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A PERTURBATION METHOD IN CRITICAL POINT THEORY
AND APPLICATIONS
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ABBAS BAHRI AND HENRI BERESTYCKI

Abstract. This paper is concerned with existence and multiplicity results for
nonlinear elliptic equations of the type -Au = |u|''_1u + h(x) in P», u = 0 on 3ß.
Here, ß c R^ is smooth and bounded, and h e L2(Q) is given. We show that there
exists pN > 1 such that for any p e (\,pN) and any h e L2(Í2), the preceding
equation possesses infinitely many distinct solutions.

The method rests on a characterization of the existence of critical values by
means of noncontractibility properties of certain level sets. A perturbation argu-
ment enables one to use the properties of some associated even functional. Several
other applications of this method are also presented.

1. Introduction. In this paper, we study nonlinear elliptic problems of the type

I -Am = \u\p    u + h{x)    in S2, /, i\
{ u = 0   on 9fi.

Here, Q c R^ is a smooth and bounded domain, p > 1, and h is some given
function in L2(S2).

In the case (1.1) is odd, that is h = 0, and 1 < p < (N + 2)/(N - 2)ií N > 3 or
1 <p < +00 if N = 2, it is well known that (1.1) has infinitely many distinct
solutions (uk)kfEN associated with critical values I*(uk) of the functional

such that limA:_+0O I*{uk) = + oo. Results of this kind were obtained by Coffman
[10], Hempel [16], Ambrosetti [3], Rabinowitz [21], and for the most general odd
nonlinearities by Ambrosetti and Rabinowitz [4] and Rabinowitz [22]. In these
works, the methods rely on the use of Lusternik-Schnirelman theory or rather on
the notion of genus for symmetric sets. Therefore, the fact that (1.1) is odd (or
equivalently that /* is even) is essential for applying these techniques.

A natural and open question is to know whether the infinite number of solutions
persists under perturbations of the odd equation. In particular, does (1.1) possess
infinitely many solutions when h ^ 0 for values of p in the same range as before?
Actually, even the existence of at least one solution of (1.1) is not known when
N > 2, for arbitrary h G L2(ñ). The only previous result in that direction for
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2 ABBAS BAHRI AND HENRI BERESTYCKI

N > 2 is, to our knowledge, a perturbation theorem of A. Ambrosetti [2] stating, in
the case of (1.1), that for any number v G N, there exists e„ > 0 such that if
||A||¿2(H) < e„, then problem (1.1) has at least v distinct solutions. A much more
general perturbation-multiplicity result will be derived here in §7. Let us remark
that the existence of at least one solution of (1.1) for ||/i||£2(s2) small enough is a
straightforward application of the implicit function theorem.

The results we obtain for (1.1) can be considered as a first and partial answer to
the questions mentioned above. We denote by / the energy associated with (1.1):

I(u) =1 (\Vu\2 dx-!— (\u\p + l dx - fhudx. (1.3)
2 -V P + 1 Ja Ja

Our main result for (1.1) is

Theorem 1.1. For all N > 2, denote by pN the largest root of the equation
(2N - 2)p2 - (N + 2)p - N = 0, (pN > 1). For any p G (l,pN) and for any h G
L2(Q,) problem (1.1) has infinitely many distinct solutions (uk), k G N, such that
lim*->+oo '("*) = + oo.

Remark 1.2. In dimension JV = 1, a much more general result was established by
Ehrmann [14] and Fucik and Lovicar [15]. They show that the ordinary differential
equation (in_y = y(x))

-y" = f(y) + h(x),     xg(o, l),
y(0) = y(l) = 0

has infinitely many distinct solutions under essentially the sole assumption

lim    ^=+oo.
>>->±oo    y

The method employed in [14], [15] is purely O.D.E. in nature: It relies on a
"shooting" argument combined with counting the oscillations of the solutions of
(1.4) on (0, 1). Thus, it cannot be extended neither to higher dimensions, nor, at
least seemingly, to systems of ordinary differential equations, nor to nonlocal
equations in one variable.    □

Remark 1.3. It is easily checked that one always has

1 <pN< {N+2)/{N -2).
Complementary results to Theorem 1.1 for (1.1) have been obtained by one of the
authors (A. Bahri [5], [6]). He shows in particular that for any p, such that
1 <p < (N + 2)/(N - 2) if N > 3 (and 1 <p if N = 2), problem (1.1) has
infinitely many solutions for a dense set of h in H ~ '(ß). Actually, a stronger result
is derived in [5], [6]. Defining an e-solution of (1.1) (e > 0) as a function u G //0'(ñ)
such that

\\Au+\u\p-lu + A(*)|U-(B) <e-
it is proved in [5], [6] that for any e > 0, (1.1) possesses infinitely many distinct
e-solutions. (We also refer to [5], [6] for a new proof of the fact that (1.1) has
infinitely many distinct solutions in the odd case, i.e. h = 0, which uses an
application of Brouwer's fixed point theorem.)
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A perturbation method in critical point THEORY 3

