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Abstract 

The purpose of this article is to propose a perturbation metaheuristic for the Vehicle Routing Problem with 

Private fleet and Common carrier (VRPPC). This problem consists of serving all customers such in a way 

that 1) each customer is served exactly once either by a private fleet vehicle or by a common carrier 

vehicle, 2) all routes associated with the private fleet start and end at the depot, 3) each private fleet vehicle 

performs only one route, 4) the total demand of any route does not exceed the capacity of the vehicle 

assigned to it, and 5) the total cost is minimized. This article describes a new metaheuristic for the VRPPC, 

which uses a perturbation procedure in the construction and improvement phases and also performs 

exchanges between the sets of customers served by the private fleet and the common carrier. Extensive 

computational results show the superiority of the proposed metaheuristic over previous methods. 

Key words: Heterogeneous Vehicle Routing Problem, Common carrier, Private fleet, Metaheuristic, 

Perturbation. 

Introduction 

The purpose of this article is to propose a perturbation metaheuristic for the Vehicle 

Routing Problem with Private fleet and Common carrier (VRPPC) defined as follows. 

Let ( ),G V A=  be a graph where { }0,...,V n=  is the vertex set and 

( ){ }, : , ,A i j i j V i j= ∈ ≠  is the arc set. Vertex 0 is a depot, while the remaining vertices 

represent customers. A private fleet of m  vehicles is available at the depot. The fixed 

cost of vehicle k  is denoted by kf , its capacity by kQ , and the demand of customer i  is 

denoted by iq . A travel cost matrix ( )ijc  is defined on A . If travel costs are vehicle 
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dependent, then ijc  can be replaced with ijkc , where { }1,...,k m∈ . Each customer i  can 

be served by a vehicle of the private fleet, in which case it is called an internal customer, 

or by a common carrier at a cost equal to ie , in which case it is called an external 

customer. The VRPPC consists of serving all customers such in a way that 1) each 

customer is served exactly once either by a private fleet vehicle or by a common carrier 

vehicle, 2) all routes associated with the private fleet start and end at the depot, 3) each 

private fleet vehicle performs only one route, 4) the total demand of any route does not 

exceed the capacity of the vehicle assigned to it, and 5) the total cost is minimized. In 

practice, several common carriers may be used to serve any of the customers unvisited by 

the private fleet. Typically, the one selected is the lowest cost carrier. It is not necessary 

to specify the routes followed by the common carrier because it charges a fixed amount 

ie  for visiting customer i , irrespective of visit sequence. 

As far as we are aware, the VRPPC was introduced by Chu (2005) who modeled the 

problem and solved it heuristically through a savings based construction procedure, 

followed by intra-route and inter-route exchanges. Bolduc, Renaud & Boctor (2005) later 

improved on Chu’s results by using more sophisticated exchanges. On ten instances 

( )29n ≤ , they reduced the average optimality gap from 13.36% to 0.69%. The single 

vehicle case was formulated by Volgenant & Jonker (1987) who showed that it can be 

transformed into a Traveling Salesman Problem (TSP), and solved exactly for 200n ≤  

by Diaby & Ramesh (1995). A related but different one-to-one pickup and delivery 

problem arising in a chemical firm was formulated and solved heuristically by Ball et al. 

(1983). Klincewicz, Luss & Pilcher (1990) have analyzed a fleet sizing problem in a 

context where the customer set is partitioned into sectors and one must determine the 

private and common carrier fleet size for each sector. 

This paper makes two main contributions. We first show that the VRPPC can be 

formulated as a Heterogeneous Vehicle Routing Problem (HVRP) (see, e.g., Gendreau et 

al. 1999; Li, Golden & Wasil 2006). Second, we introduce a new metaheuristic for the 

VRPPC. With respect to the method proposed by Bolduc, Renaud & Boctor (2005), 

called SRI, the metaheuristic uses a perturbation procedure in the construction and 

improvement phases and it also performs exchanges between the sets of customers served 
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by the private fleet and the common carrier. Our computational results show marked 

improvements over those of Bolduc, Renaud & Boctor (2005) on a set of 78 test instances 

( )50 480n≤ ≤ . 

The remainder of this article is organized as follow. Two formulations are presented in 

the next section, followed by the metaheuristic and computational results. 

Formulation 

Our first formulation uses the following variables: 

1 if vehicle  visits a vertex  immediatly after vertex 
0 otherwiseijk

k j i
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This formulation extended the classical Miller, Tucker & Zemlin (1960) formulation for 

the TSP. The objective function minimizes the sum of vehicle fixed costs, routing costs 

and common carrier costs. Constraints (2) specify that at most m  private fleet vehicles 

can be used in the solution, while constraints (3) indicate that the same vehicle k  must 

enter and leave customer h . Constraints (4) assign each customer either to an private 

vehicle or to a common carrier. Constraints (5) ensure that vehicle capacity is never 

exceeded. Constraints (6) eliminate subtours not including the depot. These were first 

introduced by Kulkarni & Bhave (1985) for the Vehicle Routing Problem (VRP). With 

respect to Chu’s model, this formulation corrects a number of mistakes and uses subtour 

elimination constraints proper to the VRP as opposed to the TSP. 

