using the normal and single 

fault data, and then a rule (e.g., Triple probabilistic terms) can be used to restrict the outputting labels 

of classifier. From the results shown in literature, the capsule network is the best choice for compound 

fault decoupling. 

Scenario 9: Source and target domains are different. Since the domain shift is introduced with 

the varying environments, the DNN-based algorithms perform not well in this situation. Up to now, 

an effective and promising solution is to combine the capsule networks with the feature-based DTL 

algorithms, such as the discrepancy-based and the adversarial-based domain adaptation. 
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5 Future Challenges and Trends in IFD of Industrial Machinery 

An obvious conclusion can be drawn from the comprehensive survey and discussion that, 

despite the fact that IFD algorithms based on DTL have made successful breakthroughs in many 

industry applications, there is still a long way to go until it is widely adopted in practical 

manufacturing industry systems. This is mainly because the performance of DTL algorithms lags far 

behind the requirements of manufacturing industry which places more emphasis on stability, 

standardization, accuracy, and repeatability. Before the IFD technologies can be fully embraced and 

applied in real world industry systems, the researchers in the related field should put significant effort 

into overcoming the following challenges. 

5.1 Stability and Reliability 

Historically, the generalization performance of IFD model has been significant improved by 

leveraging upon transfer learning techniques. However, the current IFD methods based on DTL could 

only accomplish the well-defined transfer tasks that often have restrictions on WCs, machines, and 

other hypotheses, which lead to the fact that the IFD model is not yet robust enough in dealing with 

uncertain circumstances. For a trained IFD model, an uncertain change in the input could cause a 

large change in the output [237]. Furthermore, most IFD algorithms published in the papers had not 

been verified as reproducible [238] due to the complexity of model training process and the numerous 

hyperparameters. In fact, there are many uncertain deviations caused by human or non-human factors 

during the long-term service of IE, and such deviations will directly affect the robustness, 

generalization performance and reproducibility of IFD algorithms, resulting in their low stability and 

reliability in practical industry scenarios. Therefore, it is and remains a challenging task to improve 

the stability and reliability of IFD algorithms for the technology to truly be applied in practical 

manufacturing industry systems, which requires further breakthroughs in not only the improvement 

of generalization performance, but also the reproducibility of diagnosis results. 

5.2 Interpretability of Deep Model 

Although DTL-based IFD methods have made phenomenal achievements in mechanical fault 

diagnostics and prognostics, an acknowledged limitation is that these methods have been perceived as 

black box techniques and are not interpretable, which does not provide a convincing insight into how 

and why they can make the final decision [239]. This issue may not only put in doubt the credibility of 

the decision itself, but also lacks compelling evidence to convince companies or industry that these 

techniques will work repeatedly. Applications in industry have strict requirements for safety and 

accuracy, and need to explain the reasonableness of the prediction decisions. As a result, the 

application of the DTL-based IFD methods in manufacturing industry are very limited. In recent 

years, fortunately, the theory of interpretable machine learning has captured increasing attention from 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 42 

the academic researchers. One way to make intelligent algorithms interpretable is to use only 

interpretable models, such as Naïve Bayes Classifier and K-Nearest Neighbors, which typically have 

the limitation that the performance of these model is inferior to other intelligent models [241]. 

Therefore, in-depth theoretical research should be placed putting more emphasis on opening the 

“black box” and increasing the transparency of IFD model. Besides the theoretical research, another 

potential research trend in recent years is to combine the IFD model with a physical/statistical model 

which is supported by rigorous theory. With the help of the domain knowledge in the 

physical/statistical model, the “black box” of the IFD model can be partly opened, and it would be 

easily understood how decisions are reached step-by-step. 

5.3 Hyperparameters of Deep Model 

Generally, the architecture and hyperparameters of deep model significantly impact on the 

performance of DTL-based IFD methods. Therefore, it is a crucial step to select the hyperparameters 

during designing an effective solution with DTL-based IFD algorithms. However, there are no 

industry consensus on what the ways of selecting hyper-parameters works best. The 

hyper-parameters are typically selected in most publications via manual setting and experimental 

validation based on the grid search technique, which is a time-consuming way to ensure the model 

achieves the optimum performance. In the future, automatic machine learning might be an effective 

solution to solve such problem [242]. 

5.4 Capacity of Data Processing 

With regard to industry data, the challenges facing IFD right now mainly comes from the 
following aspects: 

(1) Data Quality. The performance of IFD models still depend heavily on the quantity and the 

quality of historical instances in the source domain, and annotating the industry data requires more 

engineering experience. In practical industry, it is often the case that, with more smart sensors 

embedded in machines and advances of measurement technology, large volume of monitoring data 

can be easily accumulated, but there have problems in data quality, such as lacking correct 

maintenance records, missing key parameters related to target components, existing misalignment of 

different variables, and coupling with strong background noise. Andrew Ng, a famous professor in 

Stanford, points out that the AI systems equals the integration of code (model/algorithm) and data, 

where the 80/20 rule for the data processing vs model training might be the right balance to achieve 

success. Therefore, it is necessary to monitor and improve the data quality before developing the IFD 

solution in practical application. 

(2) Imbalanced Data. It is a common case that, in the era of big industry data, the monitoring 

data of each health state are imbalanced. For ensuring the security and efficiency of production, the IE 

typically works under healthy conditions. As a result, the fault instances have a much lower chance of 
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appearing than the healthy instances. This makes the data whether in source or target domain having 

an imbalanced distribution, which in turn makes the IFD model tending to learn biased decision 

boundaries that have a poorer diagnosis performance over the fault classes compared to the healthy 

class. Despite the fact that some publications have been focused on the problem of imbalanced data, it 

is difficult for the proposed solutions to deal with the imbalanced problems in more complex and 

uncertain industry environment. Therefore, to endow IFD algorithms with the ability to learn the 

discriminative representation from an extreme imbalanced dataset, more efforts would be necessary 

to simulate the knowledge transfer process in which humans can correctly guess that an object may 

belong to the class which share some physical characteristics, instead of brutally training the IFD 

model with “big data”. Following this insight, the few-shot or zero-shot learning, which is inspired by 

the phenomenon that human beings can learn a new object with only a few instances or even without 

any instances, are the promising research trends for solving such issue in practical industry 

application of IFD. 

(3) Heterogeneous Data. The industry factory is a typical multiple source heterogeneous data 

environment. For instance, in wind farms, there are large amount of multiple source heterogeneous 

data, such as the high-frequency data (current, acoustic emission and vibration signals) and 

low-frequency data (environmental index, working condition information and control parameters), 

have been collected from the Supervisory Control and Data Acquisition (SCADA) system and the 

Condition Monitoring System (CMS). However, as surveyed in the previous sections, the majority of 

DTL-based IFD methods focus on cases where instances in source and target domains are 

homogeneous data (e.g., vibration data). The obvious limitation of existing IFD methods is that, if the 

target sensor malfunctions unexpectedly, the CMS will be out of operation, which in turn could lead 

to serious catastrophes. Since the multi-source heterogeneous data can provide different information 

for the same health states of machine, it is possible to transfer diagnosis knowledge from one sensor 

data to another ones, which may greatly improve the stability and reliability of IFD algorithms. 

Furthermore, up to now, few studies focus on the heterogeneous transfer learning in the field of IFD. 

Therefore, heterogeneous transfer learning between multiple sensors would also be one of the future 

research trends that more attention should be paid. 

(4) Data Privacy and Protection. In the era of digital and intelligence, industry data is one of the 

most important assets a company has. For that reason alone, data privacy and protection should be a 

top priority for any company. It is difficult to reach an agreement and share labeled data among 

different companies and factories, which in turn results in data fragmentation and isolation. As a 

result, such restriction poses significant obstacles for the applications of the IFD algorithms in the 

practical industry. Therefore, how to solve the problem of data fragmentation and isolation while 

considering and complying with the restriction of data privacy and protection is one of the major 
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challenges for the IFD algorithms to truly accommodate a wider range of application in practical 

industry. One potential research trend for addressing the above issues is to combine the federated 

learning and DTL to build and train an effective and accurate IFD model [243]. 

5.5 Challenges in Transfer Learning 

To design an effective DTL-based algorithms, there are still several key challenges should be 

placed more efforts on. 

(1) Identifying the Appropriate Source Domain 

The previous survey on DTL-based IFD algorithms elaborates several ways to transfer source 

domain knowledge for practical industrial applications, however, identifying an appropriate source 

domain is still a challenging problem due to the challenges caused by big industrial data. For example, 

for many industrial applications, it is difficult to find an appropriate source domain that includes 

sufficient training instances annotated with precise label information for implementing target tasks. 

Even worse, it may be unrealistic to find any failure data from similar or related industrial application. 

With the rapid development of digital technology, such as Digital Twins, one promising way is to 

utilize the simulation or generation techniques to generate training data as the source domain in such 

a scenario. In addition, transferring the knowledge from multiple source domains has been attracted 

more and more attentions recently. 

(2) Avoiding Negative Transfer 

Once the source domain is determined, avoiding negative transfer is also a challenging problem 

during building a DTL model. As illustrated in Section 3, although there are several tricks have been 

proposed for avoiding negative transfer, it should be highlighted that negative transfer still needs 

further systematic investigation. One of effective measures to improve the performance of the 

DTL-based IFD model in industrial scenarios is to transfer only the common knowledge that can 

contribute to the target learning task and to avoid negative transfer at the same time. For example, 

developing an accurate “distance” metrics between the domains might be a feasible solution for 

avoiding negative transfer since the existing metrics used in feature-based DTL are not powerful 

enough in developing a perfect transfer learning application. 

(3) Assessing Transferability 

Assessing the transferability across domains in quantitative is another challenging problem 

during developing a DTL-based IFD method in industrial scenario. However, as so far, there is still 

few publications focusing on assessing transferability between the source and target domains 

mathematically. We confident that assessing transferability across domain will be a significantly 

important research trend in the future, which will enhance the performance of the DTL-based 

methods and further boost the application of DTL in industrial scenarios. 
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5.6 Computation and Energy Efficiency 

According to the aforementioned literature survey, it is generally the case that the DTL-based 

IFD methods suffer from the high requirement of computational source and speed. The inefficient and 

large computation in deep model has hindered the successful application of IFD methods in real-time 

data analytics. However, the capability of real-time monitoring is fundamental to PHM systems, 

which can improve the security of machinal systems, identify potential faults as soon as they occur, 

allow for early maintenance, and avoid systems failures. Therefore, the real-time IFD algorithms 

should be encouraged to be investigated to ensure real-time decision-making for monitoring the 

incipient damages or unexpected faults [244]. Techniques, including efficient neural network 

compression, incremental learning and deep reinforcement learning [245], are potential research 

directions to facilitate the real-time ability of DTL based IFD algorithms. 

6 Conclusions 

In this survey article, the theory and strategies of DTL methods have been summarized from the 

algorithm perspective, which gives the basic definitions related to DTL and explain how the TL 

technologies can help improving the performance of DL model. The state-of-the-art applications of 

DTL-based IFD approaches have also been overviewed from the perspective of practical industrial 

applications, in which the four major application scenarios: generalization performance improvement, 

partial domain fault diagnosis, emerging fault detection, and compound fault decoupling, are 

formulated and fully discussed. Thereafter, the suggestions for the selection of DTL algorithms for a 

new IFD project have been detailed, as well as the future challenges and potential trends. This review 

article not only leads readers to easily understand the current state-of-the-art DTL techniques related 

to IFD and to quickly design an effective solution for solving IFD problems in practice, but also 

provides the main challenges facing IFD until it has wide adoption in practical manufacturing 

industry systems, as well as the future research trends, for researchers and scholars. 
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Abstract—Deep Transfer Learning (DTL) is a new paradigm of machine learning, which can not 

only leverage the advantages of Deep Learning (DL) in feature representation, but also benefit from 

the superiority of Transfer Learning (TL) in knowledge transfer. As a result, DTL techniques can 

make DL-based fault diagnosis methods more reliable, robust and applicable, and they have been 

widely developed and investigated in the field of Intelligent Fault Diagnosis (IFD). Although several 

systematic and valuable review articles have been published on the topic of IFD, they summarized 

relevant research only from an algorithm perspective and overlooked practical applications in 

industry scenarios. Furthermore, comprehensive review on DTL-based IFD methods is still lacking. 

From this insight, it is particularly important and more necessary to comprehensively survey the 

relevant publications of DTL-based IFD with the goal of helping readers to conveniently understand 

the current state-of-the-art techniques and to quickly design an effective solution for solving IFD 

problems in practice. First, theoretical backgrounds of DTL are briefly introduced to present how the 

transfer learning techniques can be integrated with deep learning models. Then, major applications of 

DTL and their recent developments in the field of IFD are detailed and discussed. More importantly, 

suggestions on how to select DTL algorithms for IFD in practical applications, and some future 

challenges and research trends are shared. Finally, conclusions of this survey are given. As last, we 

have reason to believe that the works done in this article can provide convenience and inspiration for 

the researchers who want to devote his/her efforts in the progress and advance of IFD. 

 

Keywords—Fault Diagnosis, Deep Learning, Transfer Learning, Domain Adaptation, Deep 

Transfer Learning 
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Abbreviations (Abbr.) 