The preceding result leads us to believe that the definition of pN in Theorem 1.1
is only due to a limitation of the method we use. It seems natural to conjecture that
the result of Theorem 1.1 remains valid for any p G (1, (N + 2)/(N — 2)) when
N > 3 and any p > 1 when N = 2.    □

Remark 1.4. Existence of critical values for perturbations of even functionals has
been studied in Krasnosel'skii [17], Ambrosetti [2] and Marino and Prodi [18]. (In
the latter, one can also find applications to some fourth order elliptic equations.)
D

The proof of Theorem 1.1 will be delayed until §5. Rather than working directly
with the functional I(u) defined in (1.3), we will prove the existence of critical
values for the "constrained" functional

J(u) = max /(Au)

defined on the sphere S = {u G H¿(Q), fn\^u\2 dx = 1}. Indeed, we show in §4
that the positive critical values of J (on S) and / (in //0'(ß)) are the same. In the
next two sections we derive some general properties concerning the critical values
of a functional on a sphere. The principle for perturbing critical values of an even
functional is stated in §3.

We prove the same result as Theorem 1.1 for (1.1) with an odd nonlinearity
g(x, u) more general than Im^-'« in §6. We have nevertheless separated the
particular case g(u) = |m|p-1m because the arguments are somewhat more trans-
parent in this case. Another application of this method to a "perturbation and
multiplicity" result for nonlinear elliptic equations is presented in §7. In forthcom-
ing papers [8], [9], we apply some related methods to prove the existence of
infinitely many distinct periodic solutions of some Hamiltonian systems in the
presence of periodic "forcing" terms.

The paper is organized as follows:
1. Introduction.
2. Contractibility properties and critical values.
3. Perturbation of critical values of an even functional.
4. A functional on the sphere associated with (1.1).
5. Proof of Theorem 1.1.
6. More general nonlinearities.
7. A perturbation and multiplicity result.
Some of the results presented here have been announced in [7].
The authors are much thankful to Professor P. H. Rabinowitz for several

stimulating discussions on this work and on many related subjects.1

2. Contractibility properties and critical values. Let H be a real Hubert space with
norm || • ||. Let 5 = {x G //; ||x|| = 1} denote the unit sphere. We consider a

'After this manuscript was completed the authors have learned from Professor P. H. Rabinowitz that
results which are related to Theorem 1.1 and to those of §6 have been obtained independently by
Michael Struwe.
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4 ABBAS BAHRI AND HENRI BERESTYCKI

functional J G C2(S, R). J will be assumed to satisfy the following Palais-Smale
condition:

Í For any sequence (xn) c S such that J(xn) is bounded and
{ ||y'(xn)ll ~* 0, one can extract from (xn) a convergent subsequence.

In this condition, the norm ||y'(jcn)|| is taken in the cotangent space (Tx S)' as
the dual norm, the tangent space Tx S being always equipped with the norm
inherited from H. Most of the time, J will only be required to satisfy the following
weaker condition than (P.S):

{For any C > a and for any sequence, (xn) c S such that a < J(xn) < C

and ||/'(-*n)ll ~> 0' one can extract from (xn) a convergent subsequence,

where a G R is some number.
In the following, for a G R, we denote

Ja = {x G S; J{x) < a),   Ja= {x G S; J(x) > a).

The following result is a basic tool in the sequel for finding critical values.

Theorem 2.1. Suppose H is infinite dimensional and J G C2(S, R) satisfies
condition (P.S). If Ja is not contrac tibie in itself to a point, then J has a critical value
in [a, +oo).

The proof of Theorem 2.1 is by contradiction. We first require the following
classical lemma.

Lemma 2.2. Let J G C\S, R) satisfy condition (P.S) and let a G R be such that J
has no critical values in [a, +oo). Then, Ja is a (deformation) retract of S.

Proof of Lemma 2.2. (See Palais [19], [20], Marino and Prodi [18] and Rabino-
witz [22] for similar results and detailed proofs.) We just sketch the argument here.
Let e > 0 be such that J has no critical values in [a — e, +oo) (the existence of
such an e is a direct consequence of (P.S)). Let x be a locally Lipschitz function
such that 0<x< L X — 0 on /„., and x= 1 on Ja. Let -q(t, x) denote the
solution of the following differential equation on S:

dn/dt = -x(v)J'(v)/\\J'(v)\\2;   v(o, x) = x. (2.1)
It is easily checked that due to the fact that J is of class C2, satisfies (P.S) and has
no critical values in [a — e, +oo), tj(/, x) is defined for all t > 0. Furthermore,
x -» T/(/, x) is a homeomorphism of S for any t > 0, -q(t, x) = x, V x G Ja_e,
t > 0, J(j](t, x)) is nonincreasing with respect to t and

d/(r,(t, x))/dt - -1    if7,(i,x)G/a. (2.2)

Set

r(x) = r¡((J(x) — a)+ , x)    for x G S,

where m+ = max(w, 0). Then, r G C(S, Ja) and r^ = Id^ (the identity on Ja).
Indeed, if x G Ja, then r(x) = tj(0, x) = x, while if x G Ja, then it is easily verified
(using (2.2)) that J(r(x)) - J(x) = -(J(x) - a), that is J(r(x)) = a.
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A PERTURBATION METHOD IN CRITICAL POINT THEORY 5