This formulation can be strengthened and simplified as follows. First, as shown by Kara, 

Laporte & Bektas (2004), constraints (6) can be lifted as follows: 

( )ik jk k ijk k i j jik k ju u Q x Q q q x Q q− + + − − ≤ −  { } { }( ), 1,..., , ; 1,...,i j n i j k m∈ ≠ ∈ . (11) 

 

Variables iky  can be eliminated through the use of constraints (3). Variables iz  can also 

be eliminated through the introduction of a dummy vehicle 0 used to visit all customers 

assigned to the common carrier. This is done by eliminating constraints (4), setting 

0
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The problem can then be formulated as follows: 
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 ( )ik jk k ijk k i j jik k ju u Q x Q q q x Q q− + + − − ≤ −   

  { } { }( ), 1,..., , ; 0,...,i j n i j k m∈ ≠ ∈  (17) 

 { }0,1ijkx ∈  { } { }( ), 0,..., , ; 0,...,i j n i j k m∈ ≠ ∈  (18) 

 0iku ≥  { } { }( )1,..., ; 0,..., .i n k m∈ ∈  (19) 

This model is precisely that of the HVRP. 

Metaheuristic 

Our metaheuristic, called RIP (Randomized construction – Improvement – Perturbation) 

contains three main steps embedded within loops and five basic procedures: 1) a 

randomized savings construction phase; 2) a 4-opt* route improvement procedure 

(Renaud, Boctor & Laporte 1996); 3) a 2*-interchange inter-route improvement 

procedure; 4) a 2-add-drop improvement procedure used to transfer customers between 

the private fleet and the common carrier, and 5) a switch procedure used to create a 

perturbation of a feasible solution. Our metaheuristic essentially combines a descent 

method (procedures 4-opt*, 2*-interchange and 2-add-drop) with two diversification 

strategies which have contributed to the success of several recent metaheuristics, namely 

the use of a randomized process to construct an initial solution, and the idea of 

perturbating a solution within an improvement cycle. Successful vehicle routing 

implementations of similar ideas in the literature include perturbation heuristics (Shi, 

Olafsson & Sun 1999; Renaud, Boctor & Laporte 2002; Cordeau et al. 2005), and ant 

colony algorithms (Reimann, Doerner & Hartl 2004). We now describe our five 

procedures, followed by the overall algorithm. 
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Procedure 1. Randomized savings construction phase 

Given a VRP with cost matrix ( )ijc , the Clarke & Wright (1964) savings heuristic first 

computes a savings matrix ( )ijs , where 0 0ij i j ijs c c c= + − . It then constructs back and 

forth routes ( )0, ,0i  { }( )1,...,i n∈  and iteratively merges a route ending at i  with a route 

starting at j  as long as the merged route is feasible. In the parallel version of the 

algorithm the feasible merge yielding the largest ijs  is implemented. It has been 

demonstrated (Yellow 1970; Golden, Magnanti & Nguyen 1977) that the performance of 

this algorithm can be improved by redefining the savings as 0 0ij i j ijs c c cλ= + − . Li, 

Golden & Wasil (2005) use 0.6λ = , 1.4 and 1.6 in their record-to-record heuristic. 

Because our construction phase is repeatedly applied in order to create a diversification 

effect, we define the savings as 0 0ij i j ij ijs c c cλ= + − , where ijλ  is randomly selected in an 

interval ,λ λ    according to a continuous uniform distribution. In our implementation, 

each customer is initially assigned to a common carrier. Routes are then merged as in the 

Clarke & Wright algorithm using the randomized savings, while routes containing at least 

two customers can be feasibly assigned to the private fleet. When no further merge is 

feasible, the solution cost is computed as in (1).  

Procedure 2. 4-opt* route improvement 

The 4-opt* route improvement procedure is applied to every individual route of the 

current solution. It was designed by Renaud, Boctor & Laporte (1996) as an improvement 

algorithm for the TSP. It implements eight of all 48 potential 4-opt moves (Lin 1965) 

having a high probability of yielding a positive cost reduction. This is achieved by 

executing a preliminary test comparing the cost of the removed edges to that of the 

inserted edges. Details can be found in the original reference. 

Procedure 3. 2*-interchange inter-route improvement 

In the λ-interchange procedure proposed by Osman (1993), every pair of routes is 

considered and up to λ  customers from a route are exchanged with up to λ  customers  

from another. It is common to use 2λ = . The case 1λ =  includes the relocation of a 



  7 

single customer to a different route and the exchange of two customers, each taken from a 

different route. We have implemented a restricted version of the 2-interchange procedure 

that operates on two chains ( )1 2, ,s s si i i+ +  and ( )1 2, ,t t tj j j+ +  belonging to two different 

routes. This restricted procedure considers 25 possible moves, assuming each route 

contains at least 3 customers and neither of the two chains constrains the depot. These 

moves are described in Table 1. 

If any of the two chains contains the depot, then any move inducing the transfer of depot 

is not implemented. If a route contains only two customers, then moves (16), (17) and 

(22) to (25) do not apply. Furthermore, the transfer of two consecutive vertices will 

empty one of the routes. Similarly, if one route contains only one customer only cases (1) 

to (11) apply and transferring the customer will empty its original route.  

In the spirit of 4-opt*, we only apply the restricted 2-interchange procedure if it is likely 

to decrease the routing cost. More specifically, we implement it if the cost of the largest 

removed arc is at least as large as that of the smallest inserted one, i.e., 

{ }
{ }

1 1 2 1 1 2

1 2 1 1 1 1 2 2 2 1 2 2

, , , ,

, , , , , , , , ,

max , , ,

min , , , , , , , , .
s s s s t t t t

s t s t s t s t s t s t s t s t s t

i i i i j j j j

i j i j i j i j i j i j i j i j i j

c c c c

c c c c c c c c c
+ + + + + +

+ + + + + + + + + + + +

≥
 (20) 

This test implicitly requires that all vehicles have the same variable routing cost. The 

restricted 2-interchange procedure containing this test is called the 2*-interchange 

procedure. In our computational experiments, we have found that the introduction of the 

test only has a negligible effect on solution quality but yields a computing time reduction 

of about 70% (see Table 5). 