Abbr. Terminology Abbr. Terminology 

Adagrad Adaptive Gradient IMS Intelligent Maintenance Systems 

Adam Adaptive Moment Estimation JDA Joint Distribution Adaptation 

ADDA Adversarial Discriminative Domain 
Adaptation 

k-NN k-Nearest Neighbors 

AI Artificial Intelligence KL Kullback-Leibler 

ANN Artificial Neural Network LSTM Long short-term memory 

CNs Capsule Networks MMD Maximum Mean Discrepancy 

CWRU Case Western Reserve University MVD Maximum Variance Discrepancy 

CMD Central Moment Discrepancy MAE Mean Absolute Error 

CMS Condition Monitoring System OSDA Open Set Domain Adaptation 

CMMD Conditional Maximum Mean Discrepancy PSO Particle Swarm Optimization 

CNNs Convolutional Neural Networks PK-MMD polynomial kernel induced MMD 

CORAL Correlation Alignment PHM Prognostics and Health Management 

DACN Deep Adversarial Capsule Network RNNs Recurrent Neural Networks 

DADAN Deep Adversarial Domain Adaptation 
Network 

RKHS Reproducing Kernel Hilbert Space 

DBNs Deep Belief Networks RMSE Root Mean Square Error 

DBM Deep Boltzmann Machines SAN Selective Adversarial Network 

DDCNN Deep Decoupling Convolutional Neural 
Network 

SAE Sparse Auto-Encoder 

DL Deep Learning SGD Stochastic Gradient Descent 

DNNs Deep Neural Networks SVM Support Vector Machine 

DTL Deep Transfer Learning TrAdaBoost Transfer Adaptive Boosting 

DANN Domain Adversarial Neural Network TCA Transfer Component Analysis 

GK-MMD Gaussian kernel induced MMD TL Transfer Learning 

GANs Generative Adversarial Networks TCNN Transferable Convolutional Neural 
Network 

GRL Gradient Reversal Layer WATN Weighted Adversarial Transfer Network 

GNNs Graph Neural Networks WCs Working Conditions 

IFD Intelligent Fault Diagnosis WD Wasserstein Distances 

1. Introduction 

Powerfully driven by advanced computing, sensing, measuring and communicating technologies, 

the manufacturing industry is characterized by an irresistible trend from automatic to digital and to 

intelligent, and it has embraced the new era of the fourth industrial revolution (Industry 4.0), whose 

ultimate goal is to make precise self-perception, to enable autonomous decision-making, and to 

realize intelligent networking for machines during the process of manufacturing [1]-[3]. Industrial 

equipment (IE), one of the most crucial carriers for manufacturing industry in such trend and 
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 3 

revolution, has been devoting itself to generating economic benefits such as quality improvement, 

efficiency enhancement, energy conservation and cost reduction. Meanwhile, the IE is typically 

asked to accomplish the herculean tasks that often have harsh operating environment and need 

providing long-term services [4]-[6]. To ensure the safety and reliability of the industrial environment, 

the health status of IE has to be monitored and diagnosed in time, which can reduce equipment 

downtime, formulate scheduled maintenance, increase economic benefits, and avoid tragic 

catastrophes [7], [8]. Because of the complexity and dynamicity associated with the manufacturing 

processes, which inevitably leads to degradation, failure and damage, how to precisely make fault 

diagnosis for IE in time was and remains a great challenge. 

In past decades, more and more attention has been paid to timely and precise IFD from 

academics and industry researchers since it has been listed as a key concern by many governments 

and organizations. Fortunately, owing to the rapid development of Artificial Intelligence (AI) 

technologies, especially in deep learning and transfer learning, abundant intelligent algorithms have 

been developed by researchers and engineers to address various practical problems in industrial 

scenarios, and have also brought successful breakthroughs for intelligent fault diagnosis (IFD) of IE. 

Deep learning, a branch of machine learning in AI, broadly refers to methods that utilize 

hierarchical architectures, such as Deep Neural Networks (DNNs), Deep Belief Networks (DBNs), 

Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs) and Graph Neural 

Networks (GNNs) [9]-[13], to learn higher-level representations from raw inputs which are images of 

pixel data, files of audio data, documents of text data, etc., [14]. On one hand, deep learning 

technology has been proven to be a promising tool in many applications of manufacturing industry 

due to its phenomenal advantages in massive data processing, discriminative feature learning and 

effective pattern recognition, constructing intelligent models by mapping relationships between 

health conditions of IE and industrial data in an end-to-end way [15]-[18]. On the other hand, deep 

learning technology has limitations which inhibit its further progress, advance and application in 

complex real-world scenarios. The ideal and hypothetical application scenarios of deep learning 

present the following characteristics: 

(1) Deep learning requires abundant labeled samples in advance for model training. One of the 

limitations of deep learning methods is that they learn how to perform tasks through 

observations. That is to say, deep learning methods heavily rely on large amounts of labeled 

training data, without which these methods are prone to overfitting and will lack a robust 

generalization performance. 

(2) Deep learning has strict requirements for the distributions between training and testing data. 

If a deep learning model is trained on data that present distributions discrepancy with the 

target data, the performance of the model will decrease dramatically and even will not work. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 4 

Considering the practical applications in many industrial scenarios, however, it is 

time-consuming, labor-intensive and even unrealistic to collect sufficient labeled data, especially 

labeled fault data, because the IE is always kept in a good status with time- or condition-based 

schedule maintenance. More importantly, it is often the case that the IE operates at harsh, varying and 

complex environments, which makes the distributions of the data in future testing situations different 

from that of the data of the pretrained model. 

Transfer learning, another branch of machine learning that focuses on learning common 

knowledge from one or more related but different application scenarios to help AI algorithms to 

obtain more powerful performance in an application scenario of interest, has been demonstrated as a 

promising methodology for helping deep learning to overcome the limitations mentioned above [19]. 

In analogy with the ability of human beings that can leverage only a few examples or previous 

experience to help tackle unforeseeable problems, transfer learning can endow an AI model with 

better learning performance even when training data is sparse and limited, and with robust 

generalization performance from the related but different application scenarios to a new one [20]. 

However, the traditional machine learning approaches might not be able to learn the discriminative 

representations in an effective way, which is a major roadblock for fulfilling the potential of transfer 

learning. 

Combining the advantages of deep learning in feature representation and the benefits of transfer 

learning in knowledge transfer, Deep Transfer Learning (DTL), a new paradigm of machine learning 

developed in recent years, leverages deep learning technology for transfer learning, which can learn 

hidden transferable knowledge and capture complex patterns more effectively [21]. DTL would be 

better preferred in practical application scenarios for manufacturing industry because it can be easier 

integrated with deep learning models that are widely developed for IFD of IE and can make the 

deep-learning-based methods more reliable, robust and accessible [22], [23]. 

The goal of this survey is to offer an in-depth overview of DTL for fault diagnosis in industrial 

scenarios, which can provide a comprehensive guidance for the readers who want to devote his/her 

efforts in the progress and advance of IFD. Historically, several systematic review articles have been 

published on the topic of fault diagnosis. For instance, Jay Lee, the founding director of the National 

Science Foundation Industry/University Cooperative Research Center (NSF I/UCRC) for Intelligent 

Maintenance Systems (IMS), conducted a comprehensive overview for Prognostics and Health 

Management (PHM) of rotary machinery systems from designing PHM methodology to selecting 

appropriate algorithms and to making accurate diagnosis decision, in 2014 [24]. That literature 

review placed much emphasis on the traditional fault diagnosis and prognosis algorithms, which 

cannot reflect the state-of-the-art techniques at present. Chen et al. gave a broad comprehensive 

literature survey of AI algorithms in the fault diagnosis of rotating machinery from the aspect of 
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theory and application, in 2018 [25], which mainly focuses in the following algorithms: k-Nearest 

Neighbors (k-NN), Naive Bayes, Support Vector Machine (SVM), Artificial Neural Network (ANN) 

and Deep Neural Network (DNN). Yan and Gao summarized the deep learning-based research work 

published before 2019 for machine health monitoring [26], in which the popular deep learning models, 

such as Sparse Auto-Encoder (SAE), Deep Belief Network (DBN), Deep Boltzmann Machines 

(DBM), Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN), have been 

systematically reviewed and the corresponding data and codes have been opened for replicating the 

reported results. Lei and Nandi presented a review and roadmap for IFD methods based on machine 

learning [27], in which the development of IFD methods was divided into three periods: the past 

(traditional machine learning), present (deep learning) and future (transfer learning). Besides the 

survey articles mentioned above, there are some other related articles which focus on the deep 

learning-based [28], transfer learning-based [29], convolutional neural network-based [30], [31], 

AI-Enabled-based [32] or special components-based [33]-[35] methods for machine fault diagnosis, 

which will not be enumerated here in detail. Admittedly, as the valuable and systematic scholarly 

sources on the IFD, these literature reviews have contributed to the development of fault diagnosis 

from many aspects and guided the researchers towards a clearer future direction [36], [37]. 

Nevertheless, there are still some aspects that have not yet been comprehensively summarized by the 

previous literature articles: 

(1) The historical reviews mainly concerned IFD on either traditional machine learning, deep 

learning or transfer learning. As a new promising tool to solve the problems faced by the 

engineer and researcher in the real industrial scenarios, there is still a lack of systematic 

review on DTL-based IFD methods.  

(2) Throughout the above discussion, it is clear that almost all the reviews categorized the 

relevant research from the perspective of algorithm and analytic technology, resulting in the 

difficulty to select appropriate algorithms for engineers in specific industrial applications. 

Therefore, it is particularly important and more necessary to overview the relevant publications of 

DTL with the goal of helping readers to conveniently understand the current state-of-the-art 

techniques related to IFD and to quickly design an effective solution for some challenges in practice. 

To overcome the limitation forementioned, this review article attempts to provide a 

comprehensive survey on DTL for fault diagnosis in industrial scenarios. First, different from the 

existing review articles which mainly focused on the IFD methods using either traditional machine 

learning, deep learning or transfer learning, this review article aims at focusing on the IFD methods 

using the new paradigm of machine learning, i.e., DTL. Second, in contrast to the existing review 

articles summarized the related publications from the algorithm perspective, this review article 

categorizes the DTL-based IFD methods from the perspective of practical industrial scenarios, which 
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could provide suggestions to select appropriate algorithms for engineers in specific industrial 

applications. Last, the existing review articles mainly covered the related publication before 2020. It 

is the fact that there are many new articles have been published in recent years since the IFD have 

attracted lots of attentions from both academics and industry researchers, but, by contrast, this review 

article has included most of the state-of-the-art DTL techniques before it summitted to the Journal. 

The main contributions of this article are outlined as the following three aspects: 

(1) Basic concepts and theories of DTL are introduced, including instance-based DTL, 

model-based DTL and feature-based DTL, which can present a comprehensive overview 

about the DTL from the algorithm perspective.  

(2) Applications of DTL approaches are summarized into four categories from the perspective of 

practical industrial scenarios, and each category in IFD are detailed, which would be 

instructive for engineers in specific industrial applications to select the appropriate 

algorithms. 

(3) Future challenges and potential directions of DTL for IFD are concluded, attempting to 

provide new insights on the future works for potential newcomers and seasoned researchers. 

 
Fig. 1.  Flow chart showing the overall logic of this literature review 

 
As show in Fig. 1, the rest of this review article is organized as follows. In Section 2, the 

theoretical backgrounds of DTL, including basic definition of DTL and three categories of DTL, are 

briefly introduced to present how the transfer learning techniques can be integrated with deep 

learning models. Section 3 details the major applications of DTL and its recent developments in the 

field of IFD from the perspective of practical industrial scenarios, in which four application scenarios 

are formulated according to the task of fault classification. More importantly, suggestions that on how 
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to select DTL algorithms for IFD in practical industrial applications and some future challenges are 

shared in Section 4 and 5, respectively. Finally, the conclusions of this survey are given in Section 6. 

2. Theoretical Backgrounds of DTL 

In this section, the basic definitions related to DTL are firstly introduced for convenience. The 

theories of DTL that explain how the transfer learning technologies can leverage the powerful 

representation ability of deep learning to extract and transfer knowledge, are summarized from the 

perspective of algorithm to allow readers understand the mechanisms and strategies of DTL 

approaches. 

2.1 Basic Definitions of DTL 

According to the book of Transfer Learning [38], some basic definitions related to this survey, 

such as Domain, Task and Transfer Learning, are listed as follows: 

Domain, denoted as { , ( )}P= X  , consists of two components: a feature space   and a 

marginal probability distribution ( )P X , where { | 1, , }
i

i N= ∈ = ，X x x    is a dataset that 

contains N instances. Generally, different domains are defined based on the fact that there are 

different feature spaces or different marginal probability distributions between these domains. In the 

scenarios of machinery fault diagnosis, different working conditions (WCs), locations and machines 

can be regarded as different domains. 

Task, denoted as { , ( )}f=    when giving a specific domain  , consists of two components: 

a label space   and a mapping function ( )f  , where { | 1, , }
i

i N= ∈ = ，Y y y    is a label set for 

the corresponding instances in  . The mapping function ( )f  , also denoted as ( ) ( | )f P= yx x , is a 

non-linear and implicit function that can bridge the relationship between the input instance and the 

predicted decision, which is expectedly learned from the given datasets. Similarly, different tasks are 

defined as there are different label spaces between these tasks. Different fault classes and types can be 

regarded as different tasks. 

Transfer Learning, given a source domain { , ( )}S S S SP= X   with the source task 

{ , ( )}S S Sf=    and a target domain { , ( )}T T T TP= X   with the target task { , ( )}T T Tf=   , 

aims to learn a better mapping function ( )Tf   for the target task T  with the transferable knowledge 

gained from the source domain S  and task S . Contrary to the tradition machine learning and deep 

learning in which the domain and task between the source and target scenarios are identical (that is, 
S T=   and S T=  ), the transfer learning counters the problems where the domain and/or the 

task between the source and the target scenarios could be different (i.e., S T≠   and/or S T≠  ). 
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Based on the definition mentioned above, a definition of deep transfer learning can be 

formulated as: Given a transfer learning task ( ) :S T T Tf → → X Y  based on [ S , T , S , T ], 

deep transfer learning aims to learn the mapping function ( )S Tf →
  by leveraging the powerful deep 

learning model, that is, deep neural networks, in which the transfer learning technique and the deep 

learning model can be integrated to a more robust AI method. 

2.2 Categorization of DTL 

Fig. 2 shows a typical concept of DTL process that is capable of transferring the valuable 

knowledge by further exploiting the representation learning ability of deep neural networks. The 

literature on deep learning or transfer learning has gone through a considerable number of iterative 

updates. In contrast, few literatures focus on deep transfer learning as a new emerging technique. 

There is no mutual consensus on how to classify the categorization of DTL. According to the survey 

published by Tan et al. [21], the DTL approaches have been divided into four categories, that is, 

instances-based, mapping-based, network-based and adversarial-based DTL. However, these types of 

DTL approaches are associated and inter-related with each other, which makes it difficult to be 

well-categorized. 

 
Fig. 3.  Categorization of DTL 

In this survey, from a viewpoint of the mechanism with which the deep learning model bridge 

the generalization errors between target and source domains by leveraging the transfer learning 

 
Fig. 2.  An illustration of DTL 
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techniques, the DTL approaches are divided into three groups: instance-based, model-based and 

feature-based DTL. The categorization of DTL is illustrated in Fig. 3. Instance-based DTL 

approaches are typically based on instance select or re-weight strategies. Model-based DTL 

approaches mainly share the neural network structure and parameters between target and source 

domains. Feature-based DTL approaches share or learn the common feature representation between 

target and source domain. In the following parts of this section, the theorical backgrounds of each 

category of DTL will be introduced from the perspective of algorithm in detail. 