Observe that Ja actually is a strong deformation retract of S. It just suffices to set

rr(x) = ij(t(/(jc) - a)+ , x),       r G [0, 1 ], x G S,

to have the desired retraction by deformation that leaves Ja invariant.
Proof of Theorem 2.1. By Dugundji's theorem [13], if H is infinite dimensional,

then S is contractible in itself to a point. Thus, if J has no critical values in
[a, +00), then Ja being a retract of S is also contractible in itself to a point. Indeed,
let <¡> G C([0, 1] X S, S) be such that <£(0, x) = x and </>(l, x) - xQ (x0 G S is
fixed). Set \¡/(t, x) = r[<¡>(t, x)], where r is given by Lemma 2.2. Then,

«¿EC([0, l]XJa,Ja)

and satisfies \p(0, x) = x for x G Ja and ip(l, x) = r(x0), V * G /„.
Therefore, if J has no critical values in [a, +oo), the set Ja is contractible in itself

to a point. The proof of Theorem 2.1 is thereby complete.
Remark 2.3. Suppose a G R is not a critical value of J (satisfying the hypotheses

of Theorem 2.1) and Ja is not contractible in itself to a point. Suppose furthermore
that there exists A > a such that Ja is contractible to a point in JA. Then, there is a
"variational characterization" of a critical value of J above a. Indeed, setting

c = inf{6 > a;Ja is contractible to a point mJb)

or

c = sup{b > a;Ja is not contractible to a point in Jb)

it is easily seen that a < c = c < A and that c = c is a critical value of /. (Notice
that since a is not a critical value and Ja is not contractible in itself to a point, then
Ja is not contractible in Jb for b > a and b sufficiently near to a.)    □

Remark 2.4. It is readily checked by inspection of the proof of Lemma 2.2 that
the conclusion of Theorem 2.1 remains valid if one only assumes that J G
C°(S, R), J G C\Ja., R) and J verifies condition (P.S)a, for some a' < a.    \J

From the viewpoint of the applications to nonlinear partial differential equa-
tions, it is desirable to weaken the assumption that J be of class C2. We then
obtain the following slightly weaker result for C ' functionals.

Theorem 2.5. Suppose H is infinite dimensional, J G C°(5, R), / G C\Ja, R),
and J satisfies condition (P.S)a. // there exists some e > 0 such that Ja is not
contractible in Ja + e to a point, then J has a critical value in [a, +oo).

To prove Theorem 2.5 we will show that if J G C '(/,,, R) satisfies (P.S)a and /
has no critical value in [a, +oo), then for any e > 0, Ja is contractible to a point in
Ja + e. This will be derived from the following modification of Lemma 2.2.

Lemma 2.6. Let J G C°(S, R), / G C\Ja, R) and J satisfies (P.S)a. Suppose J has
no critical values in [a, +oo). Then, for any e > 0, there exists rt G C(S, Ja+e) such
that r(x) = x for all x G Ja.

Proof of Lemma 2.6. (See, e.g., Palais [19], [20], Rabinowitz [22] for similar
results.) Since J is no longer C2, we cannot directly define the flow ij(/, x) by (2.1).
We use instead of J', the pseudo-gradient vector field on Ja+e where e¡ is a fixed
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6 ABBAS BAHRI AND HENRI BERESTYCKI

2   Vxe;a+1, (2.3)

real number such that 0 < e[ < e. We recall (e.g. from Palais [19]) that there exists
a locally Lipschitz vector field on/a+t, v(x) G TXS such that

' \\v(x)\\ < 2\\J'(x)\\
</'(*). v(x)) > \\J\x

Since J has no critical values in [a, +oo), we have from (2.3), ||i>(x)|| > \\J'(x)\\
> 0, V x G Ja+e. Let x: S —> R be a locally Lipschitz function such that 0 < x <
l,X = 0onya + tiandx= 1 on/a+£. Set

| k(t,) = -X(v)v(v)/\\v(v)\\2    fori,G/0+ti,
[k(t,) = 0   forT,e/a+ei.

F is a locally Lipschitz vector field on S. We consider the now t/(/, x) generated by
V, that is, r¡(t, x) is the solution of the following equation on S

dn/dt = K(ij),       t,(0, x) = x. (2.5)
From (2.3) and (2.4) it follows that

* I|u(tj)||2

Since K is locally Lipschitz, tj(í, x) is uniquely defined in (2.5) on some maximal
time interval 0 < / < t(x), and is continuous with respect to t and x. Now, for
x G Ja+e, one has i)(t, x) = x, V / > 0 and i(x) = + 00. For x G Ja+C, one

. derives from (2.6) that a + e, < J(r¡(t, x)) < J(x), V ? G [0, t\x)). (The left-hand
side inequality is derived from V = 0 on Ja+e.) Since J has no critical values in
[a, +00), it is easily derived from condition (P.S)a (see, e.g., Rabinowitz [22]) that
there exists ô = ô(x) > 0 such that V/eS with a + e, < J(y) < J(x), one has
ll^'WII > 8(x). Hence, for any x G 70+e ,