The moves of the 2*-interchange procedure are applied to every chain of every route and 

to every pair of routes until no more improvement can be reached. Even if the application 

of the 2*-interchange procedure yields a routing cost reduction, it will not be 

implemented if no feasible assignment of vehicles to the resulting routes exists or if the 

overall cost of the modified solution exceeds that of the initial one due to larger vehicle 

fixed costs. 
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Table 1 – 25 possible moves for the restricted 2-interchange procedure 

Chain from route 1 Chain from route 2 
Original chains Move ( )1 2, ,s s si i i+ +  ( )1 2, ,t t tj j j+ +  

(1) ( )2,s si i +  ( )1 1 2, , ,t t s tj j i j+ + +  
Transfer of one vertex 

(2) ( )1 1 2, , ,s s t si i j i+ + +  ( )2,t tj j +  

Exchange of one vertex (3) ( )1 2, ,s t si j i+ +  ( )1 2, ,t s tj i j+ +  

(4) ( )1 2,t sj i+ +  ( )1 2, , ,t s s tj i i j+ +  

(5) ( )1 2, , ,s t t si j j i+ +  ( )1 2,s ti j+ +  

(6) ( )1 2,t sj i+ +  ( )1 2, , ,t s s tj i i j+ +  

(7) ( )1 2, , ,s t t si j j i+ +  ( )1 2,s ti j+ +  

(8) ( )2,t sj i +  ( )1 1 2, , ,t s s tj i i j+ + +  

(9) ( )1 1 2, , ,s t t si j j i+ + +  ( )2,s ti j +  

(10) ( )2,t sj i +  ( )1 1 2, , ,t s s tj i i j+ + +  

Exchange of two 
consecutive vertices 
against one vertex 

(11) ( )1 1 2, , ,s t t si j j i+ + +  ( )2,s ti j +  

(12) ( )1 2, ,t t sj j i+ +  ( )1 2, ,s s ti i j+ +  

(13) ( )1 2, ,t t sj j i+ +  ( )1 2, ,s s ti i j+ +  

(14) ( )1 2, ,t t sj j i+ +  ( )1 2, ,s s ti i j+ +  
Exchange of two 

consecutive vertices 

(15) ( )1 2, ,t t sj j i+ +  ( )1 2, ,s s ti i j+ +  

(16) ( )1 2, ,t s tj i j+ +  ( )1 2, ,s t si j i+ +  Exchange of two non-
consecutive vertices (17) ( )2 1, ,t s tj i j+ +  ( )2 1, ,s t si j i+ +  

(18) ( )2si +  ( )1 1 2, , , ,t t s s tj j i i j+ + +  

(19) ( )1 1 2, , , ,s s t t si i j j i+ + +  ( )2tj +  

(20) ( )2si +  ( )1 1 2, , , ,t t s s tj j i i j+ + +  
Transfer of two 

consecutive vertices 

(21) ( )1 1 2, , , ,s s t t si i j j i+ + +  ( )2tj +  

(22) ( )1si +  ( )1 2 2, , , ,t t s s tj j i i j+ + +  

(23) ( )1 2 2, , , ,s s t t si i j j i+ + +  ( )1tj +  

(24) ( )1si +  ( )1 2 2, , , ,t t s s tj j i i j+ + +  
Transfer of two non-
consecutive vertices 

(25) ( )1 2 2, , , ,s s t t si i j j i+ + +  ( )1tj +  
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Procedure 4. 2-add-drop improvement procedure 

The 2-add-drop improvement procedure repeatedly executes the following moves until no 

further improvement can be achieved: 1) transferring up to two customers from the 

private fleet to the common carrier or conversely and 2) swapping an internal customer 

with an external one. Reinsertions are performed according to a cheapest feasible 

insertion criterion. 

Procedure 5. Switch perturbation procedure 

The switch perturbation procedure swaps nτ    pairs of customers, where τ  is a user-

controlled parameter in [ ]0,1 . Each pair consists either of two internal customers 

belonging to two different routes, or of an internal and an external customer. The first 

customer of a pair is randomly selected. If it is internal, it is swapped with its closest 

neighbor not belonging to the same route. If it is external, it is swapped with its closest 

internal customer. After all swaps have been implemented, a feasibility check is 

conducted. For each infeasible route, randomly select an internal customer and transfer it 

to common carriers until the route became feasible. 

General description of the perturbation metaheuristic 

The perturbation metaheuristic works with five parameters: 

α  :  the number of applications of the randomized savings construction phase; 

;λ λ    :  the interval in which ijλ  is selected in the construction phase; 

τ  :  the percentage of customers moved in the switch perturbation procedure; 

β  :  the number of perturbation cycles; 

γ  : the number of restarts of the entire procedure. 

It can be summarized as follows. 

Step 1 (Initialization) 

Let *S  be the best known solution and let *z  be its cost. Initially, *S  is undefined and 
*z = ∞  and set the iteration counter 1θ = . 
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Step 2 (Randomized construction) 

Apply the randomized savings construction procedure α  times; retain the best solution 
*T . Set the perturbation iteration counter 1σ = . 

Step 3 (Improvement) 

Apply in turn to *T  the 4-opt* route improvement procedure, the 2*-interchange inter-

route improvement procedure and the 2-add-drop improvement procedure. Update *T , 
*S  and *z . 

Step 4 (Perturbation) 

If σ β> , go to Step 5. Otherwise, apply to *T  the switch perturbation procedure; update 
*T , *S  and *z . Set 1σ σ= +  and go to Step 3. 

Step 5 (Restart) 

If θ γ> , stop. Otherwise, set 1θ θ= +  and go to Step 2. 

Computational results 

The RIP metaheuristic was coded in Visual Basic and run on a personal computer 

equipped with a Xeon 3.6 GHz processor and 1.00 Gb of RAM under Windows XP. All 

reported times are expressed in seconds and all statistics are averages over the tested 

instances. We first describe our test instances, followed by the obtained results. 