2.2.1 Instance-based DTL 

Instance-Based DTL aims to train a more precise deep model under a transfer scenario where the 

difference between source and target domains/tasks only comes from either the different marginal 

probability distribution, i.e., ( ) ( )S S T TP P≠X X , or the conditional probability distribution, i.e., 

( ) ( )S S S T T TP P≠Y | X Y | X , which also assumes that the labeled instances in the target domain are 

too limited to train a satisfied diagnosis model. An intuitive motivation behind instance-based DTL 

approaches is that directly merging the source data into the target data might deteriorate the 

performance of the target deep model and result in a negative transfer during the model training 

because some labeled instances in the source domain are significantly different from the target 

domain ones. Inspired by such motivation, the goal of the instance-based DTL approaches is to single 

out the instances in the source domain that are positive for target model training and to augment the 

target data by adapting the instance weighting strategies. A promising solution in terms of deep 

learning models is to automatically learn the instances weights of the source domain in the objective 

function. The general objective function of an instance-based DTL task can be formulated as 

 ( ) ( )*

1

1 ( ), ( ),ω
=

= +∑  x X Y
SN

S S S
i i iS

i
f y f

C
 (1) 

where 
i

ω  is the weighting coefficient of the corresponding source instance, 
1

SNS
ii

C ω
=

= ∑ , S  

represents the risk function of selecting the source instance, and *  denotes the second risk function 

related to the target task or the parameter regularization. The theoretical value of 
i

ω  is defined as the 

ratio of the marginal probability distributions between the target domain and the source domain at the 

input instance 
i

x  

 ( ) ( ).ω = x xT S
i i iP P  (2) 

However, it is well known that such ratio is difficult to be directly computed with the marginal 

probability distribution. In this way, many effective methods have been developed to approximately 

estimate the aforementioned ratio bypassing the estimation step of the marginal probability 

distribution. 
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From the perspective of deep model training, the instance-based DTL can be further divided into 

the following two subcategories by considering whether the labeled instances are available in the 

target domain: the weight-estimation and the heuristic-reweighting method. 

The weight-estimation method, which mainly focuses on the situation where there is a lack of 

labeled instances in target domain, convers the instance transfer problem into a weight estimation 

problem by leveraging the kernel embedding techniques. For instance, based on the theory of 

Maximum Mean Discrepancy (MMD) between distributions, the weights of source instances can be 

estimated by matching the means between the reweighted sources instances and the target instances 

in a Reproducing Kernel Hilbert Space (RKHS) [39], which can be obtained by optimizing the 

following objective 

 
( ) ( )

2

1 1

1

1 1arg min

1s.t. 0,  1

ω

ω ω ε

= =

=

Φ − Φ

≥ − ≤

∑ ∑

∑

x x
S T

S

N N
S S T T

i i jS T
i j

N

i iS
i

C N

C


ω

 (3) 

where ε  denotes a positive real number. There are some other tricks to estimate the weights by 

utilizing the Kullback-Leibler (KL) divergence [40]. With the weight of each source instance being 

estimated, Eq. 3 can be integrated into the objective function of the target task to learn a deep model. 

It is worth mentioning that the weight estimation of the source instances can be integrated into the 

training process of the deep model. 

The heuristic-reweighting method, which is suitable for implementing the DTL task when some 

labeled instances are available in the target domain, aims to identify negative source instances by 

using instance reweighting strategies in a heuristic way. One of the most popular instance reweighting 

strategies is the Transfer Adaptive Boosting (TrAdaBoost) algorithm proposed by Dai et al. [41], in 

which the different weighting strategies are applied for the labeled instances in the source-domain 

and the target-domain to reduce the impact of negative source instances. Similar to the boosting-style 

algorithms, the weights of the source instances and the target instance can be updated through a lot of 

iterations, whose updating strategies are described as 

 ( ) ( )( ),

1 2 ln / ( )
S S S

i if y
S S S S T
i i

N N Nω ω
−

= + +
 x

 (4) 

 
( ) ( )

( )

( ),

1 1

/ (1 )

( ),

T T T
j j

T T

f yT T
j j

N N
T T T T T
j j j j

j j

f y

ω ω ε ε

ε ω ω

−

= =

 = −


=


∑ ∑





x

x
 (5) 

where [1, , ]Si N=  , [1, , ]Tj N=  , and ε  denotes the mean loss of all target domain instances. It 

should be highlighted here that each iteration will learn a new weak deep model, and therefore 
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ensemble techniques are used to form a final classifier by integrating all weak deep models. Besides 

the TrAdaBoost algorithm and its variations, the other heuristic-reweighting methods make full use 

of not only the labeled instances in the source and the target domain but also the unlabeled instances 

in the target domain. An intuitive solution of these methods is to decompose the objective function 

into three parts: 

 
( ) ( )

( )

( )

( )

( ) ( ) ( )

( )
1 1

( ) ( ) ( )

( )
1

1 1
( ), ( ),

1
ˆ( ),

S T L

T U

N N
S S S T L T L T L

i i i j jS T L
i j

N
T U T U T U

k k kT U
k

f y f y
C C

f
C

ω

γ

= =

=

= +

+

∑ ∑

∑ y

  



x x

x
 (6) 

where the superscript of S , ( )T L  and ( )T U  denotes the labeled source, the labeled target and the 

unlabeled target, respectively. 
1

SNS
ii

C ω
=

= ∑ , ( ) ( )T L T LC N= , 
( )

( )

1

T UNT U
kk

C γ
=

= ∑ , 
k
γ  denotes the 

weight for the unlabeled target instance, and ( ) ( )ˆ ( )T U T T U
k k

P y=y | x  is the true conditional 

distributions of the unlabeled target instances. Generally, the optimal values of 
i

ω , 
k
γ  and ( )ˆT U

k
y  are 

unknown for computing these loss terms. Therefore, several techniques can be used during the deep 

model training to learn these parameters in a heuristic way. The typical procedure can be concluded 

as the following steps: 

(1) An auxiliary classifier is firstly trained on the labeled target instances and then used to 

classify the labeled source and the unlabeled target instances to obtain the predicted 

probability of each instance. 

(2) The labeled source and the unlabeled target instances are ranked based on its predicted 

probability, respectively. 

(3) The 
i

ω  of top n instances from the labeled source domain that are incorrectly predicted by the 

auxiliary classifier are set to zero, and the weights of others are set to one. 

(4) The top n instances from the unlabeled target domain that have the highest prediction 

confidence are selected, for which the 
k
γ  is set to one and the ( )ˆT U

k
y  is assigned to a pseudo 

label according to its predicted probability. Additionally, for all other instances from the 

unlabeled target domain, 
k
γ =0. 

With the steps mentioned above, the whole loss can be calculated with the objective function 

presented in Eq. 6. Note that the selected labeled source and the unlabeled target instances can be 

used to train the auxiliary classifier again in the next iteration. 

2.2.2 Model-based DTL 

Model-Based DTL focuses on the transfer assumption that the tasks between the source and the 

target domains share some common knowledge in the model level, which means that the transferable 
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knowledge is well embedded into a pretrained source deep model whose structure and parameters are 

general and helpful for learning a powerful target model. The goal of model-based DTL approaches is 

to exploit which part of the deep learning model pretrained in the source domain can help improving 

the model learning process for the target domain. Model-based DTL algorithms are based on the 

assumption that some labeled instances in the target domain should be available during the target 

model training. According to the way of training of the target deep model, the model-based DTL can 

be further divided into two subcategories: sequential training and joint training. 

Sequential training establishes the target deep model by pretraining a deep learning model on 

auxiliary domains which have much richer and larger labeled instances and then fine-tuning the 

well-trained source model on the target domain which often lacks sufficient labeled instances. 

Specifically, sequential training-based DTL approaches typically contains two stages. In the first 

stage, i.e., the pretraining on auxiliary domains, a well-trained source model ( ; )S Sθ  has been 

learned from the source data, which can be defined as 

 ( )( ; ) arg min ( ; ),θ θ=  X YS S S S S S Sf  (7) 

where 
1

{ }
SS S L

i i
θ θ ==  is the model parameter set of the pretrained source model, SL  denotes the layer 

number of the source model, S  denotes the risk function for the source task. In the second stage, 

that is, the fine-tuning on the target domain, the target deep model ( ; )T Tθ  can be obtained by 

freezing some components of the well-trained source model and fine-tuning the rest components with 

the target domain data, or by reusing all the parameters of the well-trained source model to initialize 

the target deep model and retraining the whole target model with the target domain data. The 

processes of this stage can be formulated as 

 ( )
*

( ; ) arg min ( ; ),
s.t.   initialized/frozen with 

θ θ
θ θ

=  X YT T T T T T T

T
f  (8) 

where * { , [1, , ]}S S
i

i Lθ θ= ∈   is a subset of Sθ  learned in the first stage, Tθ  denotes the model 

parameter set expectedly learned in the second stage, T  denotes the risk function for the target task. 

It is worth mentioning that the higher-level layers are prone to learn the task-specific representations 

and the lower-level layers are able to capture general representations in a deep learning model. 

Therefore, it is a classical fine-tuning strategy to freeze n lower-level layers learned from auxiliary 

domains and retrain the higher-level layer with limited target domain data. 

Joint training tries to implement the source and the target tasks simultaneously. Different from 

the multi-task learning approaches which equally optimize the performance over all tasks, joint 

training-based DTL approaches focus on improving the performance of the target task by leveraging 

common knowledge from the source task. More specifically, there are two ways to joint training 
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target task with source task. The first one is hard parameter sharing which shares the hidden layers 

directly while keeping the task-specific layers independently. The second one is soft parameter 

sharing which simply change the weight coefficient for the source and the target tasks or add 

regularization terms in the risk function. The processes of the soft parameter sharing can be defined as 

 
( ) ( )
( )

( ; ) argmin[ ( ; ), ( ; ),

            ( , ; , ) ]

T T S S S S S T T T T T

R S T S T

f f

f

θ α θ β θ

γ θ θ

= +

+

  



X Y X Y

X X
 (9) 

where S , T  and R  are the risk functions of the source task, the target task and regularization 

terms, respectively; and α , β  and γ  are the weight coefficients for the corresponding task. 

2.2.3 Feature-based DTL 

Feature-Based DTL endows deep models with the ability to transfer knowledge by learning the 

common representations in the feature space level, rather than in the instances or the model level, 

which further relaxes the assumption in the instance-based DTL transfer learning scenario to allow 

the differences of feature spaces to exist in the source and target domains. An intuitive solution 

behind feature-based DTL approaches is to learn the mapping function as a bridge to convert the raw 

data in source and target domains from the different feature spaces to a common latent feature space, 

where the difference between domains can be reduced and the deep feature representations that are 

discriminative for the main learning task and indiscriminate with respect to the shift between different 

domains can be obtained. With these good representations, the performance of deep models can be 

significantly improved in accomplishing the target task. 

From a broader perspective, feature-based DTL approaches intuitively covers two transfer styles 

without or with adaptation to target domain. The approaches without adaptation firstly extract the 

lower-level representations by using a pretrained source model, and then directly take the extracted 

representations as inputs for the target model, which are suitable and effective only when the target 

domain is closely related to the source domain. The approaches with adaptation adapt the feature 

representations across different domains through domain adaptation techniques, which can obtain a 

well performing model even if there is a shift or gap between source and target domains. Since the 

approaches without adaptation are easily implemented and their assumption may be too strong to be 

satisfied in most practical transfer scenarios, the following part mainly focus on the approaches with 

adaptation. 

A crucial problem of feature-based DTL with domain adaptation in learning domain invariant 

features is how to estimate and learn representation invariance between source and target domains. 

The ways of constructing representation invariance measures generally include three strategies: 

leveraging criterions based on the discrepancy to the reduce difference of distribution, adding domain 

discriminative architectures to encourage the domain confusion through the adversarial mechanism, 
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and combining the data reconstruction as an auxiliary task to help improving representations 

invariance. Therefore, the feature-based DTL with domain adaptation approaches can be further 

summarized into the following three subcategories. 

The first subcategory is discrepancy-based domain adaptation, which aims to align the feature 

distribution shift and to improve the ability of learning transferable representations by reducing the 

discrepancy based on distance metrics or criterions defined between corresponding-level 

representations of the given source and target domains. The criterions that are proven to be successful 

for discrepancy-based domain adaptation include MMD [39], KL divergence [40], multiple kernels 

MMD (MK-MMD) [42], Correlation Alignment (CORAL) [43] and Wasserstein Distances (WD, 

also known as Earth-Mover distance) [44], among others. Taking the most commonly one, MMD, as 

an example, and given two domain representations Sh  (source) and Th  (target), the criterion based 

on MMD can be empirically estimated as follows: 

 
2

1 1

1 1( , ) ( ) ( )ϕ ϕ
= =

= −∑ ∑h h h h
S TN N

S T S T
i j

i jS T

MMD
N N



 (10) 

Another common criterion is the Wasserstein Distances. The criterion based on the WD can be expressed as: 

 ( ) ( ), ~ ~ ~
1

inf sup S TS T
L

S T

f
WD f fγγ∈Γ ≤

 = − = −       ( , )
( , ) ( ) ( )x y x h x hh h
h h x y x x    (11) 

The more details about WD can be found in [44]. 

In the process of model training, the deep neural network can be optimized by minimizing the 

classification loss on the labeled instance, ( , )
C L L
 X Y , while the domain invariant representations 

are measured by one/multiple adaptation layer(s) with such criterion. The objective function of 

discrepancy-based domain adaptation is formulated as 

 
1

( , ) ( , )λ
=

= +∑  X Y h h
AL

S T
C L L i i i

i
MMD  (12) 

where AL  denotes the number of adaptation layers and the coefficient 
i
λ  is a penalty parameter for 

the i-th adaptation layer. 

The second subcategory is the adversarial-based domain adaptation, which is inspired by the 

Generative Adversarial Networks (GANs) [45] and seeks to endow the deep neural network with the 

ability of learning domain-invariant representations. The GAN is typically composed of two 

components, that is, a generator (G) that generates fake data from noise and a discriminator (D) that 

distinguishes whether an instance is real or generated, which can be optimized by iteratively training 

D to maximize correct assignment of (real, fake) labels and training G to minimize the differences of 

real and generated data to confuse the discriminator: 

 ( ) ( )
minmax ( , ) [log ( )] [log(1 ( ( )))]

data zP PG D
D G D D G= + −

 

 x x z zx z   (13) 
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In adversarial-based domain adaptation, such adversarial mechanism has been introduced into 

the deep neural network to ensure that the characteristics resulting from the difference of diverse 

domains cannot be distinguished. In light of whether to generate synthetic data, the historical 

adversarial-based domain adaptation approaches can be summarized as generative or non-generative 

adaptation model. 