\\v(V(t, x))|| > ||/'0»0> *))|| > «(*) > 0,    V t > 0.
Thus,

|| v(-n(t, x))|| < l/||o(n(/, *))|| < 1/8OO,   v r > 0.
This implies that in (2.5), t](t, x) is defined for all t > 0: Thus, t(x) = + 00,

Vx G S.
Therefore, x -» tj(î, x) is continuous: S —> S for any / > 0, and is such that

T)(/, x) = x, V t > 0, V x G /B+, • /(t)(í, x)) is nonincreasing with respect to t.
Now set

'.(*) = *»((■/(*) - «)+ - *) (2-7)
re G C(S, S), re(x) = x, V x G ya and

J{rt{x)) < y(Tj(/, x)) < J(x),    V f, 0 < t < (y(x) - a)+ . (2.8)

Let us show that re(S) c •/,+,,• From (2.8) it is clear that re(Ja+tL) c •/„+,. So
suppose x G /a+e. We claim re(x) G /a+e. For if not, we have by (2.8), tj(/, x) G
ja+e for all /, 0 < / < (/(x) - a). Whence, x(tK'> x))= l,Vi,0</< (/(x) - a).
From (2.6) we then derive

y(r.(x)) - /(*) < - (7(x) - a),
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A PERTURBATION METHOD IN CRITICAL POINT THEORY 7

that is, J(re(x)) < a which is a contradiction. Thus, rB(S) c Ja+t, and the proof of
Lemma 2.6 is complete.    □

Remark 2.7. Clearly, re is homotopic to the identity on S by means of a
homotopy (re)T, t G [0, 1], such that (r£)T is the identity on Ja, V t G [0, 1].    □

Proof of Theorem 2.5. Let <j> be a contraction of S in itself to a point as in the
proof of Theorem 2.1. Let us define \pt G C([0, 1] X Ja, Ja+e) by setting \pe(t, x) =
re(<t>(t, *))•

Clearly ^([0, 1] X Ja) c Ja+e (since re(S) C Ja+t), ^(0, x) = x, V x G /a while
\l*e(l, x) = /-(x0) is independent of x. The proof of Theorem 2.5 is thereby complete.
D

The preceding results just assert the existence of a critical value above a given
number a. In applications, however, one often wishes to have some control or
bound on the critical value. For instance, such a control is crucial in deriving the
perturbation and multiplicity result of §7. The next two theorems provide some
additional information in this direction.

Theorem 2.8. Suppose J G C°(S, R), J G C\Ja, R) and J satisfies (P.S)a. Fur-
thermore, assume that there exist ju(a) and e > 0 with fi(a) > a + e > a such that Ja
is contrac tibie in J^a) to a point and Ja is not contractible to a point in Ja+e. Then J
has a critical value in [a, ju(a)].

Proof. This result readily follows from Remark 2.3. One can also modify the
argument of the preceding proof in the following manner. If J has no critical value
in [a, (i(a)], then (compare with Lemma 2.6) there exists r G C(J^ay Ja+e) with
r(x) = x, V x G Ja. Now, let <j>(t, x) be a deformation of Ja to a point in J^a).
Then, \p(t, x) = r[<j>(t, x)] is a deformation of Ja to a point in Ja+e, which is
impossible.    □

We now derive quite a general condition which guarantees the existence of n(a)
as in Theorem 2.8, for all a. This result is due to A. Bahri [6]. We present here a
somewhat different proof than in [6].

Theorem 2.9. Let H be an infinite-dimensional separable Hilbert space. Suppose J
is any functional on S with the following property: For any sequence (x„) C S,
J(xn) —» + oo // and only if xn —•■ 0 weakly in H. Then, for any a G R, there exists
ß(a) > a such that Ja is contractible to a point in J^ay

Proof. We first claim that there is some íES with the property that -re is not
in the weak closure of Ja for any t G [0, 1]. Indeed, arguing by contradiction, let
(en) c S be a sequence such that en —* 0 weakly in H. Then, 3t„ G [0, 1], -rnen is in
the weak closure of Ja. That is, there is a sequence (x„)m c Ja with (xn)m -»
-r„e„ weakly in H, as m —> + oo. Then by a diagonal selection procedure, we can
extract from (x„)m a sequence yn = (x„)m(n) which converges weakly to 0 in H.
Indeed, if {<;>,, ...,<£,,...} is a Hilbert basis of H, then one selects m(n) in such a
way that

|Cv» + *n e„, <¡>,)| < i/«    yj - 1.»,
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8 ABBAS BAHRI AND HENRI BERESTYCKI

Thus (yn, 4>j) —> 0 as n -» +00 for ally G N, whence.y,, -"• 0 weakly in H. But since
J(y„) < a, we have reached a contradiction with the hypothesis of the theorem.

Now, let e G S be as above. We define

tx + (1 - t)e . r„ ,,
**'x) = \\tx + (i - ¿|| '     *6^'e[ftl].

Since tx + (I — t)e =£ 0, w(t, x) is a continuous deformation of Ja into a point on
5. We claim that there exists ¡i(a) > a so that

7(w(?, x)) < (i{a),   Vi G[0, l],Vx G/a.