Test instances 

Two sets of instances were used to assess the performance of the tested heuristics. For the 

34 instances of the first set (Table 2), the fleet is composed of a limited number of 

homogeneous vehicles, while the fleet for the 44 instances of the second set (Table 3) is 

limited and heterogeneous. The first set is divided into two subsets: the 14 instances 

subset of Christofides & Eilon (1969) and the 20 instances proposed by Golden et al. 

(1998). The name of these instances starts respectively with CE and G in Table 2. For all 

these instances, customer coordinates, customer demands and vehicle capacities are the 

same as in the original problems. The number of vehicles was set equal to 0.8q Q   , 
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where q is the sum of all customer demands and Q  is the capacity of the vehicle fleet. 

The vehicle variable cost is set equal to 1 per unit of distance and the fixed cost f is set 

equal to the average route length within the best known solution of the original 

corresponding instance rounded to the nearest 20. The common carrier cost for customer 

i , denoted by ie , is set equal to 0i if n cµ+ , where n  is the average number of customers 

per route according to the best known solution of the corresponding original instance, and 

iµ  is a factor related to the demand of customer i. This factor allows the creation of a 

realistic transportation function cost similar to that used by common carriers. For a given 

instances, let minq  be the lowest demand, let maxq  be the highest one, and 

( )max min 3q qη = − , then : 

 
[ [
[ [

[ ]

min min

min min

min max

1,  if ,

1.5,  if , 2

2,  if 2 , .

i

i i

i

q q q

q q q

q q q

η

µ η η

η

 ∈ +


= ∈ + +
 ∈ +

 (21) 

The set of instances with heterogeneous fleet is divided into the three subsets (Table 3). 

The first subset contains the five small instances (instances beginning with Chu-H in 

Table 3) used by Chu (2005), and the five instances (instances beginning with B-H in 

Table 3), used by Bolduc, Renaud & Boctor (2005). Details can be found in these 

references. The second and third subsets were generated from the instances of 

Christofides & Eilon (1969) and from those of Golden et al. (1998). These begin 

respectively with CE-H and G-H. The fleet of these two subsets is composed of three 

vehicle types. The capacity and fixed cost of these three vehicle types are 80%, 100% and 

120% of those used for the homogeneous fleet instances. The number of vehicles of each 

type was randomly generated in such a way that the total capacity is about 80% of the 

total demand. In Table 2 and Table 3, n is the number of customers, m is the number of 

vehicles, Q is the vehicle capacity, f is the vehicle fixed cost, and c is the cost of unit of 

distance. Table 3 gives the value of these parameters for the three vehicle types A, B and 

C. These instances are available at http://www.mcbolduc.com/VRPPC/tests.htm. 

Small test instances Chu-H and B-H were solved to optimality using the commercial MIP 

code Cplex 9.0. In the following, solutions quality will be measured by the percentage 
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deviation above the optimal solution value for instances Chu-H and B-H, and above the 

best solution value found in our computational tests for the other homogeneous and 

heterogeneous instances, set CE, G, CE-H and G-H. 

Table 2 – Characteristics of instances with homogeneous limited fleet 

Instances n m Q f c
CE-01 50 4 160 120 1.00
CE-02 75 9 140 100 1.00
CE-03 100 6 200 140 1.00
CE-04 150 9 200 120 1.00
CE-05 199 13 200 100 1.00
CE-06 50 4 160 140 1.00
CE-07 75 9 140 120 1.00
CE-08 100 6 200 160 1.00
CE-09 150 10 200 120 1.00
CE-10 199 13 200 120 1.00
CE-11 120 6 200 180 1.00
CE-12 100 8 200 120 1.00
CE-13 120 6 200 260 1.00
CE-14 100 7 200 140 1.00
G-01 240 7 550 820 1.00
G-02 320 8 700 1060 1.00
G-03 400 8 900 1380 1.00
G-04 480 8 1000 1720 1.00
G-05 200 4 900 1620 1.00
G-06 280 5 900 1700 1.00
G-07 360 7 900 1460 1.00
G-08 440 8 900 1480 1.00
G-09 255 11 1000 60 1.00
G-10 323 13 1000 60 1.00
G-11 399 14 1000 80 1.00
G-12 483 15 1000 80 1.00
G-13 252 21 1000 60 1.00
G-14 320 23 1000 60 1.00
G-15 396 26 1000 60 1.00
G-16 480 29 1000 60 1.00
G-17 240 18 200 40 1.00
G-18 300 22 200 60 1.00
G-19 360 26 200 60 1.00
G-20 420 31 2000 60 1.00  
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Table 3 – Characteristics of the instances with heterogeneous limited fleet 

mA Q A f A c A m B Q B f B c B m C Q C f C c C
Chu-H-01 5 1 40 60 1.50 1 30 50 1.50
Chu-H-02 10 1 75 120 1.50 1 65 100 1.50
Chu-H-03 15 1 110 150 1.50 1 100 140 1.50 1 90 130 1.50
Chu-H-04 22 1 4500 250 1.50 1 4000 200 1.50
Chu-H-05 29 1 4500 250 1.50 1 4000 200 1.50 1 3500 180 1.50

B-H-01 5 1 40 60 1.50 1 30 50 1.50
B-H-02 10 1 75 120 1.50 1 65 100 1.50
B-H-03 15 1 110 150 1.50 1 100 140 1.50 1 90 130 1.50
B-H-04 22 1 4500 250 1.50 1 4000 200 1.50
B-H-05 29 1 4500 250 1.50 1 4000 200 1.50 1 3500 180 1.50