The generative adaptation model focuses on generating new data that are similar to the real data 

of the target domain by directly using GANs. More specifically, in the generative adaptation model, 

the generator ( )SG x , z  generates an adapted instance Gx  taking a source instance Sx and a noise 

vector z  as inputs, and the discriminator tries to distinguish between the generated instances Gx  

(fake) and the target instances Tx  (real). It is worth noting that, in contrast to the standard GANs in 

which the input of the generator is only a noise vector, the generative adaptation model’s generator 

takes both a noise vector and a source instance as inputs. The generative adaptation model and its 

variants could be divided into two types from the perspective of neural network structure. The first 

one has two stages during model training: (1) generates the synthetic instances to augment the 

training dataset; (2) trains an extra classifier with both real and generated instances. The second one is 

usually augmented with a task-specific classifier (T) apart from the G and D, such that the goal of the 

generative adaptation model is to alternatively optimize the following minimax objective: 

 ,
min max ( , , ) ( , ) ( , )α β= +  adv taskG T D

G D T G D G T  (14) 

where α  and β  are coefficients of the corresponding loss, 
adv
  and 

task
  denotes the adversarial 

loss and task loss, respectively. 

The non-generative adaptation model pays more attention to learn the domain-invariant 

representations, rather than generating new data, by introducing the minimax loss or the 

domain-confusion loss into the deep model which typically consists of three parts: the feature 

extractor (instead of the generator), the domain discriminator and the task-specific classifier. One of 

the promising solutions in implementing the non-generative adaptation is to introduce a special 

Gradient Reversal Layer (GRL) between the feature extractor and the domain discriminator, which 

first was introduced in the Domain Adversarial Neural Network (DANN) [46]. DANN ensures that 

the representations learned from different domains are as closer as possible by maximizing the 

domain confusion loss through the GRL. The GRL function as an identity transformation during the 

forward propagation, while during the backward propagation it receives the gradient from the 

subsequent layer and reverses the sign of the gradient before delivering to the preceding layer:  

 
( )        forward propagation

-       backward propagationα

=



=

，

，

h h

I
h

GRL
dGRL  (15) 
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With such GRL, the parameters of the feature extractor and the domain discriminator can be 

globally optimized and simultaneously updated. Another promising solution is to splits the 

optimization into two independent objectives: the parameter of the feature extractor 
FE
θ  and the 

parameter of the domain discriminator 
D
θ , and to perform iterative updates for the two objectives 

given the fixed parameters from the previous iteration: 

 ( )min ( , , ; ) ,
θ

θ θ = − x x h
D

S T D
D FE D D Dy  (16) 

 ( )min ( , , ; )
θ

θ θ = − x x h
FE

S T conf
conf D FE D  (17) 

where ( ( ; ); )
D FE D

D FE θ θ=h x  denotes the output of the domain discriminator, D  is the risk 

function for the domain classification where the Cross-entropy loss function is commonly used, and 
conf  is the risk function for the domain confusion where the probability density function of a 

uniform distribution is adapted based on the cross entropy between the predicted domain labels. Thus, 

the deep model can be optimized by adversarial training through minimizing the Eq. 15 only for 

updating 
D
θ  and minimizing the Eq. 16 for updating 

FE
θ , which can ensure that the learned 

representations is domain invariant. 

The third subcategory is the reconstruction-based domain adaptation, which combines the 

auto-encoder neural networks with a task-specific classifier to jointly optimize a private encoder that 

captures domain-specific representations and a shared encoder that learns common representations 

between the domains. The reconstruction-based domain adaptation model integrates a shared decoder 

which learns to reconstruct the input instances with a reconstruction loss by taking both the private 

and the common representations as inputs. The reconstruction losses that have widely used in DTL 

are the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE). The task-specific 

classifier is trained on the common representations learned by the shared encoder, which will be able 

to generalize across domains better since its inputs have been separated from the representations that 

are special to each domain. 

Note that, besides the categories of DTL mentioned above, there exist many hybrid methods to 

build a DTL model using several of the aforementioned techniques simultaneously. The core idea of 

the hybrid methods is that the domain-invariant knowledge between source and target domain can be 

learned in any two or more of the levels, that is the instance-, model- and feature-level. Since the main 

definitions and theories of hybrid methods are almost the same with those mentioned above, this 

survey will not enumerate them in detail. 

3 Formulations and Applications of DTL for Fault Diagnosis in Industrial Scenario 

In the past few years, scientific researchers and engineers from both academic and industrial 
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communities have already brought many impressive achievements and successful real-world 

application across a lot of DTL algorithms in implementing complex tasks. Examples include object 

recognition and detection based on image data collected in different conditions [47], speech 

recognition based on audio data sampled from different speakers [48], text classification and 

translation based on document data written in different languages [49], etc. Compared to the vast 

literature focused on the application in the field of computer vision and natural language processing, 

few surveys focus on the relative developments of DTL in industrial scenarios for the task of fault 

diagnosis. Therefore, in this section, the literature historically published in addressing the fault 

diagnosis problems with the DTL approaches is systematically reviewed, including the problem 

formulation of DTL for fault diagnosis in industrial scenarios and its main applications of each 

scenario. 

3.1 Problem Formulation of DTL for Fault Diagnosis 

Within industrial scenarios, there exist many exact problems that have attracted considerable 

attentions and much emphasis has been placed on solving such problems. Understanding what type of 

problems have been faced with IFD and how to solve them is of great significance for researchers and 

engineers to correctly understand the reasons we survey this topic from the perspective of practical 

industrial scenarios, and to formulate the pattern of the DTL for fault diagnosis. 

In the phase of current manufacturing industry, the major problems encountered in applying 

intelligent methods for machines are summarized as follows: 

(1) The deep models learned from the given training data are not robust enough to be generalized 

from one application to a new or similar one, so it is difficult to deal with the uncertainty 

caused by the varying environment during machines working. For instance, the WCs of 

machines are various during long-term operation, and the health status is also declining with 

the degradation of crucial components. However, the generalization performance of deep 

models is insufficient in the face of changeable WCs and diversified data. 

(2) Considering the fast upgrading and updating of the manufacturing products, the deep models 

also require periodic updates for the performance improvement. However, it is hard to collect 

and annotate the training data from scratch for the application of new products while reusing 

the labeled historical data collected and accumulated from the old products is relatively easy. 

(3) The deep models learn how to make a fault diagnosis through the observations of given 

labeled data, so they encounter difficulties to recognize unknown patterns or faults. In order 

to step into the real industrial applications, it is a significant function that the fault diagnosis 

models can automatically detect a new anomaly since the unseen faults inevitably occur 

during the long-term services of the complex mechanical equipment. 
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(4) The vast majority of researchers and engineers are concerned about the improvement of 

precision and accuracy for classifying the different faults. The compound fault, as a primary 

failure leading to expensive maintenance costs and tragic catastrophes in industrial scenarios, 

often emerges and evolves when multiple crucial components are simultaneously degraded 

or even broken. However, few time and effort have been paid to investigate the task of 

decoupling compound faults in an intelligent manner. 

Aiming at solving the four problems mentioned above, the industrial application of DTL can be 

defined as four scenarios: generalization performance improvement, partial domain fault diagnosis, 

emerging fault detection, and compound fault decoupling, respectively. As descripted in the previous 

section and shown in Fig. 4, given a DTL task defined by ( ) :S T T Tf → → X Y  based on [ S , T , 

S , T ], the four application scenarios can be formulated from the perspective of fault 

classification as follows: 

Generalization performance improvement: In this scenario, the label space of target domain is 

identical with the label space of the source domain, that is, T S≡  , which imposes strict restriction 

on the fault types of domains and mainly focuses on improving the generalization performance of 

DTL model under varying environments. Such scenario is called as generalization performance 

improvement. 

Partial domain fault diagnosis: In this scenario, the label space of target domain is a proper 

subset of the label space of the source domain, that is, T S⊂  , which relaxes the same label space 

  
(a) (b) 

  
(c) (d) 

Fig. 4.  Illustration of the four application scenarios for DTL (a) Generalization Performance Improvement, (b) Partial 
Domain Fault Diagnosis, (c) Emerging Fault Detection, (d) Compound Fault Decoupling 
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requirement and mainly focuses on transferring knowledge from a large-scale but redundant source 

domain to an unknown small-scale target domain. Such scenario is referred to as partial domain fault 

diagnosis. 

Emerging fault detection: In this scenario, the label space of the target domain is a proper 

superset of the label space of the source domain, that is, T S⊃  , which also relaxes the assumption 

on the same label space and mainly focuses on detecting the new faults that never exist in the source 

domain. Such scenario is known as emerging fault detection. 

Compound fault decoupling: In this scenario, the label space of the target domain is different 

from the label space of the source domain, but each fault in target domain is coupled by multiple 

single faults in the source domain. More specifically, a fault in the target domain T
i

y  is a compound 

fault which is coupled by two or more single faults in the source domain & &S S
j k

y y . Such 

scenario is defined as compound fault decoupling. 

 
Fig. 5.  Illustration of the motivation behind the scenario of generalization performance improvement 

3.2 Generalization Performance Improvement 

3.2.1 Motivations and goals 

As illustrated in Fig. 5, the motivation behind this scenario is that, in the real-world application, 

if the common knowledge, which does not contain the uncertainty information caused by varying 

environments, can be learned with limited source data for a specific task, a deep model with 

satisfactory generalization performance can be obtained for the same task even when it faces a new 

environment. Thus, as depicted in Fig. 4 (a), the ultimate goal in this scenario is to learn a robust deep 

model that should be able to implement the objective task under varying environments. Table I 

concludes the current solutions using the DTL-based fault diagnosis approaches for the 

generalization performance improvement from three application scenarios, that is varying WCs, 

across different machines, and other scenarios. 
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3.2.2 Solutions for varying WCs 

One of the main factors leading to distribution shift between training and testing data is that the 

WCs of IE are complex as the frequently changing of speeds, loads or operations. Therefore, in this 

case, a lot of solutions based on DTL have been investigated for enhancing the generalization 

TABLE I Solutions for Generalization Performance Improvement 

Application 
Scenarios 

Categorization 
of DTL References Common algorithms 

used 
Varying 
Working 

Conditions 

Instance-based Zhang et al. [50] , Shen et al. [51], Song et al. [52], Pan et al. 
[53] 

Weight-estimation 
with MVD/MMD, 

Heuristic-reweighting 
with pseudo-label, 

TrAdaBoost 
Model-based Shao et al. [54], Zhou et al. [55], Lu et al. [56], Zhang et al. 

[57], Hasan et al. [58], [59], Han et al. [60], He et al. [61], 
[62], Zhao et al. [63], Du et al. [64], Chen et al. [65], Li et al. 
[66], Wang et al. [67], Shao et al. [68], Cao et al. [69] 

Sequential training 
(DL+Fine-tune),  

Joint training (Y-Net) 

Feature-based Lu et al. [70], Li et al. [71], Tong et al. [72], [73] Zhang et 
al. [74], Xiao et al. [75], An et al. [76], Li et al. [77], 
Azamfar et al. [78], [79], Zhang et al. [80], Zhu et al. [81], 
Singh et al. [82], Li et al. [83], Han et al. [84], [85], Wei et 
al. [86], Wang et al. [87], Shen et al. [88], Li et al. [89], Wu 
et al. [90], Yang et al. [91], Qian et al. [92], [93], Wang et al. 
[94], An et al. [95], Xiong et al. [96], Li et al. [97], Bao et al. 
[98], Xu et al. [99] Huang et al. [100] 

Discrepancy-based 
(MMD, CMMD, 

MK-MMD, 
KL Divergence, 

CORAL, CMD, MCD) 

Li et al. [101], Zheng et al. [102], Liang et al. [103], [104], 
Tao et al. [105], Shao et al. [106], Guo et al. [107], Shi et al. 
[108], Han et al. [109], Jiao et al. [110], Shao et al. [111], 
Chai et al. [112], Chen et al. [113], Li et al. [114], Mao et al. 
[115], Liu et al. [116], Li et al. [117], [118], Zhang et al. 
[119], Li et al. [120], Zhang et al. [121], Jiao et al. [122], 
[123], Cheng et al. [124], Wang et al. [125], Zou et al. [126], 
Han et al. [127], Wang et al. [128], Yu et al. [129], She et al. 
[130], Ragab et al. [131], Liao et al. [132] 

Adversarial-based 
(GAN, DATN, 

DANN, GRL, ADDA, 
W-GAN) 

Pang et al. [133], Liu et al. [134], [135], Wen et al. [136], 
Wan et al. [137], Tang et al. [138] 

Reconstruction-based 
(SAE+TL) 

Across 
Different 
Machines 

Instance-based Zheng et al. [144], Yang et al. [145], Wu et al. [146] Instance-based 
discriminative loss 

Model-based Wang et al. [147], Shao et al. [148], Li et al. [149], He et al. 
[150], Chen et al. [151] 

VGG-19/SAE+Fine-tu
ne 

Feature-based Guo et al. [152], Yang et al. [139], [153], Li et al. [154], Wu 
et al. [155], Zheng et al. [156], Lv et al. [157], Zhao et al. 
[158], Li et al. [159], Tan et al. [160], Chen et al. [161], 
Zhang et al. [162], [163], [164] 

Discrepancy-based 
(MMD, PK-MMD, 

MCD, Mutual 
information) 

Wang, et al. [165], Feng et al. [166], Zhu et al. [167], Liao et 
al. [168] 

Adversarial-based 
(GAN, DATN) 

Lu. et al. [169] Reconstruction-based 
(SAE+MMD) 

Others 
(Imbalanced 

instances, 
Across 

sensors, etc.) 

Instance-based Xiao, et al. [170] TrAdaBoost 
Model-based Li et al. [171], Kim et al. [172], He, et al. [173] CNN/SAE+Fine-tune 
Feature-based Zhang et al. [174], Zou et al. [175], Zhang et al. [176], Li et 

al. [177], Zareapoor et al. [178], Zhang et al. [179], Li et al. 
[180], Li et al. [181], Siahpour et al. [182], Pandhare et al. 
[183], Qin et al. [184], Wu et al. [185]  

GAN and its variants, 
DANN, One-shot 

learning, Unsupervised 
parallel data alignment 
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performance of deep models which can effectively deal with the uncertainty caused by varying WCs 

during the long-term services of machines. 