For if not, there exists (x„) c /a, t„ G [0, 1], with J(w(tn, x„)) —> + 00. We can
assume that tn —> t G [0, 1] and x„ ->■ x weakly in H. Thus, w(i„, x„) -* 0 weakly in
// which implies tnx„ + (1 - r„)e ->■ 0 weakly in H, whence tx + (1 - r)e = 0. This
would imply that x = -t<? with t > 0. But since ||e|| = 1 and ||x|| < 1, we have
t G [0, 1]. Hence, -re would be in the weak closure of Ja with t G [0, 1], which is
impossible.

Therefore, w(t, x) is a continuous deformation of Ja in 7 (a) to a point. □
Remark 2.10. Suppose one has a family of functionals Jc on S, e G [0, 1], with

the property that for any sequence (x„) c S and for any sequence (e„) c [0, 1], one
has 7e"(xn) —» + 00 if and only if xn —» 0 weakly in H. Then, as is clearly seen from
the proof above, ¡u(a) can be chosen independently of e. That is, for any a G R,
there exists ¡i(a) > a such that 7a is contractible to a point in J^a) for any
e G [0, 1]. This observation will be useful in §7.    □

3. Perturbation of critical values of an even functional. In order to apply
Theorems 2.1 and 2.5 for finding critical points one has to determine criteria for
noncontractibility properties of the level sets of a functional on S. For even
functionals, such a criterion is provided by Krasnosel'skii's theory of stable critical
points for an even functional [17, Chapter VI]. We first recall some basic facts
concerning critical points of an even functional on a sphere. We then will show in
the light of the preceding section a "stability" result for these critical points
allowing one to study perturbations of an even functional.

We follow here the approach of Krasnosel'skii [17, Chapter VI]. Consider the
following class of compact symmetric subsets of S.

Mk = [A c S;A = g(Sk) where g is odd and continuous} (3.1)

where k G N and Sk = {x G R*+1, |x| = 1} is the fc-dimensional sphere. Let
J* G C l(S, R) be an even functional. (The superscript * will always be associated
with evenness thereafter.) Define

Cu =   inf    max J*(x). (3.2)

We have the following result adapted from Krasnosel'skii [17, Chapter VI].

Theorem 3.1. Let J* G C'(5, R) be an even functional satisfying condition (P.S)
and such that J* is bounded from below on S. Let Ck be defined by (3.2). Then:

(i) Ck is a critical value of J*, V k > 0
(///* only satisfies (P.S)a, then Ck is a critical value of J* provided that a < Ck).
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(ii)-oo < Ck < Q+1, V k > 0.
(iii) For all a, b G R such that Ck < b < a < Ck+l, J£ is not contractible to a

point in J*.
Proof of Theorem 3.1. We omit the proofs of (i) and (ii) since they are classical

(the reader is referred to Rabinowitz [22] for closely related results). We only recall
here the proof of (iii). This is the crucial property that will allow us to apply the
results of §2. It is a consequence of the following lemma of Krasnosel'skii [17].

Lemma 3.2. Let A G Mk and suppose \p G C([0, 1] X A, S) is a contraction of A in
S to a point, that is \p(0, x) = x, V x G A, \p(\, x) = x0 G S, V x G A. Set [>//, A] =
{¡P(t, x); t G [0, 1], x G A} u {->/</, x); t G [0, 1], x G A}. Then [i/<, A] G Mk+l.

We recall the proof of Lemma 3.2. Let A = g(Sk) with g continuous and odd.
We write x G Sk+X in the form x = (x', t) with x' G R*+1, / G R, |x'|2 + t2 = 1.
Define a mapping h: Sk+X —> [\p, A] by setting

h(x', t) =

Xq, for t = 1, x' = 0,
xP(t, g(x'/|x'|)) for0</<l,
-*(|fU(-x'/|x'|)) for-l<i<0,
-x0 for/ = -1, x' = 0.

Clearly, h(Sk + x) = [\¡/, A], h is odd and continuous. Therefore [\j/, A] G Mk+1.    □
Proof of (iii) Completed. Suppose Ck < b < a < Ck+i and suppose by way of

contradiction that J* is contractible to a point in J*. Let A G Mk be such that
Ck < max^ J* < b, that is, A a J*. Then A is contractible to a point in J*. Let
\p G C([0, 1] X A, J*) be this contraction. Since J* is even, one sees that [\p, A],
defined in Lemma 3, is such that [^,^4] C J*. Hence, B = [\p, A] verifies B G
Mk+i (Lemma 3.2) and B c J* or maxi J* < a < Ck+l, which is impossible by
the very definition of Ck+l. Thus, J¿ is not contractible to a point in J* and the
proof of (iii) is complete,    n

Under an additional assumption, we now show that Ck 7* -t-ocasA:/'' +oo.

Theorem 3.3. In addition to the hypotheses of Theorem 3.1 suppose that H is
separable and that for any sequence (xn) c S such that x0 —" 0 (weakly in H) one has
J*(xn) -» + °°- Then, limt_+00 Ck = + oo.