CE-H-01 50 2 160 140 1.00 2 192 168 1.00
CE-H-02 75 4 112 80 1.00 5 168 120 1.00
CE-H-03 100 2 160 112 1.00 2 200 140 1.00 2 240 168 1.00
CE-H-04 150 2 160 96 1.00 4 200 120 1.00 3 240 144 1.00
CE-H-05 199 7 160 80 1.00 5 200 100 1.00 2 240 120 1.00
CE-H-06 50 1 128 112 1.00 2 160 140 1.00 1 192 168 1.00
CE-H-07 75 4 112 96 1.00 3 140 120 1.00 2 168 144 1.00
CE-H-08 100 1 160 128 1.00 1 200 160 1.00 4 240 192 1.00
CE-H-09 150 4 160 96 1.00 3 200 120 1.00 3 240 144 1.00
CE-H-10 199 2 160 96 1.00 5 200 120 1.00 6 240 144 1.00
CE-H-11 120 2 160 144 1.00 2 200 180 1.00 2 240 216 1.00
CE-H-12 100 2 160 96 1.00 3 200 120 1.00 3 240 144 1.00
CE-H-13 120 1 160 208 1.00 4 200 260 1.00 1 240 312 1.00
CE-H-14 100 1 160 96 1.00 1 200 120 1.00 5 240 144 1.00
G-H-01 240 3 440 656 1.00 1 550 820 1.00 3 660 984 1.00
G-H-02 320 2 560 848 1.00 2 700 1060 1.00 4 840 1272 1.00
G-H-03 400 3 720 1104 1.00 3 900 1380 1.00 2 1080 1656 1.00
G-H-04 480 2 800 1376 1.00 4 1000 1720 1.00 2 1200 2064 1.00
G-H-05 200 2 720 1296 1.00 2 900 1620 1.00
G-H-06 280 3 720 1360 1.00 2 900 1700 1.00 1 1080 2040 1.00
G-H-07 360 3 720 1168 1.00 1 900 1460 1.00 3 1080 1752 1.00
G-H-08 440 1 720 1184 1.00 2 900 1480 1.00 5 1080 1776 1.00
G-H-09 255 6 800 48 1.00 3 1000 60 1.00 3 1200 72 1.00
G-H-10 323 3 800 48 1.00 3 1000 60 1.00 6 1200 72 1.00
G-H-11 399 6 800 64 1.00 8 1000 80 1.00 1 1200 96 1.00
G-H-12 483 6 800 64 1.00 6 1000 80 1.00 4 1200 96 1.00
G-H-13 252 6 800 48 1.00 4 1000 60 1.00 10 1200 72 1.00
G-H-14 320 11 800 48 1.00 2 1000 60 1.00 11 1200 72 1.00
G-H-15 396 7 800 48 1.00 9 1000 60 1.00 10 1200 72 1.00
G-H-16 480 12 800 48 1.00 6 1000 60 1.00 11 1200 72 1.00
G-H-17 240 4 160 32 1.00 7 200 40 1.00 6 240 48 1.00
G-H-18 300 7 160 48 1.00 9 200 60 1.00 6 240 72 1.00
G-H-19 360 9 160 48 1.00 7 200 60 1.00 10 240 72 1.00
G-H-20 420 16 160 48 1.00 6 200 60 1.00 10 240 72 1.00

Vehicle type
CInstances n A B
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Randomized savings construction and best parameters 

We first conducted tests for the randomized savings construction procedure over all 

78 instances with several values of the parametersλ , λ  andα . For Table 4 to Table 8, 

average results are presented for each set of instances. For the homogeneous instances, 

sets CE and G contain respectively 14 and 20 instances. For the heterogeneous instances, 

sets Chu-H, B-H, CE-H and G-H contain respectively 5, 5, 14 and 20 instances. Table 4 

gives the average percentage of deviation (%) with respect to either the optimal solution 

(for small instances, set Chu-H and B-H) or the best known solution. We observe that the 

percentage deviation from the optimal or best known solutions decreases as α  increases 

while computational time increases. In our RIP metaheuristic, we will use 10α =  

because it offers a good compromise between solution quality and computation time. The 

results obtained with 20α =  are slightly better than those obtained with 10α =  but 

require about twice the computation time. Also, the table indicates that for 10α = , the 

best results were obtained with ( ) ( ), 0.9,1.1λ λ =  for the homogeneous fleet instances 

(average deviation of 8.90% over the 34 instances), and with ( ) ( ), 0.8,1.2λ λ =  for the 

heterogeneous fleet instances (average deviation of 6.99% over the 44 instances). These 

values will be used within our computational tests. 
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Table 4 – Results of the randomized savings construction procedure 

Instances % sec. % sec. % sec. % sec.
CE 7.92 0.21 6.78 0.93 6.28 1.86 5.66 3.57
G 13.60 1.75 12.56 8.10 11.99 16.20 11.51 31.90
All 11.26 1.12 10.18 5.15 9.64 10.29 9.10 20.24
CE 7.92 0.21 5.91 0.86 5.61 2.07 5.18 3.64
G 13.60 1.70 11.72 8.40 11.34 16.60 10.92 32.90
All 11.26 1.09 9.32 5.29 8.98 10.62 8.56 20.85
CE 7.92 0.14 5.66 0.79 5.33 2.00 5.00 3.50
G 13.60 1.65 11.81 8.25 11.40 16.55 11.14 33.50
All 11.26 1.03 9.28 5.18 8.90 10.56 8.61 21.15

Instances % sec. % sec. % sec. % sec.
Chu-H 7.71 0.00 3.98 0.00 2.58 0.40 1.93 0.40

B-H 7.61 0.00 7.02 0.25 6.68 0.25 4.93 0.25
CE-H 6.95 0.07 5.67 0.93 5.27 1.64 4.76 3.64
G-H 12.00 1.65 11.04 8.15 10.24 16.15 9.97 31.95
All 9.40 0.77 8.07 4.03 7.38 7.94 6.83 15.76