Instance-based DTL solutions: Combining the maximum variance discrepancy (MVD) and the 

maximum mean discrepancy (MMD), Zhang et al. [50] proposed a weight-estimation method for 

bearing fault diagnosis to calculate the adaptation matrix between the source and target instances, 

which is used to reweight and down-weight the source instances that are negative for the target model 

training. As the most popular instance reweighting strategy, the fast TrAdaBoost algorithm was 

introduced by Shen et al. [51] as an instance reweighting strategy that can weaken the weight of the 

low-quality instances and enhance the weight of high-quality instances through iteratively update, 

which successfully employed to enhance the generalization performance for the fault diagnosis 

model of a gearbox operating under varying working conditions. Song et al. [52] proposed a 

retraining strategy-based domain adaption network (DAN-R) for IFD, which annotates the unlabeled 

instances in the target domain with pseudo-labels and then retrains the classification network using 

both training instances and pseudo-labeled testing instances. According to these instance-based DTL 

solutions [50]-[53], it can be found that instances-based approaches are effective and applicable for 

the application scenario of varying WCs. However, the performance of these methods discussed 

above are depended to some extent on the number or the quality of target instances, and they may 

have difficulty to tackle the problems in more challenging but complex scenarios which have 

significant discrepancy between source and target domain. 

Model-based DTL solutions: One of the major model-based DTL solutions for varying WCs is 

to pretrain a deep model (such as VGG-16 [54], VGG-19 [55] and AlexNet [56]) on source WCs and 

sequentially fine-tune it using the labeled instances in the target working condition [57]-[68]. For 

instance, Han et al. [60] finetuned a well-trained CNN with three transfer learning strategies at 

different levels of the CNN architecture: (1) just finetuning the classifier, (2) just finetuning the 

feature extractor, and (3) finetuning the whole CNN model, where the characteristics of each strategy 

are discussed and compared. The experimental validations show that the proposed transfer strategies 

can effectively transfer the useful features of the well-trained CNN for the target task and achieve the 

highest accuracy for the generalization problem of WCs. Another method is to jointly implement the 

source and target tasks in a deep model with multi-branches. Cao et al. [69] developed a multi-branch 

deep model, named Y-Net, to transfer knowledge for the fault diagnosis of planetary gearboxes, 

which consists of three components: two convolutional classification networks (one for the source 

task and another for the target task, and sharing weights with each other) and a reconstruction 

network. Compared with other solutions training a model from scratch, model-based DTL solutions 

benefit from the faster convergence rate and the reduction of the risk of overfitting. Additionally, 
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these solutions have its inherent limitation that the fine-tune algorithm heavily relies on the 

dependence of labeled training data in the target scenario. 

Feature-based DTL solutions: For the application scenario of varying WCs, the feature learned 

by deep models is expected to be speed-insensitive and load-insensitive. Generally, the more 

insensitive to working conditions the features are, the better the generalization performance of deep 

model will be. Researchers, therefore, have been placed many efforts on how to learn universal 

features under varying WCs from the following three aspects. 

From the aspect of discrepancy-based domain adaptation, a variety of criteria, such as MMD 

[70]-[83], Conditional Maximum Mean Discrepancy (CMMD) [84]-[88], MK-MMD [89]-[91], KL 

Divergence [92], [93], CORAL [94], [95], Central Moment Discrepancy (CMD) [96], [97], 

Maximum Classifier Discrepancy (MCD) [98] and others [99], [100] have been widely introduced 

into the objective function to measure the features discrepancy between the source and the target WCs. 

Specifically, Lu et al. [70] proposed a Deep neural network for domain Adaptation in Fault Diagnosis, 

named DAFD. The DAFD introduced the MMD term into the objective function of deep neural 

network for reducing the distribution discrepancy between different WCs in 2017, which was the first 

time that the transfer learning technique, i.e., the domain adaptation, was applied to train the deep 

model in the field of IFD. Aiming at minimizing the discrepancy of marginal and conditional 

distributions simultaneously, a deep transfer network (DTN) with joint distribution adaptation (JDA) 

was proposed by Han et al. [84] through the integration of marginal MMD and conditional MMD. 

Experiments carried on three practical industry datasets show that, comparing with the traditional 

deep learning- and transfer learning-based methods, the DTN with JDA achieves state-of-the-art 

diagnosis results regarding the application scenario of diverse operating WCs. In contrast to 

constructing a single layer with linear MMD in deep model, a multilayer domain adaptation (MLDA) 

method was proposed by Yang et al. [91]. The MLDA that matches the shift in both marginal and 

conditional distributions across WCs by adding MK-MMD and pseudo-label learning in multiple 

adaptation layers, can effectively extract working-condition-insensitive features for bearing fault 

diagnosis. Apart from using the MMD and its variations, Qian et al. [92], [93] utilized the KL 

Divergence to align the first and higher order moment discrepancies, Wang et al. [94] and An et al. 

[95] adopted CORAL to minimize the distribution gap between source and target WCs by aligning 

the second-order statistics, and Li et al. [96] employed CMD to reduce the discrepancy between 

different working conditions. 

From the aspect of adversarial-based domain adaptation, the mechanism of GAN has been 

employed to help the deep model to learn task-sensitive but domain-insensitive features for the target 

tasks in the generative or non-generative adaptation ways. In the case of generative adaptation, deep 

GANs and its variants have been exploited to generate different types of data, such as frequency 
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domain data [101], [102] and time-frequency domain data [103]-[105], with the help of available 

source data, and then these generated and real data are used to train an extra deep model, achieving 

reliable diagnosis results when testing data in target WCs are not available during model training. 

Shao et al. [106], Guo et al. [107] and Shi et al. [108] added an auxiliary classifier into the GAN, 

rather than training an extra classifier, to fully utilize the label information, hence, the enhanced 

models achieved higher diagnosis accuracy with few training data. However, one particular challenge 

for generative adaptation is the difficulty in evaluating the quality of the generated data with effective 

metrics quantitatively. In the case of non-generative adaptation, motivated by GAN, several deep DA 

frameworks such as the Domain Adversarial Transfer Network (DATN) [109]-[115], the DANN 

[116]-[119], the Adversarial Discriminative Domain Adaptation (ADDA) [120], the Wasserstein 

GAN (W-GAN) [121]-[128] and others [129], [130], have been developed and applied for fault 

diagnosis of machines under varying WCs. For instance, Chen et al. [113] exploited the discriminator 

of GANs as a domain classifier that performs binary domain classification and introduced a domain 

confusion loss, that is, the inverted label loss, to encourage the source and the target distributions to 

be a uniform distribution as close as possible. Liu et al. [116] utilized the DANN that integrates a 

GRL into the standard GAN to construct the deep model for bearing fault diagnosis, which largely 

enhances the generalization performance of diagnosis model under different speeds and loads. 

Following the principle of ADDA, a knowledge mapping-based adversarial domain adaptation 

(KMADA) method was proposed by Li and Shen et al. [120], which ensures that the feature space 

mapping from the target domain data can be updated until it is indistinguishable with the feature 

space mapping from the real source data. The KMADA achieved strong diagnosis results on an 

experimental bearing dataset and a locomotive bearing dataset. Wang et al. [128] proposed a Deep 

Adversarial Domain Adaptation Network (DADAN) for fault diagnosis of bearings and hard disk 

datasets collected from real-case data center, which employed a discriminator to measure the 

empirical Wasserstein distance between two domains instead of using a discriminator to classify the 

domain label. In addition to the methods mentioned above, some explorations have been proposed to 

deal with the problems of multiple target domains [131] and domain generalization [132]. Liao et al. 

[132] developed a deep semi-supervised domain generalization network to deal with a challenging 

diagnosis scenario where the well-trained model can generalize to an unseen working condition. 

From the aspect of reconstruction-based domain adaptation, there are also some applications that 

utilized encoder–decoder reconstruction to enhance the generalization capability of diagnosis model 

under different WCs [133]-[138]. Wen et al. [136] constructed a three-layer SAE to learn the 

common representations from the raw data of different WCs in a reconstruction manner. An IFD 

method based on an autoencoder with adaptive transfer learning was proposed by Tang et al. [138], 
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which use a shared encoder to learn transferable features using the reconstruction loss of RMSE and 

the adaptation loss of MMD. 

3.2.3 Solutions for across different machines 

Compared with the application scenario of varying WCs where the data used for model training 

and testing are both measured on the identical machine under different speeds, loads or operations, 

the main difference in the application scenario of across different machines is that those data are 

measured on related but different machines and suffer from more complicated factors, such as 

different mechanical structures, diverse material and various sizes. Such factors inevitably lead to 

more significant distribution shift between the training and testing data than the application scenario 

of varying WCs. Therefore, it is a more challenging task to transfer diagnosis knowledge across 

different machines. There are three typical applications of across different machines: transfer from 

laboratory to industry [139], transfer from simulation to reality [140], [141], and transfer from past to 

future [142], [143]. Once the bridge of transfer knowledge across different machines can be built, it 

will not only largely eliminate the dependency of the fault data collected from the target machine but 

also potentially reduce the economic cost spent for the maintenance of the target machine. With such 

demand increasing exponentially, fortunately, some solutions have been developed and investigated 

for further improving the practicability and generalization performance of diagnosis model. 

Instance-based DTL solutions: A Deep Domain Generalization Network for Fault Diagnosis 

(DDGFD), optimized with an instance-based discriminative loss, was proposed by Zheng et al. [144], 

aiming to explore the more challenging but practical across different machines scenarios where only 

normal samples are available in the dataset of the target machine. Yang et al. [145] developed a 

metric, named Optimal Transport-embedded Similarity Measure, for analyzing the transferability of 

diagnostic knowledge across machines, in which cluster-conditional distributions are explored to 

assign cluster labels for the target instances. Wu et al. [146] proposed a hybrid DTL method that 

combines the instance- and feature-transfer learning techniques to solve the diagnosis problem of 

bearings when sufficient labeled fault data in the practical engineering is lacking, which was 

validated in the application scenario of transfer from the Case Western Reserve University (CWRU) 

dataset to a locomotive bearing dataset collected in real industry.  

Model-based DTL solutions: Taking the rolling bearing fault diagnosis as a case study, Wang 

and Gao [147] adapted the VGG-19 network as the backbone model that was pretrained on 

non-manufacturing data, and then was finetuned on manufacturing machine for transferring common 

latent features among different machines. A Novel Stacked Transfer Auto-encoder (NSTAE), 

optimized using Particle Swarm Optimization (PSO), was proposed by Shao et al. [148] and was 

applied for IFD based on bearing and gear data collected from different rotating machines. Unlike the 

previous methods which focus on selecting the backbone model [149], [150], Chen et al. [151] 
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proposed a novel model-based DTL strategy for training a Transferable Convolutional Neural 

Network (TCNN), which exploits the knowledge learned from different source machines to improve 

the generalization performance of the target task. Its core idea is that the layers and the parameters of 

the pretrained TCNN are firstly subdivided into several blocks, and then each block is finetuned in 

reverse order. With respect to the model transfer, such strategy is suitable not only for the CNNs but 

also for other deep models such as DBN, SAE and Long short-term memory (LSTM). The 

model-based DTL solutions, especially the fine-tune algorithm, are comparatively easy to implement 

in the scenario of across different machines. But their performance would decrease dramatically if the 

labeled instances are insufficient or unavailable. 

Feature-based DTL solutions: For feature-based DTL, the discrepancy-based domain 

adaptation is still one of the most popular and promising solutions for fault diagnosis in the scenario 

across different machines and brings successful breakthroughs compared with traditional DL 

methods [152]-[164]. For example, Lei et al. have proposed several IFD methods based on 

discrepancy-based domain adaptation for transferring knowledge from laboratory to real industrial 

bearings [139], [152], [153]. A feature-based transfer neural network (FTNN) was proposed in [139] 

to learn transferable representation by combining multi-layer domain adaptation and pseudo label 

learning. In FTNN, a domain-shared CNN was trained by simultaneously minimizing three 

discrepancies: the classification discrepancy of the labeled instances in the source domain, the 

classification discrepancy of the unlabeled instances in the target domain with the help of the pseudo 

label learning, and the multilayer MMD discrepancy of the learned representations between across 

domains. In [153], a distance metric named polynomial kernel induced MMD (PK-MMD) was 

proposed to overcome the weakness of the Gaussian kernel induced MMD (GK-MMD). The 

experimental results showed that the PK-MMD based DTL method can not only improve the 

computation efficiency but also can achieve better performance for IFD in the across different 

machines scenario compared with other algorithms such as the Transfer Component Analysis (TCA), 

the DAFD, and the GK-MMD-based method. Meanwhile, Tan et al. [160] proposed a deep coupled 

joint distribution adaptation network (DCJDAN) to reduce the domain discrepancy between artificial 

and real damages, which has been validated on the dataset provided by Konstruktions- und 

Antriebstechnik (KAt) Bearing Data Center, Paderborn University. In addition, there are a few 

published methods which provide other solutions to solve the problems in across different machines 

scenarios by exploring the adversarial-based [165]-[168] and reconstruction-based domain 

adaptation techniques [169], which may not be as popular as the methods based on the 

discrepancy-based domain adaptation. 

3.2.4 Solutions for other scenarios 

Besides varying WCs and across different machines, there are other application scenarios as 
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well, including across sensors and imbalanced instances. As for IFD methods, the locations, types and 

sampling frequency of sensors, as well as the number of training instances of each class, result in a 

huge distribution diversity between realistic industrial data. Many impressive studies have been 

applied to the application scenarios of imbalanced instances [170]-[180] and across different sensors 

[181]-[185], and paid much attentions to the investigation of how to improve the generalization 

performance of IFD models. 

For the scenario of imbalanced instances, Zareapoor et al. [178] proposed a Minority 

oversampling Generative Adversarial Network (MoGAN) to deal with the problems where the 

number of each fault class are imbalanced during model training. The MoGAN converts the 

imbalanced problem into the balanced scenario by generating the minority instances through the 

GAN, which provides a potential solution for the scenarios where some labeled data are available in 

the target domain but they are not enough to train a satisfactory model. A one-shot learning method 

for fault diagnosis of 3D printers was proposed by Li et al. [180], which only requires one instance of 

each fault condition to accomplish the model training. Another scenario encountered in real industry 

is across different sensors. Prof. Jay Lee and his group have proposed several solutions for 

transferring diagnosis knowledge across sensors at different locations [181]-[185]. The proposed 

solutions are based on the unsupervised parallel data which are utilized to align the conditional 

distribution of the different health conditions. The experimental results showed that such solutions 

are promising to transfer common knowledge between the data from different locations of machines, 

and they can further improve the generalization performance of deep models in practical industry 

applications. Similarly, aiming at transferring the diagnosis model from one sensor to another, Qin et 

al. [184] designed a new transfer strategy for domain adaption, called Multi-Scale Transfer Voting 

Mechanism (MSTVM), which combines multi-scale feature learning and plurality voting operation 

techniques. The MSTVM can be used to the traditional domain adaption models, and the model’s 

performance will be well improved. 