Remark 3.4. Assume that F*(x) = l//*(x) is defined on ¿?, = {x G H, ||x|| <
1} and is such that F*(0) = 0, F*(x) > 0 if x G Bl - {0}. Suppose further that F*
is weakly continuous. Then /* satisfies the condition in Theorem 3.3. Thus, in this
case it is seen at once that if dk is defined by

dk =   sup    min F*(x) = 1/Q,
Ae\fk   xeA

where Ck is associated to J* by (3.2), one has

lim    \ dk = 0.
k S +00
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10 ABBAS BAHRI AND HENRI BERESTYCKI

This last fact is established in Krasnosel'skii [17, Chapter VI] by quite a different
proof from the one we present below. So, Theorem 3.3 can be viewed as an
extension of this result.    □

Actually, if the nature of the result in Theorem 3.3 is by no means new, the
hypotheses, however, are more general (and simpler) than the ones usually made.
We also present a very simple proof that seems to be new.

Proof of Theorem 3.3. H being separable, let //, c H2 c • • • C Hk c • • • C
H be a nested sequence of finite-dimensional subspaces (dim Hk = k) spanning H:
U k-\ Hk = H- N°w observe that for any A G Mk, one has A n Hk^ ¥= 0. Indeed,
if A n Hk = 0, then denoting by pk the orthogonal projection from H onto Hk,
the mapping t: A —> Sk~l defined by t(x) = pkx/\\pkx\\, x G A, is odd and
continuous (since in this case pkx ^= 0 V x G A). But since A G Mk, A = g(Sk)
with g odd and continuous, and the mapping t ° g: Sk —* Sk~l would be odd and
continuous, which is impossible by the Borsuk-Ulam theorem. Thus A n Hk   ^ 0.

Now, for any k G N, let Ak G Mk be such that maxu6/1 J*(u) < Ck + 1. Let
xk G Ak n H^. Thus J*(xk) < Ck + 1. Since // is separable, \\xk\\ = 1 and xk G
H¿~, one has x^-^0 (weakly in H). Therefore, \imk^+o0 J*(xk) = +oo which
implies HmA:_).+t)0 Q = + oo. The proof of Theorem 3.3 is thereby complete.   □

Remark 3.5. The preceding argument provides a lower bound for Ck. Indeed, we
have seen above that V A G Mk, A n Hk   ¥= 0. Therefore one has

Ck >       inf      J*(x). (3.3)

This estimate will prove to be useful later on.    □
We are now ready to state the principle of the perturbation method-which is

quite simple-in the form of the following result.

Theorem 3.6. Let J G C2(S, R), /* G C\S, R) be two functionals satisfying
condition (P.S). Assume furthermore that J* is even and bounded from below on S.
Let Ck, k G N, denote the critical values of J* defined by (3.2). Suppose there exist
k G N, e > 0 and a G R such that J£ +e c Ja C /£ _e. Then J has at least one
critical value in [a, +oo).

Proof. If J has no critical value in [a, +oo), then by Theorem 2.1, Ja is
contractible in itself to a point. Therefore /* +e is contractible to a point in /* _e
which is impossible by Theorem 3.1(iii).    □

Remark 3.7. The preceding result remains valid if one only assumes that
J G C°(S, R), J G C2(Ja,, R) and that J satisfies condition (P.S)a. for some a' < a.
(See Remark 2.4 above.)    □

We now examine the analogous result if J has only C ' regularity rather than C2.

Theorem 3.8. Let J, J* G C°(S, R) be two functionals such that J G C\Ja, R),
J* G C'(7*, R), J satisfying condition (P.S)a and J* satisfying condition (P.S)C.
Assume furthermore that J* is even and bounded from below on S. Let Ck denote the
critical numbers associated with J* defined in (3.2). Suppose there exist k G N, e > 0
and a G R such that c < Ck and J¿ +e c Ja C Ja+e C /Í _e. Then J has at least
one critical value in [a, +00).
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The proof is as before from Theorems 2.8(iii) and 2.5, since in this case Ja is not
contractible to a point in Ja + e.    □

One also has the following more precise result.

Theorem 3.9. Under the same hypotheses as in Theorem 3.3 suppose furthermore
that J has the property that for any sequence (x„) c S, J(xn) —» + oo // and only if
x„ -* 0 weakly in H. Then, if J£ +E c Ja C Ja+e C /* _e, J has at least one critical
value in [a, [i(a)] where ¡i(a) is given by Theorem 2.9.

The proof is as before but instead of Theorem 2.5, we use Theorems 2.8 and 2.9.
D

Remark 3.10. Theorems 3.6, 3.8 and 3.9 are in a sense perturbation results. They
somewhat show that the Ck are "stable" critical values. If the (noneven) functional
J is only a small perturbation of the even functional /*, one expects the level sets
of J and J* not to be too far apart from each other. Then, if the Ck grow fast
enough (compare Theorem 3.3) one may hope to verify the conditions of Theorems
3.6 or 3.9. Therefore, in the applications of these theorems, there are clearly two
tasks to perform which are:

(i) estimating (from above) the difference \J(x) — J*(x)\,
(ii) estimating (from below) the growth of Ck as k 7 + oo.