Chu-H 7.71 0.00 3.52 0.00 2.26 0.00 1.80 0.00
B-H 7.61 0.00 6.79 0.00 6.49 0.20 6.22 0.20

CE-H 6.95 0.14 5.09 0.79 4.81 1.50 4.61 3.29
G-H 12.00 1.90 10.43 8.55 9.83 16.40 9.64 32.85
All 9.40 0.91 7.53 4.14 6.99 7.95 6.76 16.00

Chu-H 7.71 0.00 6.75 0.00 6.73 0.00 6.48 0.20
B-H 7.61 0.00 6.86 0.00 6.86 0.00 6.11 0.00

CE-H 6.95 0.00 4.96 0.79 4.48 1.93 3.95 3.50
G-H 12.00 1.90 10.35 8.65 10.08 17.05 9.33 33.75
All 9.40 0.86 7.83 4.18 7.55 8.36 6.93 16.48

HOMOGENEOUS INSTANCES

[0.8, 1.2]

[0.7, 1.3]

α  = 10 α  = 20

α  = 1 α  = 5 α  = 10 α  = 20

[0.9, 1.1]

[0.7, 1.3]

[0.8, 1.2]

α  = 5α  = 1

[0.9, 1.1]

HETEROGENEOUS INSTANCES

,λ λ  

,λ λ  

 

2*-interchange improvement and best parameters 

We have conducted tests to compare the 2-interchange and the 2*-interchange inter-route 

improvement procedures and to determine the effect of Equation 19 on both solution 

quality and computational times. Table 5 gives the average results obtained by applying 

once these two improvement procedures to the solution given by the randomized savings 

construction procedure. We observe that the percentage deviation given by the both 

interchange procedures is the same (4.43 %) for the 34 homogeneous instances and 

almost the same (3.42 % versus 3.43 %) for the 44 heterogeneous instances. However, 

the 2*-interchange improvement procedure requires about 30% of the computation time 
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required by the 2-interchange procedure. Thus, the 2*-interchange inter-route 

improvement procedure will be used in our tests. 

Table 5 – Comparison between inter-route interchange procedures 

Instances % sec. % sec.
CE 3.10 0.29 3.10 0.07
G 5.36 2.05 5.36 0.65
All 4.43 1.32 4.43 0.41

Instances % sec. % sec.
Chu-H 2.08 0.00 2.08 0.00

B-H 0.13 0.20 0.13 0.00
CE-H 3.07 0.07 3.09 0.00
G-H 4.83 1.85 4.83 0.45
All 3.42 0.89 3.43 0.20

2-interchange 2*-interchange
HETEROGENEOUS INSTANCES

HOMOGENEOUS INSTANCES
2-interchange 2*-interchange

 

Switch perturbation and best parameters 

Tests were conducted to determine the effect of β , the number of perturbation cycles, 

and τ , the percentage of customers to move in the switch procedure. Several values of β  

(5, 10, 20 and 30) and τ  (4, 5 and 6%) were used within the RIP metaheuristic which 

was applied to solve all test instances with only one start ( )1γ = .  

Table 6 shows the average percentage deviation from either the optimal or the best 

known solutions (%) and the corresponding computation times in seconds. It is worth 

noting that other values of these two parameters were tested. We only report the results 

for the most promising values. As expected, solution quality and computation times 

increase with β . The best results were obtained with 30β =  and 5%τ =  with a average 

deviation of 2.87 % and 2.18 % for homogeneous and heterogeneous instances, 

respectively. However, using 20β =  and 5%τ =  seems to offer a good compromise 

between solution quality and computation time. These values generated deviation of 

3.02 % in 24.29 seconds for homogeneous instances and of 2.34 % in 18.64 seconds for 

heterogeneous instances. These parameter values will be used within our complete RIP 

metaheuristic. 
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Table 6 – Results of the switch perturbation procedure in function of β  and τ  

Instances τ % sec. % sec. % sec. % sec.
CE 3.09 3.79 3.03 4.43 2.65 5.43 2.40 6.43
G 4.81 26.05 4.55 29.70 4.08 37.35 3.87 44.70
All 4.10 16.88 3.92 19.29 3.49 24.21 3.27 28.94
CE 2.87 2.64 2.73 3.07 2.26 4.14 2.15 5.00
G 4.41 26.20 4.02 30.60 3.56 38.40 3.38 46.25
All 3.78 16.50 3.49 19.26 3.02 24.29 2.87 29.26
CE 3.09 2.57 2.64 3.36 2.47 4.14 2.20 5.36
G 4.46 26.15 4.16 30.45 3.62 38.60 3.36 46.65
All 3.89 16.44 3.54 19.29 3.15 24.41 2.88 29.65

Instances τ % sec. % sec. % sec. % sec.
Chu-H 2.06 0.20 2.06 0.20 2.06 0.20 2.06 0.20

B-H 0.04 0.00 0.04 0.00 0.04 0.00 0.04 0.20
CE-H 2.74 2.43 2.47 4.14 2.33 4.14 2.18 5.00
G-H 4.15 31.65 3.87 36.35 3.55 44.45 3.39 52.70
All 2.99 15.18 2.78 17.86 2.60 21.55 2.47 25.59

Chu-H 0.11 0.00 0.11 0.20 0.11 0.20 0.11 0.20
B-H 0.04 0.20 0.04 0.40 0.04 0.40 0.04 0.40

CE-H 2.69 2.43 2.59 4.00 2.30 4.00 2.08 5.21
G-H 4.26 25.65 3.92 29.80 3.49 38.05 3.29 45.80
All 2.81 12.45 2.62 14.89 2.34 18.64 2.18 22.55