3.3 Partial Domain Fault Diagnosis 

3.3.1 Motivations and goals 

As illustrated in Fig. 6, the strong motivation behind this scenario is that, under the industrial big 

data environment, it is a promising solution to utilize the labeled historical data and the open-source 

industrial data which are collected from related scenarios, for training a diagnosis model that can 

transfer knowledge from large-scale but redundant source domain to unknown small-scale target 

domain. The challenges for partial domain fault diagnosis are due to the following two factors: 

(1) Label space information of the target domain is lacking. In the trend of Industry 4.0, a large 

amount of monitoring data can be collected and stored for the target scenario. However, it is 
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expensive and unrealistic to annotate these large amounts of data, therefore the numbers and 

the types of faults are unknown. 

(2) Outlier source faults may lead to negative transfer. From the viewpoint of big data, the 

large-scale but redundant source dataset is diverse enough to subsume all fault classes of the 

small-scale target dataset. 

Thus, directly transferring between the entire source and target domains as the popular DTL methods 

is not an optimal and effective solution for the partial transfer scenario. 

 
Fig. 6.  Illustration of the motivation behind the scenario of partial domain fault diagnosis 

As illustrated in Fig. 4 (b), the key goal in this scenario is to build an effective diagnosis model 

for partial domain fault diagnosis by aligning the distribution of source and target domains in the 

scope of the shared label space and singling out the outlier source data in the scope of the private label 

space. The DTL-based solutions developed for the partial domain fault diagnosis in recent years have 

been summarized in Table II. According to the experiments presented in the publications, these 

solutions not only have the capability to promote the positive transfer of the relevant data and to 

alleviate negative transfer of irrelevant data, but also can address the practical and challenging issues 

under the industrial big data environment. 

 
3.3.2 Solutions for partial domain fault diagnosis 

As mentioned before, the assumption behind this scenario is that the label information of target 

data is unknown. Up to now, model-based DTL approaches are hardly applied to the problems in the 

scenario of partial domain fault diagnosis because they inherently rely on the label information of 

target instances. Therefore, in this case, most current DTL solutions have been developed on the basis 

of the instance-based and feature-based DTL methods. 

TABLE II Solutions for Partial Domain Fault Diagnosis 

Application 
Scenarios 

Categorization of 
DTL References Common algorithms used 

Partial 
Domain Fault 

Diagnosis 

Instance-based Jiao et al. [187], Li et al. [188], Li et al. [189], 
Liu et al. [190] 

Class weight-estimation 
strategy 

Feature-based Li et al. [191], Han et al. [192], Deng et al. [193], 
Yang et al. [194], Wang et al. [195] 

SAN, 
GAN+Attention/PK-MMD 
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Instance-based DTL solutions: An intuitive solution to transfer knowledge from large-scale 

source dataset to small-scale target dataset is to select out the outlier instances in sources domain that 

are negative for building target model. Such an idea can be implemented by adapting the 

instance-level or class-level weighting strategies during the process of model training. Aiming at 

transferring knowledge from a large-scale dataset to a small-scale dataset (e.g., from ImageNet to 

Caltech-256), a Selective Adversarial Network (SAN) was firstly proposed by Cao et al. [186] in the 

Proceedings of IEEE Conference on Computer Vision Pattern Recognition (CVPR), 2018, for partial 

transfer learning. Inspired by the SAN, several class-level weighting methods have been proposed in 

the field of IFD [187]-[190]. For example, Jiao et al. [187] proposed a classifier inconsistency-based 

domain adaptation network (CIDA) for unsupervised partial domain fault diagnosis of planetary 

gearbox. The CIDA estimates the label space of target domain by calculating class weights through 

classifier inconsistency loss and selects out the source instances beyond the shared label space of 

source and target domains according to the class weights. The experimental results showed that the 

CIDA can implement the partial transfer diagnosis task from a working condition (containing all fault 

classes) to a target working condition (only containing a part of fault classes), and its performance is 

superior than that of the other popular DTL methods. Similarly, a Weighted Adversarial Transfer 

Network (WATN) was proposed by Li et al. [189] for partial domain fault diagnosis across different 

machines. In WATN, an auxiliary classifier is introduced to automatically learn the weight of each 

source instance, which can weight the contributions of each training instance to both feature learning 

and domain confusion. As a result, the role of irrelevant source instances can be effectively weakened 

during the knowledge transferring. However, these instance-based DTL methods are depended to 

some extent on the prediction distribution of the instances in the target domain. 

Feature-based DTL solutions: Besides the weighting mechanism described above, 

feature-based DTL solution have also been developed with promising results for partial domain fault 

diagnosis [191]-[195]. One example is that, inspired by GAN, Li and Zhang proposed an IFD method 

to address the partial domain adaptation problem by combining the techniques like conditional data 

alignment and unsupervised prediction consistency. Conditional data alignment is implemented by 

minimizing the distribution discrepancy between source and target domains through MMD. 

Unsupervised prediction consistency is achieved when the same prediction results of target domain 

data can be obtained after finishing the adversarial learning between multiple classification modules 

and the discriminator [191]. Similar application can be found in [192], which has been validated on a 

wind turbine fault dataset and achieved superior performance under different transfer scenarios than 

other traditional transfer learning methods. In addition, a double-layer attention based generative 

adversarial network (DA-GAN) was proposed by Deng et al. [193] for partial domain fault diagnosis 

of bearings, which aims to solve the problem, “where to transfer”, since the label space of target 
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domain is unknown. In DA-GAN, the attention mechanism is introduced into two layers, one for 

domain attention and another for sample attention, which can provide guidance for the model to focus 

which fault classes should be shared or singled out. Yang et al. [194] further extended the partial 

domain fault diagnosis to a more practical and challenging setting where the instances imbalanced 

between fault classes, exist in the target domain, and proposed a deep partial transfer learning 

network (DPTL-Net) to selectively transfer diagnosis knowledge for planet gearbox. In DPTL-Net, a 

domain discriminator is employed to automatically learn domain asymmetry factors via adversarial 

learning, which can be utilized to weight the PK-MMD. The domain adaptation based on weighted 

PK-MMD can focus on the distribution discrepancy of source instances in the shared fault classes and 

filter out the instances in the outlier classes.  

With the literatures surveyed above, the instance-based and feature-based DTL solutions have 

made significant breakthroughs to partial domain fault diagnosis, which can function as a bridge 

between the large-scale source domain to unknown small-scale target domain for the diagnosis 

knowledge transfer. However, it is obviously inappropriate to take all the labeled data as the source 

domain. Therefore, according to the characteristic of the target domain data, how to select the labeled 

source instances and determine the range of source domain from numerous low-quality industrial data 

is a challenging problem, which is ignored by the researcher as so far.  

 
Fig. 7.  An illustration of the motivation behind the scenario of emerging fault detection 

 

3.4 Emerging Fault Detection 

3.4.1 Motivations and goals 

As illustrated in Fig. 7, the critical motivation behind this scenario is that, in practical industry 

applications, if IFD model can detect the unknown faults which are absent in the labeled source 

dataset and annotate these faults with correct labels, the IFD model will be able to precisely monitor 

the health conditions of machines and to continually expand its diagnosis knowledge. In the process 

of the emerging fault detection, the following two factors that should be taken fully into account are: 

(1) Any knowledge about the faults is lacking. The unknown faults are emerging fault classes 

which newly occur in the target application scenario. More importantly, the unknown faults 
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never exist in the source domain. It is a challenging task to separate the known and unknown 

fault classes in an unsupervised manner. 

(2) The emerging fault classes may also jeopardize the knowledge alignment between the source 

and target domains due to the absence of emerging faults in the source domain. In other 

words, negative transfer will happen if the distribution of the target domain is directly 

matched with that of the whole source domain. 

Different from the partial domain fault diagnosis where knowledge is transferred from class-rich 

source domains to class-scarce target domain, the emerging fault detection aims at transferring 

diagnosis knowledge from class-scarce source domain to class-rich target domain. That is, as 

depicted in Fig. 4 (c), the main goal in this scenario is simultaneously to recognize the emerging faults 

as “unknown fault” classes and to classify the shared faults of two domains into the correct fault 

classes. Generally, unpredicted faults are prone to occur since the machines typically operate in 

complex and uncertain environments during long-term service. Such problem seriously restricts the 

practical application of the DTL-based methods. Consequently, it is an urgent demand for IFD 

methods to recognize emerging faults in practical engineering applications. However, there are only a 

few studies focusing on the emerging fault detection, for which Table III summarizes the current 

DL-based and DT-based solutions. 

 
3.4.2 Solutions for emerging fault detection 

Detecting new faults during the testing scenario is one of the key steps for IFD methods when 

implementing the task of emerging fault detection. In terms of similarity metric learning, several 

DL-based solutions are established without transfer learning techniques to detecting the emerging 

faults [196]-[198]. For instance, Zhang et al. [196] proposed an emerging new labels method based 

on SAE (ENL-SAE) for detecting the emerging fault conditions of gearbox. The ENL-SAE forms a 

prior distribution of known faults with the Gaussian Distribution by utilizing the features extracted by 

SAE from the training samples, which can be employed to identify the unknown instances whose 

distribution deviate from the prior distribution of the known faults. These unknown instances are 

annotated with a new label as the emerging fault and used to retraining the diagnosis model. 

Simulation and realistic experimental results showed that the ENL-SAE can effectively recognize 

new faults and improve its practicality. Similarly, a deep metric learning (DML) model was proposed 

by Wang et al. [197], which has capability to classify the new fault by retrieving similarities. In DML, 

TABLE III Solutions for Emerging Fault Detection 

Application 
Scenarios Categorization References Common algorithms 

used 
Emerging Fault 

Detection 
DL-based  Zhang et al. [196], Wang et al. [197], Feng et al. [198] Similarity metric 

DTL-based Li et al. [199], [200], Wang et al. [201], Zhang et al. [202], 
[203], Yang et al. [204], Li et al. [205], Yu et al. [206] 

Open set domain 
adaptation 
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the raw data of each instance are firstly mapped into cosine space, and then the cosine similarity is 

used to retrieve the most similar fault. The methods mentioned above break through the limitations of 

the traditional intelligent algorithms owing to the capability of emerging fault detection [198]. 

However, an obvious bottleneck behind these methods is that they cannot deal with the diagnosis task 

under complex application scenarios where the distribution shift exists between the training and 

testing data. Furthermore, some of them rely on a few labeled instances of new faults.  

Attempting to further break through the bottleneck mentioned above, the DTL-based solutions 

have been greatly developed for emerging fault detection in real industry application [199]-[206]. 

Inspired by the idea of Open Set Domain Adaptation (OSDA) [207], [208], Li et al. proposed an IFD 

method, called Deep Adversarial Transfer Learning Network (DATLN), for detecting the emerging 

faults of bearings and gearboxes [199], [200], which offered a highly successful attempts on this 

challenging diagnosis task. The DATLN consists of two components: a feature extractor and a 

classifier, which are trained by adversarial training. The feature extractor extracts features from input 

data, and the classifier outputs K+1 dimension probability, where K represents the number of known 

faults in source domain and the K+1 th of the classifier output indicates the probability of the 

unknown fault. On the one hand, the feature extractor aligns the features extracted from the source 

and target domains, which can deceive the classifier. On the other hand, the classifier can build a 

decision boundary to recognize the unknown fault in the target domain. The experiments carried on 

bearing and gearbox datasets showed that the DATLN can not only align the distribution discrepancy 

between the different domain in the scope of the shared faults, but also can detect the emerging fault 

with high accuracy. Wang et al. [201] proposed a Deep Prototypical Networks based on DA 

(DPDAN), in which a prototypical layer was applied to learn the prototypes of each fault class and the 

classification is implemented by finding the nearest class prototype. The DPDAN is another attempt 

to address the problem where the fault classes of the target scenarios are partially overlapped with that 

of the source scenarios. Besides the aforementioned feature-based DTL methods, an OSDA method 

based on Instance-Level Weighted Adversarial Learning was proposed by Zhang et al. [202] and 

applied for IFD of machinery. The instance-level weighted mechanism is introduced to reflect the 

similarities of testing instances with known faults, therefore, the unknown faults, as well as the 

known faults, can be effectively identified. Admittedly, these methods are promising for the 

emerging fault detection and largely improve the applicability of IFD algorithms in the practical 

engineering. Nevertheless, a major limitation of them is that it can only detect all unknown faults as 

one category even if there exist multiple emerging faults. 

To overcome such limitation, Li et al. [205] further extended the DATLN method to a 

Two-Stage Transfer Adversarial Network (TSTAN) for IFD of rotating machinery with multiple 

emerging faults. In the first stage, a DTL model is trained by the adversarial learning strategy and 
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employed to single out the unknown fault instances as outliers from the known ones. In the second 

stage, an unsupervised convolutional SAE with silhouette coefficient is built to further recognize the 

number of the emerging faults. The TSTAN was validated on two OSDA scenarios: two and three 

new faults exist in the target domain respectively, and it achieved the highest diagnosis accuracy for 

the emerging fault detection compared with other state-of-the-art methods. To move one step forward, 

Yu et al. [206] proposed an open set fault diagnosis (OSFD) method with bilateral weighted 

adversarial networks (BWAN) and extreme value theory for the application scenario where the 

source and target domains share partially fault classes but hold its private fault classes at the same 

time. Such assumption is more in accordance with the case of practical engineering in industry. The 

experimental results on the CWRU and the Traction Motor Bearing (TMB) Dataset illustrate the 

superior performance of the proposed OSFD approach for emerging fault detection. 

With the literature surveyed above, several excellent applications, have been witnessed the last 

years, addressing the challenging task of emerging fault detection for practical engineering. In terms 

of the more complex diagnosis task such as the across machines and sensors, however, there are still 

few or no solutions for the emerging fault detection. More efforts should be placed on these aspects. 

3.5 Compound Fault Decoupling 

3.5.1 Motivations and goals 

As illustrated in Fig. 8, the intuitive motivation behind this scenario is that, with the 

development of intelligent technology, the IFD model should certainly be endowed with the ability to 

decouple the compound fault in an intelligent manner by only leveraging upon the diagnosis 

knowledge learned from the data of the corresponding single faults. Such motivation, that is, 

intelligent compound fault decoupling, is inspired by the phenomenon that human beings are capable 

of separating the overlapping entities into multiple individual entities easily. As shown in the upper 

part of Fig. 8, taking the overlapping digits as a concrete example, humans can rapidly capture the key 

characteristics about each individual digit and can recognize multiple digits in the image even if digits 

overlap. 