The estimate (3.3) will be helpful in handling the second question.    □
Remark 3.11. We would like to make some further comment from a topological

viewpoint on the results of Theorems 3.6 and 3.8. Let us first recall a result of
Conner and Floyd [11]. For a symmetric and closed subset K c S, define y+(K)
= Sup{y G N;3/z: SJ —> K, h odd and continuous} (y+(K) is possibly +oo).
Suppose that y + (K) < + oo. Then, by a result of Conner and Floyd [11], any odd
and continuous map h: SY+(*° —» K is essential. That is, if y0 G A(5r+(A:)), then the
homotopy class of h in Hy+(fC)(K, y0)2 is not null (and hence Hy+W(K, y0) is not
trivial).

Consider again the situation of this section. First observe that if A G Mk, then
y + (A) > k. Now suppose that for some k G N, the critical numbers defined in
(3.2) are such that Ck < Ck + l. Let a be such that Ck < a < Ck+l. Then, we claim
that y + (J*) = k. Indeed, there exists A G Mk such that A c Ja (since a > Ck),
thus y+(J*) > k. On the other hand, if y+(Ja) > k, then there exists B G Mk+l
such that B c J*, which is impossible as a < Ck + V This shows at once that for any
set W and e > 0 such that J*t+e C W C /q+i_£, then necessarily W is not
contractible in itself to a point. Otherwise, considering an odd and continuous map
h: Sk-+J£t+e (such a map exists by the definition of Ck), if W would be
contractible in itself to a point, the map h would be null homotopic in J£ _e, and
this would contradict the preceding result of Conner and Floyd as y+(J* _e) =
k.

This argument provides alternative proofs for Theorems 3.6 and 3.8 via Theo-
rems 2.1  and 2.5. In a sense, it also exhibits a kind of relationship between

2By Tlj(K, y0) we denote as usual they'th homotopy group of the pair (K, y¿) (that is they'th homotopy
group of K computed at the point v0).
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12 ABBAS BAHRI AND HENRI BERESTYCKT

Krasnosel'skii's lemma (Lemma 3.2 here) and the result of Conner and Floyd [11]
that we have recalled.

Lastly, let us indicate that the characterization of the existence of critical values
by means of changes in the topology of the level sets of a functional (which is
exactly the content of a stability result like Theorems 3.6 or 3.8) has been
repeatedly emphasized in the works of R. S. Palais [19], [20]. This stability in the
change of topology, but in a different context from ours, has also been studied by
Marino and Prodi [18].    □

The remainder of the paper is concerned with applying Theorems 3.6, 3.8 and 3.9
to some nonlinear elliptic problems. In the next two sections, we derive Theorem
1.1.

4. A functional on the sphere associated with (1.1). Henceforth we will be working
in the space H = //0'(fí) endowed with the usual norm

II     II2 fm     |2     ,\\u\\   = I   vw   dx

and scalar product

(u, v) = f Vw Vu dx.
Jii

S = {u G 7/0'(ß); ||w|| = 1}. We denote by < , > the duality of either H~'(ñ) and
H¿(tt) or of TUS' and TUS ̂  {m}"1. We recall that

Km) =i f\Vu\2dx-—- (\u\p + l dx - fhudx,
2Jq P + 1 Ja1 Jn

/*(„) =1 f Wu\2 dx-Î— (\u\p + 1 dx.
2 Ja P + i Ja

(I* is the even part of /.) Associated with / (resp. /*), we define a functional J
(resp. J*) on S such that the "free" critical points of /, that is the solutions of (1.1),
which correspond to positive critical values, are derived from the "constrained"
critical points of /, and similarly for /* and J*. We set

J(u) — max I(Xu),        u G S,
X>0 (4.1)

J*(u) = max I*(Xu),       u G S.
\>o

We always assume in the following that

1 <p < (N + 2)/ (N - 2)    if N > 3    and    1 <p < +oo    if N = 2. (4.2)

Proposition 4.1. Under condition (4.2), for any h G L2(Í2), J G C°(S, R), J > 0,
J G C2(Je, R) and J satisfies conditions (P.S)e/or any e > 0. Furthermore, J* is even
and verifies the condition in Theorem 3.3.

Proposition 4.2. For any h G L2(ß) and any u G S such that J(u) > 0, there
exists a unique X = X(u) > 0 such that J(u) = I(X(u)u). Then, one has

(F(X(u)u), u) = 0   and   (I'(X(u)u), <¡>) = X(Uy\j'(u), <f>)
for any <¡> G TUS ^ {«}x- Furthermore, the positive critical values of I (defined in
HqCQ,)) and of J (defined on S) are the same.
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A PERTURBATION METHOD IN CRITICAL POINT THEORY 13

Proofs of Propositions 4.1 and 4.2. One has for u G S,

(From now on, the Lebesgue measure dx is understood in all integrals.) Since
m G 5, one has /alt/p""1"1 > 0 and it is clear from (4.3) that J is well defined (i.e.
finite) for all u G S, is nonnegative, and that J is continuous on S (since / is
continuous and C1 for the H ¿(Si) topology, given the limitation imposed upon/? in
(4.2)). Let us first show that X = X(u) > 0 is uniquely determined from the
condition J(u) = /(Aw) when X > 0. Differentiating (4.3) yields

-^I(Xu) = X-X"(\u\p + ' - (hu,* 4 JS (4.4)

dX Ja
Thus, there exists Aq(w) (= {/'/d"!''"'"1}-170'-0) such that d2I(Xu)/dX2 is positive
for 0 < X < Xq(u) and is negative for X > A0(w). Hence, there are two cases:

(i) If (dI(Xu)/dX\x=0 = -/a hu > 0, then dI(Xu)/dX vanishes only once at a
value A = X(u) > 0 such that X i-» /(Aw) achieves its maximum.