Chu-H 2.06 0.00 2.06 0.00 2.06 0.00 2.06 0.20
B-H 0.08 0.00 0.04 0.00 0.00 0.00 0.00 0.00

CE-H 2.81 2.71 2.56 4.50 2.43 4.50 2.27 5.57
G-H 4.06 26.15 3.62 30.40 3.32 38.75 3.14 46.80
All 2.98 12.75 2.70 15.25 2.52 19.05 2.38 23.07

4%

5%

6%

β = 5 β = 10 β = 20 β = 30

4%

5%

6%

HETEROGENEOUS INSTANCES

HOMOGENEOUS INSTANCES
β = 5 β = 10 β = 20 β = 30

 

The RIP metaheuristic and number of restarts 

The number of restarts γ  has a significant effect, both on solution quality and on 

computation time. As shown in Table 7, the percentage deviation with respect to the best 

known solution decreases as γ  increases. Also, as could be expected, computational time 

is almost a linear function of γ . With 50γ = , the RIP metaheuristic generated average 

deviation of 1.07 % in 1047.15 seconds for the homogeneous instances and of 0.78 % in 

812.73 seconds for the heterogeneous instances. 
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Table 7 – Results of the RIP metaheuristic in function of the number of restarts γ  

Instances % sec. % sec. % sec. % sec. % sec.
CE 2.26 4.14 1.57 18.29 1.29 36.64 0.88 107.21 0.75 178.14
G 3.56 38.40 2.72 165.20 2.07 332.35 1.52 996.50 1.29 1 655.45
All 3.02 24.29 2.25 104.71 1.75 210.59 1.26 630.32 1.07 1 047.15

Instances % sec. % sec. % sec. % sec. % sec.
Chu-H 0.11 0.20 0.07 0.40 0.07 1.00 0.07 2.80 0.07 4.40

B-H 0.04 0.40 0.04 1.00 0.04 2.00 0.04 4.80 0.04 7.80
CE-H 2.30 4.00 1.35 18.21 1.11 36.57 0.69 108.64 0.63 180.79
G-H 3.49 38.05 2.50 165.85 2.09 336.75 1.48 996.95 1.25 1 658.40
All 2.34 18.64 1.58 81.34 1.31 165.05 0.91 488.59 0.78 812.73

γ = 30 γ = 50γ = 1
HETEROGENEOUS INSTANCES

γ = 5 γ = 10

HOMOGENEOUS INSTANCES
γ = 5 γ = 10 γ = 30 γ = 50γ = 1

 

We also ran Chu’s heuristic to solve the 10 small heterogeneous test instances. To do so, 

we used a computer code provide by Chu. Unfortunately, this code failed to solve the 

other test instances. We also compared our solutions to those obtained by the SRI 

heuristic (Bolduc, Renaud & Boctor 2005). For these instances, all computations use 

truncated distances as was done by Chu. Table 8 compares the solution value (z) obtained 

for the 10 small instances by Chu’s heuristic, the SRI heuristic and the RIP metaheuristic. 

It shows that the RIP metaheuristic outperforms the other two heuristics with an average 

deviation from the optimum of 0.07 % on Chu’s instances and of 0.04 % on B-H 

instances. However, it is clear that the RIP requires much longer computation times. 
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Table 8 – Results of small heterogeneous instances 

z sec. z sec. z sec.
Chu-H-01 387.50  387.50  0.02    387.50  0.00    387.50  0.35    
Chu-H-02 586.00  631.00  0.03    586.00  0.02    586.00  1.90    
Chu-H-03 823.50  900.00  0.08    826.50  0.03    826.50  3.50    
Chu-H-04 1 389.00  1 681.50  0.06    1 389.00  0.08    1 389.00  5.85    
Chu-H-05 1 441.50  1 917.00  0.28    1 444.50  0.09    1 441.50  10.40    
Average 14.20% 0.09    0.11% 0.04    0.07% 4.40    
B-H-01 423.50  503.00  0.02    423.50  0.02    423.50  1.85    
B-H-02 476.50  476.50  0.05    476.50  0.02    476.50  3.65    
B-H-03 777.00  884.00  0.11    804.00  0.03    778.50  4.75    
B-H-04 1 521.00  1 737.00  0.06    1 564.50  0.09    1 521.00  15.85    
B-H-05 1 609.50  1 864.50  0.16    1 609.50  0.13    1 609.50  12.90    

Average 12.52% 0.08    1.27% 0.06    0.04% 7.80    
All 13.36% 0.09    0.69% 0.05    0.06% 6.10    

RIPInstances Optimum Chu SRI

 

Finally, Table 9 gives the solution values of instances with homogeneous fleet, while 

Table 10 contains results for the heterogeneous fleet instances. These tables compare the 

results obtained with the RIP metaheuristic to those obtained with the SRI heuristic and 

give the best known solution for each instance. The RIP metaheuristic produced an 

average percentage of deviation of 0.75% and 1.29% for the CE and G homogeneous 

instances, respectively. The SRI heuristic yields an average deviation of 4.20% and 

4.18% for the same instances. For the heterogeneous instances, the RIP metaheuristic 

gives an average deviation of 0.63% and 1.25% for the CE-H and G-H instances, 

respectively, while the SRI yields an average deviation of 3.45% for both sets. The RIP 

metaheuristic is about 100 times slower than the SRI heuristic. This is mainly due to the 

repetition of the inter-route interchange procedure 1000 times because 20β =  and 

50γ = . 
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Table 9 – Global results for instances with homogeneous limited fleet 