However, such an “easy” task is difficult for the majority of IFD algorithms. The challenges for 

intelligent compound fault decoupling mainly came from the following aspects: 

(1) A compound fault occurs unpredictably when multiple key parts and components present 

defects or even damage at the same time. The monitoring signals become more complex 

since the fault characteristics of each component are coupled and exerted influence 

reciprocally, which dramatically increases the difficulties of IFD. 

(2) The completeness of compound fault data within the training dataset is hard to be ensured. 

The practical challenge that is hardly avoidable is that it is difficult and unrealistic to 
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accumulate single-fault data in industrial applications, let alone to completely collect all 

types of compound fault data. 

(3) The traditional classifier that utilizes the Softmax as the activation function of the last fully 

connected layer only outputs one label for a testing instance, which inherently determines 

that the compound fault is simplify regarded as an independent fault pattern for classification 

and the relationship between the compound fault and its corresponding single faults is 

ignored. 

 
Fig. 8.  Illustration of the motivation behind the scenario of compound fault decoupling 

 
Based on the core idea of transfer learning, as illustrated in Fig. 4 (d), the goal here is to develop 

an IFD model for compound fault decoupling which can learn and capture useful fault characteristics 

from only the single-fault instances (source domain) and transfer the learned knowledge to help in 

making a right decoupling of compound fault instances (target domain). Following this insight, as 

summarized in Table IV, several successful attempts have been made for intelligent compound fault 

decoupling to imitate the learning ability of humans. 

 
3.5.2 Solutions for compound fault decoupling 

Compound fault diagnosis was and remains a challenging but practical task in the field of fault 

diagnosis. Before the widely application of IFD, the traditional methods for compound fault diagnosis 

TABLE IV Solutions for Compound Fault Decoupling 

Application 
Scenarios Categorization References Common algorithms used 

Compound 
Fault 

Decoupling 

Supervised DL-based Huang et al. [222], Liang et al. [223], 
Jin et al. [224] 

DNN with multi-label 
classifier 

Unsupervised DL-based Huang et al. [226], [227], Dibaj et al. 
[228], Xing et al. [229] 

CNs, Triple probabilistic 
terms, Zero-shot learning 

DTL-based Huang et al. [230], [231] TCN, DACN 
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generally extract the fault characteristic frequencies of each single fault from the monitoring signals 

of compound fault to make an accurate diagnosis by utilizing the advanced signal processing 

algorithms [209]-[212]. For example, a compound fault diagnosis method based on multiple 

enhanced space decomposition was developed by Li et al. [211], which can extract the characteristic 

features of gear defect and bearing fault simultaneously. Cui et al. [212] proposed a method based on 

the Maximum Entropy Deconvolution Adjusted (MEDA) and Adapted Dictionary-free Orthogonal 

Matching Pursuit (ADOMP) to isolate the compound fault coupled by the gear and bearing faults. 

Although these solutions can be used to monitor the health states of IE, they heavily rely on the 

empirical knowledge and the engineering experience of experts, which is a major obstacle for its wide 

application in industry. 

Benefitted from the advantages of DL in representation learning and pattern recognition, some 

phenomenal solutions have been proposed and applied for the compound fault diagnosis [213]-[221]. 

For example, in [213], [214] and [215], several DBN-based IFD methods were proposed and applied 

to diagnose the compound faults of machinery, which mainly focus on enhancing the structure of 

DBN to improve the performance of diagnosis model. Shao et al. [216] developed a multisensory 

fusion strategy using a stacked wavelet AE structure with a Morlet wavelet function and applied to 

the collaborative fault diagnosis of planetary gearbox with compound fault. Combining with other 

techniques, such as adaptive separation, Euclidean matrix sample entropy and adversarial learning, 

CNN were developed and enhanced for intelligent compound fault diagnosis in many fields 

[217]-[221]. 

It can be seen from the publications mentioned above that most of these solutions lose sight of an 

importance aspect that the compound fault is anything but an individual pattern when it comes to the 

corresponding single faults. It is inappropriate to simply regard the compound fault as an independent 

fault class for fault classification. To overcome the shortcoming mentioned above, an intelligent 

compound fault diagnosis framework based on Deep CNN with multiple-label classifier 

(DCNN-MLC) was proposed by Huang et al. [222] and validated on a gearbox dataset. The core idea 

of DCNN-MLC is that the sigmoid function, which can transform the output value of each neuron 

into [0, 1], is employed to substitute the Softmax as the activation function of the last fully connected 

layer. As a result, the MLC can output single or multiple labels for a testing instance by priorly setting 

a confidential threshold. The DCNN-MLC is trained with the single faults and compound faults 

instances, which can decouple the compound fault in a supervised manner by outputting multiple 

labels. Such an idea has been further investigated and applied for the compound fault diagnosis of 

gearboxes and bearings [223], [224]. The diagnosis model with MLC is effective for compound fault 

decoupling by having the ability of outputting multiple labels. However, these models heavily rely on 
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the completeness of compound fault data, suffering setbacks when the labeled data of compound 

faults are incomplete or even unavailable. 

Aiming at eliminating the dependance of completeness of compound fault data, scientific 

researchers proposed several DL-based solutions for compound fault decoupling in an unsupervised 

manner, in which the diagnosis model is only trained on the healthy and single faults instances and 

then can be used to diagnose the compound fault instances [226]-[229]. For instance, inspired by the 

Capsule Networks (CNs), a Deep Decoupling Convolutional Neural Network (DDCNN) was 

proposed by Huang et al. [226] and applied for intelligent compound fault decoupling of an 

automobile transmission. In DDCNN, a decoupling classifier is constructed with two capsule layers, 

rather than a fully connected layer, and is optimized by an agreement-based dynamic routing 

algorithm, which can decouple the compound fault via outputting multiple labels. The DDCNN is a 

first successful effort to realize the intelligent compound fault diagnosis by transferring the 

knowledge learned from the data of healthy and single faults in the scenario that the compound fault 

data are unavailable during model training. To achieve a common goal, a similar attempt has been 

investigated by Dibaj et al. [228]. The main idea of the method proposed in [228] is that the CNN is 

trained without the compound fault data, and triple probabilistic conditions are used to restrict the 

output label of the classifier by judging whether the acquired probabilities of each neuron satisfy 

these conditions. Thus, the untrained compound fault can be recognized in an intelligent manner. A 

label description space embedded model for intelligent fault diagnosis (LDS-IFD) was proposed by 

Xing et al. [229] to recognize the compound faults just using the single-faults data during the model 

training, which is validated by two datasets collected from bearing and planetary gearbox. Admittedly, 

these solutions have brought successful breakthroughs in intelligent compound fault diagnosis 

because they eliminate an important problem: the dependance of the completeness of the compound 

fault data. Nevertheless, the methods mentioned above still lack a robust generalization performance 

when they encounter a varying and harsh environment, restricting its further practical application in 

industry. 

With the help of transfer learning techniques, the DTL-based solutions for intelligent compound 

fault decoupling have been attracted increasing attention and application in recent years. The 

compound fault diagnosis models are getting more generalizable and accessible under varying WCs 

[230], [231]. Huang et al. [230] further proposed a Transferable CN (TCN) for decoupling compound 

fault of rotating machinery under varying WCs. The TCN is a variant of DDCNN, which can reduce 

the distribution discrepancy between the source and the target domains by introducing the MMD into 

the last layer of the feature extractor and the decoupling classifier, respectively. The experimental 

results demonstrated that the TCN outperforms the DDCNN for the compound fault decoupling under 

varying WCs. To improve the practicality of diagnosis model, Huang et al. [231] further relaxed the 
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assumption on training data by considering that the data cannot be obtained in advance for some 

special and extreme WCs, and proposed a Deep Adversarial Capsule Network (DACN) which 

embeds the domain generalization task into the intelligent compound fault diagnosis task. The DACN 

consists of three parts: the feature extractor (FE), the decoupling classifier (DC) and the multidomain 

classifier (MC), which is designed for representation learning, compound fault decoupling and 

multidomain adaptation, respectively. Using the single fault data collected under multiple WCs, the 

adversarial training strategy is employed to train the DACN. The comprehensive experiments carried 

on an automobile transmission demonstrates that the DACN is endowed with the ability to decouple 

the compound fault in an intelligent manner, as well as the ability of strong generalization 

performance across unseen working condition. 

Through the literature surveyed above, the current solutions for intelligent compound fault 

decoupling have to some extent addressed the two problems: the dependence of data completeness 

and the lack of robust generalization performance. However, it seems that few studies focus on the 

more complex industrial scenarios, e.g., the compound fault coupled with three or more single faults, 

which might be more in accordance with the practical application in industry. 

4 Suggestions to Select DTL Algorithms for IFD in Industry Applications 

After the comprehensive literature survey in Section III, the recent development of DTL 

approaches in the field of IFD is systematically presented and discussed from the perspective of 

different industrial application scenarios. To provide a constructive guide for the readers who want to 

solve the practical industry problems via using DTL-based IFD methods, in this section, the general 

procedure of IFD based on DTL is concluded, as well as the suggestions to select DTL algorithms for 

IFD in industry applications. 

 
Fig. 9.  General procedure of IFD based on DTL 

 

4.1 General Procedure of IFD Based on DTL 

As demonstrated in Fig. 9, the general procedure of IFD based on DTL includes four crucial 

steps: data collection, data processing, model construction, and industry application. Following these 
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steps, a practical IFD project can be implemented in industry applications. 

Step 1: Data Collection. In a systematic DTL approach to apply IFD methodologies for a 

specific task, the first step mostly focuses in collecting the available data from the source and the 

target domain. Before a DTL algorithm is utilized to accomplish the specific task, it is absolutely 

necessary and extremely beneficial to familiarize the characteristics of the collected monitoring data 

and the information of the interested equipment in terms of the key components, WCs, service 

intensity and all other important physical attributes. In other words, no matter what type of data, such 

as vibration, electrical and acoustic emission signals, can be collected, the quantity and the quality of 

data will be fundamental for the subsequent steps in developing an effective solution with dependable 

diagnosis accuracy via combining appropriate algorithms. As mentioned before, one of the 

advantages of DTL is that the labeled data in the related but different domains can be used to help 

training the target model. Therefore, the characteristics of data in the source domain largely affect the 

performance of the target model. Generally, there are mainly two ways to collect the source domain 

data. The first way is to use the labeled historical data, collected from similar machines, while the 

second one is to select similar data from open-source industrial big data. The public datasets, which 

have been provided by the PHM data challenges that have been held by the PHM Society since 2008, 

are real data collected from practical industry scenarios. All the datasets are fully opened to all 

researchers and covered the diagnostics and prognostics tasks in many industry fields, and can be 

downloaded by the website of PHM Society [1]. 

Step 2: Data Processing. Contrary to the data collected from laboratory experiments, real 

industrial big data typically have four main characteristics: large volume, low value density, 

multi-source and heterogeneous data structure, and monitoring data stream [27]. Therefore, data 

processing is one of the key steps for improving the performance of the IFD model. Essentially, for an 

intelligent learning process, garbage data in inevitably leads to garbage results out. There is no one 

absolute way to prescribe the exact steps in data processing because the process would be better to 

combine some background information in the specifical scenario. Data cleaning, normalization and 

data fusion are popular and effective techniques for the processing of original industrial data [232], 

[233], which can remove errors and inconsistencies and improve the quality of the data that will be 

used to train the target model. 

Step 3: Model Construction. Along with the continuous progress in manufacturing industry, 

many advanced algorithms have been introduced, developed and benchmarked to implement the 

diagnostic and prognostic tasks in a supervised or unsupervised manner. Different algorithms are able 

to handle different problems depending on its adaptability. Therefore, a crucial step for developing an 

effective solution for IFD in industry scenarios is to select and adopt the most appropriate algorithms, 

based on available data and target tasks. The suggestions to select the DTL algorithms for IFD will be 
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detailly introduced in Section IV, Part B. Once the DTL algorithm is determined, the target model can 

be optimized according to the source and target data via using gradient-based optimizers, such as 

Stochastic Gradient Descent (SGD) [234], Adaptive Gradient (Adagrad) [235] and Adaptive Moment 

Estimation (Adam) [236]. 

Step 4: Industry Applications. After the diagnosis model has been constructed and optimized by 

feeding with the data, it can be ready for further application to monitor the health states of target 

equipment. In this step, it is important to use an Internet of Things (IoT) platform to support the IFD 

system to convey the useful information to the engineers through visualization tools.  

4.2 Suggestions to Select DTL Algorithms for IFD 

After the general procedure for IFD methods has been systematically introduced, this subsection 

will offer some guidance and suggestions to select DTL algorithms according to specific scenarios of 

the industry applications. 

It is an acknowledged truth that there is no general algorithm regarding to the IFD in industry 

application. At the beginning of selecting DTL algorithms, there are two factors which should be first 

considered. The first factor is to consider the circumstance of whether the labeled data are available in 

the target domain, while another one is to evaluate the similarity between the source and the target 

domain. As illustrated in Fig. 10, the corresponding algorithm selection strategies are provided 

according to the above two factors and the different industry application. 

As for the generalization performance improvement, the application scenario can be further 

divided into four sub-scenarios: the scenario 0 to 3, in which the appropriate algorithms can be 

selected by considering the following suggestions. 

 
Fig. 10.  Suggestions to select appropriate algorithms for practical industry applications 
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Scenario 0: Labeled data are available in the target domain, and the source and target domains 

are similar. Any DTL algorithms may work well in this situation. But, the most efficient and optimal 

option will be the model-based DTL algorithms, more specifically, the fine-tuning strategy. Since the 

labeled data are available, the target model can be trained in a supervised manner. Furthermore, since 

the gap between the source and target domain is small, the knowledge learned from the source 

domain will be also suitable to the target domain. therefore, it should be enough to directly merge the 

source and the target data as a training dataset or to fine-tune the top layers of the pre-trained deep 

model. 

Scenario 1: Labeled data are available in the target domain, and the source and target domains 

are different. In this situation, intuitively, instance-based DTL algorithms, e.g., TrAdaBoost, can be 

used to single out the similar instances in the source domain to augment the training dataset for the 

target task. However, such algorithms will be unsuccessful if the data are largely different between 

the source and the target domains. If the labeled data is sufficient for target model training, 

fortunately, another solution is to fine-tune all the layers of the pre-trained model. Further, if the 

labeled data is insufficient, it would be promising solutions to select the feature-based DTL 

algorithms, such as the discrepancy-based and non-generative domain adaptation. 

Scenario 2: Labeled data are unavailable in the target domain, and the source and target domains 

are similar. Implementing the target task in this situation will be a little bit more difficult than that of 

in the Scenario 0 due to the fact that the target instances are not annotated. However, since the 

instances in source and target are similar, the instance-based DTL algorithms, such as the 

weight-estimation based on kernel embedding techniques and the heuristic weighting strategy, would 

be a good choice to select out the positive instances in the source domain to help training the target 

model. 

Scenario 3: Labeled data are unavailable in the target domain, and the source and target domains 

are different. In this situation, the model-based and the instance-based DTL algorithms can hardly 

improve the generalization performance of the deep model because the label information of the target 

instances is lacking and the gap between the source and the target domain is large. Therefore, this 

situation will lead the engineer to the feature-based DTL algorithms (discrepancy-based and 

adversarial-based domain adaptation). The hybrid DTL algorithms which combine the 

instances-based and the feature-based domain adaptation will also be a promising tool in this 

scenario. 

As for the other three application scenarios, their basic assumption is that the labeled data in the 

target domain are unavailable. Therefore, the main factor that should be considered for selecting 

algorithms is the domain similarity. Each application scenario can be further divided into two 
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sub-scenarios, that is, scenario 4 & 5 (Partial Domain Fault Diagnosis), scenario 6 & 7 (Emerging 

Fault Detection), and scenario 8 & 9 (Compound Fault Decoupling). 

Scenario 4: Source and target domains are similar. It is important to use the similar data as the 

source dataset for partial domain fault diagnosis. For example, data collected from similar working 

conditions or same machines are perhaps the best option. As a result, the instance-based DTL 

algorithm, e.g., the class weight-estimation strategy, is recommended to single out the instances in the 

shared classes, and then used to train the target model. 

Scenario 5: Source and target domains are different. In this situation, since the similar source 

data are difficult to be collected, it is a potential solution to use the different but related data collected 

from related industry applications. Considering the demand for reducing the domain discrepancy and 

avoiding the negative transfer, the feature-based DTL algorithms, especially the adversarial-based 

domain adaptation (SAN or GAN+PK-MMD), should be given priority.  

Scenario 6: Source and target domains are similar. As for emerging fault detection, if the 

instances in the target domain are similar to those in the source domain, an effective method would be 

to apply the traditional DL-based methods that detect the new faults by calculating the similarity 

metric between the testing and the labeled instances. 

Scenario 7: Source and target domains are different. In the practical industry application, it is 

more common that the domain shift exists between the source and the target domains. Therefore, the 

OSDA algorithm and its variants would be more practical and effective to address the problems of 

emerging fault detection. 

Scenario 8: Source and target domains are similar. Even under an identical working condition 

and the same machine, it is a challenging task to intelligently decouple the compound fault via using 

a target model that just trained by single fault instances. If the labeled compound fault data is 

available, the DNN with MLC can be trained in a supervised manner and further applied for 

compound fault detection. Otherwise, the deep model can be trained only using the normal and single 

fault data, and then a rule (e.g., Triple probabilistic terms) can be used to restrict the outputting labels 

of classifier. From the results shown in literature, the capsule network is the best choice for compound 

fault decoupling. 

Scenario 9: Source and target domains are different. Since the domain shift is introduced with 

the varying environments, the DNN-based algorithms perform not well in this situation. Up to now, 

an effective and promising solution is to combine the capsule networks with the feature-based DTL 

algorithms, such as the discrepancy-based and the adversarial-based domain adaptation. 
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5 Future Challenges and Trends in IFD of Industrial Machinery 

An obvious conclusion can be drawn from the comprehensive survey and discussion that, 

despite the fact that IFD algorithms based on DTL have made successful breakthroughs in many 

industry applications, there is still a long way to go until it is widely adopted in practical 

manufacturing industry systems. This is mainly because the performance of DTL algorithms lags far 

behind the requirements of manufacturing industry which places more emphasis on stability, 

standardization, accuracy, and repeatability. Before the IFD technologies can be fully embraced and 

applied in real world industry systems, the researchers in the related field should put significant effort 

into overcoming the following challenges. 

5.1 Stability and Reliability 

Historically, the generalization performance of IFD model has been significant improved by 

leveraging upon transfer learning techniques. However, the current IFD methods based on DTL could 

only accomplish the well-defined transfer tasks that often have restrictions on WCs, machines, and 

other hypotheses, which lead to the fact that the IFD model is not yet robust enough in dealing with 

uncertain circumstances. For a trained IFD model, an uncertain change in the input could cause a 

large change in the output [237]. Furthermore, most IFD algorithms published in the papers had not 

been verified as reproducible [238] due to the complexity of model training process and the numerous 

hyperparameters. In fact, there are many uncertain deviations caused by human or non-human factors 

during the long-term service of IE, and such deviations will directly affect the robustness, 

generalization performance and reproducibility of IFD algorithms, resulting in their low stability and 

reliability in practical industry scenarios. Therefore, it is and remains a challenging task to improve 

the stability and reliability of IFD algorithms for the technology to truly be applied in practical 

manufacturing industry systems, which requires further breakthroughs in not only the improvement 

of generalization performance, but also the reproducibility of diagnosis results. 

5.2 Interpretability of Deep Model 

Although DTL-based IFD methods have made phenomenal achievements in mechanical fault 

diagnostics and prognostics, an acknowledged limitation is that these methods have been perceived as 

black box techniques and are not interpretable, which does not provide a convincing insight into how 

and why they can make the final decision [239]. This issue may not only put in doubt the credibility of 

the decision itself, but also lacks compelling evidence to convince companies or industry that these 

techniques will work repeatedly. Applications in industry have strict requirements for safety and 

accuracy, and need to explain the reasonableness of the prediction decisions. As a result, the 

application of the DTL-based IFD methods in manufacturing industry are very limited. In recent 

years, fortunately, the theory of interpretable machine learning has captured increasing attention from 
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the academic researchers. One way to make intelligent algorithms interpretable is to use only 

interpretable models, such as Naïve Bayes Classifier and K-Nearest Neighbors, which typically have 

the limitation that the performance of these model is inferior to other intelligent models [241]. 

Therefore, in-depth theoretical research should be placed putting more emphasis on opening the 

“black box” and increasing the transparency of IFD model. Besides the theoretical research, another 

potential research trend in recent years is to combine the IFD model with a physical/statistical model 

which is supported by rigorous theory. With the help of the domain knowledge in the 

physical/statistical model, the “black box” of the IFD model can be partly opened, and it would be 

easily understood how decisions are reached step-by-step. 

5.3 Hyperparameters of Deep Model 

Generally, the architecture and hyperparameters of deep model significantly impact on the 

performance of DTL-based IFD methods. Therefore, it is a crucial step to select the hyperparameters 

during designing an effective solution with DTL-based IFD algorithms. However, there are no 

industry consensus on what the ways of selecting hyper-parameters works best. The 

hyper-parameters are typically selected in most publications via manual setting and experimental 

validation based on the grid search technique, which is a time-consuming way to ensure the model 

achieves the optimum performance. In the future, automatic machine learning might be an effective 

solution to solve such problem [242]. 

5.4 Capacity of Data Processing 

With regard to industry data, the challenges facing IFD right now mainly comes from the 
following aspects: 

(1) Data Quality. The performance of IFD models still depend heavily on the quantity and the 

quality of historical instances in the source domain, and annotating the industry data requires more 

engineering experience. In practical industry, it is often the case that, with more smart sensors 

embedded in machines and advances of measurement technology, large volume of monitoring data 

can be easily accumulated, but there have problems in data quality, such as lacking correct 

maintenance records, missing key parameters related to target components, existing misalignment of 

different variables, and coupling with strong background noise. Andrew Ng, a famous professor in 

Stanford, points out that the AI systems equals the integration of code (model/algorithm) and data, 

where the 80/20 rule for the data processing vs model training might be the right balance to achieve 

success. Therefore, it is necessary to monitor and improve the data quality before developing the IFD 

solution in practical application. 

(2) Imbalanced Data. It is a common case that, in the era of big industry data, the monitoring 

data of each health state are imbalanced. For ensuring the security and efficiency of production, the IE 

typically works under healthy conditions. As a result, the fault instances have a much lower chance of 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 43 

appearing than the healthy instances. This makes the data whether in source or target domain having 

an imbalanced distribution, which in turn makes the IFD model tending to learn biased decision 

boundaries that have a poorer diagnosis performance over the fault classes compared to the healthy 

class. Despite the fact that some publications have been focused on the problem of imbalanced data, it 

is difficult for the proposed solutions to deal with the imbalanced problems in more complex and 

uncertain industry environment. Therefore, to endow IFD algorithms with the ability to learn the 

discriminative representation from an extreme imbalanced dataset, more efforts would be necessary 

to simulate the knowledge transfer process in which humans can correctly guess that an object may 

belong to the class which share some physical characteristics, instead of brutally training the IFD 

model with “big data”. Following this insight, the few-shot or zero-shot learning, which is inspired by 

the phenomenon that human beings can learn a new object with only a few instances or even without 

any instances, are the promising research trends for solving such issue in practical industry 

application of IFD. 

(3) Heterogeneous Data. The industry factory is a typical multiple source heterogeneous data 

environment. For instance, in wind farms, there are large amount of multiple source heterogeneous 

data, such as the high-frequency data (current, acoustic emission and vibration signals) and 

low-frequency data (environmental index, working condition information and control parameters), 

have been collected from the Supervisory Control and Data Acquisition (SCADA) system and the 

Condition Monitoring System (CMS). However, as surveyed in the previous sections, the majority of 

DTL-based IFD methods focus on cases where instances in source and target domains are 

homogeneous data (e.g., vibration data). The obvious limitation of existing IFD methods is that, if the 

target sensor malfunctions unexpectedly, the CMS will be out of operation, which in turn could lead 

to serious catastrophes. Since the multi-source heterogeneous data can provide different information 

for the same health states of machine, it is possible to transfer diagnosis knowledge from one sensor 

data to another ones, which may greatly improve the stability and reliability of IFD algorithms. 

Furthermore, up to now, few studies focus on the heterogeneous transfer learning in the field of IFD. 

Therefore, heterogeneous transfer learning between multiple sensors would also be one of the future 

research trends that more attention should be paid. 

(4) Data Privacy and Protection. In the era of digital and intelligence, industry data is one of the 

most important assets a company has. For that reason alone, data privacy and protection should be a 

top priority for any company. It is difficult to reach an agreement and share labeled data among 

different companies and factories, which in turn results in data fragmentation and isolation. As a 

result, such restriction poses significant obstacles for the applications of the IFD algorithms in the 

practical industry. Therefore, how to solve the problem of data fragmentation and isolation while 

considering and complying with the restriction of data privacy and protection is one of the major 
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challenges for the IFD algorithms to truly accommodate a wider range of application in practical 

industry. One potential research trend for addressing the above issues is to combine the federated 

learning and DTL to build and train an effective and accurate IFD model [243]. 

5.5 Challenges in Transfer Learning 

To design an effective DTL-based algorithms, there are still several key challenges should be 

placed more efforts on. 

(1) Identifying the Appropriate Source Domain 

The previous survey on DTL-based IFD algorithms elaborates several ways to transfer source 

domain knowledge for practical industrial applications, however, identifying an appropriate source 

domain is still a challenging problem due to the challenges caused by big industrial data. For example, 

for many industrial applications, it is difficult to find an appropriate source domain that includes 

sufficient training instances annotated with precise label information for implementing target tasks. 

Even worse, it may be unrealistic to find any failure data from similar or related industrial application. 

With the rapid development of digital technology, such as Digital Twins, one promising way is to 

utilize the simulation or generation techniques to generate training data as the source domain in such 

a scenario. In addition, transferring the knowledge from multiple source domains has been attracted 

more and more attentions recently. 

(2) Avoiding Negative Transfer 

Once the source domain is determined, avoiding negative transfer is also a challenging problem 

during building a DTL model. As illustrated in Section 3, although there are several tricks have been 

proposed for avoiding negative transfer, it should be highlighted that negative transfer still needs 

further systematic investigation. One of effective measures to improve the performance of the 

DTL-based IFD model in industrial scenarios is to transfer only the common knowledge that can 

contribute to the target learning task and to avoid negative transfer at the same time. For example, 

developing an accurate “distance” metrics between the domains might be a feasible solution for 

avoiding negative transfer since the existing metrics used in feature-based DTL are not powerful 

enough in developing a perfect transfer learning application. 

(3) Assessing Transferability 

Assessing the transferability across domains in quantitative is another challenging problem 

during developing a DTL-based IFD method in industrial scenario. However, as so far, there is still 

few publications focusing on assessing transferability between the source and target domains 

mathematically. We confident that assessing transferability across domain will be a significantly 

important research trend in the future, which will enhance the performance of the DTL-based 

methods and further boost the application of DTL in industrial scenarios. 
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5.6 Computation and Energy Efficiency 

According to the aforementioned literature survey, it is generally the case that the DTL-based 

IFD methods suffer from the high requirement of computational source and speed. The inefficient and 

large computation in deep model has hindered the successful application of IFD methods in real-time 

data analytics. However, the capability of real-time monitoring is fundamental to PHM systems, 

which can improve the security of machinal systems, identify potential faults as soon as they occur, 

allow for early maintenance, and avoid systems failures. Therefore, the real-time IFD algorithms 

should be encouraged to be investigated to ensure real-time decision-making for monitoring the 

incipient damages or unexpected faults [244]. Techniques, including efficient neural network 

compression, incremental learning and deep reinforcement learning [245], are potential research 

directions to facilitate the real-time ability of DTL based IFD algorithms. 

6 Conclusions 

In this survey article, the theory and strategies of DTL methods have been summarized from the 

algorithm perspective, which gives the basic definitions related to DTL and explain how the TL 

technologies can help improving the performance of DL model. The state-of-the-art applications of 

DTL-based IFD approaches have also been overviewed from the perspective of practical industrial 

applications, in which the four major application scenarios: generalization performance improvement, 

partial domain fault diagnosis, emerging fault detection, and compound fault decoupling, are 

formulated and fully discussed. Thereafter, the suggestions for the selection of DTL algorithms for a 

new IFD project have been detailed, as well as the future challenges and potential trends. This review 

article not only leads readers to easily understand the current state-of-the-art DTL techniques related 

to IFD and to quickly design an effective solution for solving IFD problems in practice, but also 

provides the main challenges facing IFD until it has wide adoption in practical manufacturing 

industry systems, as well as the future research trends, for researchers and scholars. 
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