Best
z sec. z sec. z

CE-01 1 199.99   0         1 132.91   25      1 119.47   
CE-02 1 890.33   0         1 835.76   73      1 814.52   
CE-03 2 050.33   1         1 959.65   107      1 937.23   
CE-04 2 694.72   1         2 545.72   250      2 528.36   
CE-05 3 228.67   3         3 172.22   474      3 107.04   
CE-06 1 282.94   0         1 208.33   25      1 207.47   
CE-07 2 092.32   0         2 006.52   71      2 006.52   
CE-08 2 163.32   1         2 082.75   110      2 052.05   
CE-09 2 526.82   1         2 443.94   260      2 436.02   
CE-10 3 511.02   3         3 464.90   478      3 407.13   
CE-11 2 375.71   1         2 333.03   195      2 332.21   
CE-12 2 037.54   0         1 953.55   128      1 953.55   
CE-13 2 916.21   1         2 864.21   188      2 858.94   
CE-14 2 220.77   1         2 224.63   110      2 216.68   

Average 4.20% 0.93 0.75% 178.14
G-01 14 675.33   4         14 388.58   651      14 160.77   
G-02 20 108.84   9         19 505.00   1 178      19 234.03   
G-03 26 046.80   16         24 978.17   2 061      24 646.79   
G-04 36 234.51   27         34 957.98   3 027      34 607.12   
G-05 15 751.31   5         14 683.03   589      14 249.82   
G-06 23 255.65   8         22 260.19   1 021      21 703.54   
G-07 25 298.48   13         23 963.36   1 628      23 549.53   
G-08 30 899.74   18         30 496.18   2 419      30 173.53   
G-09 1 378.67   4         1 341.17   832      1 336.91   
G-10 1 646.91   8         1 612.09   1 294      1 598.76   
G-11 2 238.57   14         2 198.45   2 004      2 179.71   
G-12 2 597.14   17         2 521.79   2 900      2 503.71   
G-13 2 339.93   5         2 286.91   802      2 268.32   
G-14 2 825.76   8         2 750.75   1 251      2 704.01   
G-15 3 269.96   12         3 216.99   1 862      3 171.20   
G-16 3 784.63   19         3 693.62   2 778      3 654.20   
G-17 1 732.70   5         1 701.58   806      1 677.22   
G-18 2 821.82   8         2 765.92   1 303      2 742.72   
G-19 3 614.59   11         3 576.92   1 903      3 528.36   
G-20 4 439.45   15         4 378.13   2 800      4 352.95   

Average 4.18% 11.30 1.29% 1655.45
All 4.19% 7.03 1.07% 1047.15

Instances SRI RIP
Standard
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Table 10 – Global results for instances with heterogeneous limited fleet 

Best
z sec. z sec. z

CE-H-01 1 220.72   0 1 192.72   26 1 191.70   
CE-H-02 1 858.24   0 1 798.26   72 1 790.67   
CE-H-03 1 999.91   1 1 934.85   105 1 919.05   
CE-H-04 2 615.95   1 2 493.93   251 2 475.16   
CE-H-05 3 248.26   3 3 195.66   490 3 146.45   
CE-H-06 1 264.72   0 1 210.23   25 1 204.48   
CE-H-07 2 093.48   1 2 042.79   74 2 025.98   
CE-H-08 2 058.81   0 2 015.72   112 1 984.36   
CE-H-09 2 570.57   2 2 445.88   267 2 438.73   
CE-H-10 3 391.25   3 3 304.69   482 3 267.85   
CE-H-11 2 334.41   1 2 308.76   188 2 303.13   
CE-H-12 1 924.92   0 1 908.74   130 1 908.74   
CE-H-13 2 925.27   1 2 842.18   195 2 842.18   
CE-H-14 1 957.63   1 1 920.36   114 1 907.74   
Average 3.45% 1.00 0.63% 180.79
G-H-01 14 599.16   4 14 408.31   647 14 251.75   
G-H-02 18 945.77   13 18 663.15   1254 18 560.07   
G-H-03 26 151.24   13 25 561.55   2053 25 356.63   
G-H-04 36 519.42   22 35 495.66   2904 34 589.11   
G-H-05 17 173.22   3 16 138.50   512 15 667.13   
G-H-06 21 083.42   8 20 329.04   1005 19 975.32   
G-H-07 24 854.96   14 24 184.83   1608 23 510.98   
G-H-08 28 412.97   21 27 710.66   2584 27 420.68   
G-H-09 1 371.98   5 1 346.03   814 1 331.83   
G-H-10 1 599.77   8 1 575.82   1332 1 561.52   
G-H-11 2 249.11   14 2 218.91   2140 2 195.31   
G-H-12 2 573.81   19 2 510.07   2970 2 487.38   
G-H-13 2 325.09   5 2 253.45   733 2 239.18   
G-H-14 2 783.74   10 2 711.81   1246 2 682.85   
G-H-15 3 224.50   13 3 156.93   1895 3 131.89   
G-H-16 3 740.85   22 3 649.09   2785 3 629.41   
G-H-17 1 741.66   4 1 705.48   762 1 695.75   
G-H-18 2 787.10   7 2 759.99   1299 2 740.05   
G-H-19 3 518.50   11 3 517.48   1892 3 464.70   
G-H-20 4 362.31   15 4 413.82   2733 4 352.35   

Average 3.45% 11.55 1.25% 1658.40
All 3.45% 7.21 1.00% 1049.97

Instances SRI RIP
Standard

 

Conclusion 

We have described a new metaheuristic for the Vehicle Routing Problem with Private 

fleet and Common carrier. This metaheuristic uses a perturbation procedure during the 

construction and improvement phases and it also makes use of a streamlined family of 
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edge exchanges. Extensive computational results obtained on several sets of benchmark 

instances show that the proposed metaheuristic generates much better solutions than two 

previous methods. In particular, on instances for which the optimum is known, it yields 

average optimality gaps of 0.07% or 0.04%, depending on the set of instances used in the 

comparison. 
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