(ii) If (dI(Xu)/dX)\X=0 < 0, and if J(u) > 0, then dI(Xu)/dX vanishes twice, once
at a value of X that produces a local negative minimum of I(Xu) and once more at a
value X = X(u) that yields the maximum of l(Xu).

Therefore, in both cases X = X(u) such that J(u) = /(Aw) > 0 is seen to be
unique. Furthermore, A = A(w) is uniquely determined from the conditions

/(Aw) > 0,
dI(Xu)/dX = </'(Aw), w> = 0, (4.5)
d2I(Xu)/dX2 = /"(Aw)(w, w) < 0.

It is now clear from (4.5), using the implicit function theorem, that w -> A(w) is a C1
function on Je (for any e > 0). Whence, J(u) = I(X(u)u) is certainly C1 on /,.
Observe moreover that for any <f> G TUS one has

</'(«), *> = A(w)</'(A(«)w), *> + <A'(w), <f>></'(A(w)w), w>.
But since </'(A(w)w), w> = 0, one derives

</'(«), <¡>) = A(w)</'(A(w)w), <f>>,    V <¡> G TUS. (4.6)
Since / is of class C2 and A of class C1 on/e, it is seen at once from (4.6) (which
does not involve A'(w) any longer) that J is actually of class C2 on Jt, for any e > 0.

Thus, if w G S is such that J(u) > 0 and J'(u) = 0, one has /'(A(w)w) = 0
(indeed /'(A(w)w) vanishes on both R{w} and {w}"1). Conversely, if v G H^(ü) is
such that I(v) > 0 and F(v) = 0, then, setting w = u/||o|| G S, one has J(w) =
I(v) and y'(w) = 0 (recall that A h» /(Aw) has at most only one positive "extremal").
The positive critical values of J and / are therefore the same.

Lastly, let us show that J verifies condition (P.S)e. Let C > e and (un) c S be
such that e < J(u„) < C and /'(wn) -* 0. We wish to show that (w„) has a conver-
gent subsequence. Set v„ = A(w„)w„. We claim that \\F(v„)\\H-i(a) < Cj||7'(Mn)llr s
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14 ABBAS BAHRI AND HENRI BERESTYCKI

for some constant C, (depending on e). Indeed, decompose H¿(íí) = R{un}±T S
so that V !// G H¿(C¡), \p = tu„ + <f> with t G R, (w„, <>) = 0 and \W\\2Hi = t2 +
\M\2t s- Now, observe that since </'(t>n), w„> =0, one has </'(«„), i/-> =
</'(J„"), <i>> = A(wJ-'</'(w„), <». Thus,

ll^'(o„)|U-(a) -     sup     </'(«„), ^> <A(wn)-1||7'(wn)||7-^. (4.7)

11*11 <l
The sequence A(w„)~' is bounded from above; A(w„)_1 < C,. Indeed, if not there

would be a subsequence, denoted again A(w„), such that A(w„) -» 0. But this would
imply J(u„) = I(X(u„)un) —> 0, which is impossible since J(un) > e > 0. (This step in
the proof explains why we use condition (P.S)e. Note that J does not satisfy (P.S)0.)
From (4.7) we derive

IK'MU-ro) < C,|/'(«0|r%s.
Thus, the sequence (vn) c //0'(^) satisfies e < /(t>„) < C and /'(u„) —» 0 in

//~'(fi). It is well known (see, e.g., Rabinowitz [21]) that / satisfies the (P.S)
condition in the space H¿(S¡). Therefore, one can extract from (v„) a convergent
subsequence. For the sake of completeness, we repeat the proof of this fact here.
Let

en = -Avn-\vn\p-lv„-h(x) (4.8)

so that \\e„\\H-,(a)-^0. Thus,

|/iv«Bi2-/Kri-/KKB Jo. Jf>
'ia)\\vn\\ni(a)- (4.9)

vn also satisfies

£ <2/Jv°"I2-ftt/J».i'*,-/0'»-<c- <4-'°>
We denote thereafter by C various positive constants. Combining (4.9) with (4.10)
and the fact that |/n hvn\ < IIAH^-.^jIIüJ^^), one derives that

(\- l/(/> + l))||cJ|2Ä. <C\\vJHi+C,
from where it follows that H^H^i < C. By (4.2), the injection H¿(ü)^> L/'+,(ß) is
compact (Sobolev injection theorem). Therefore, there exists a subsequence of vn,
denoted again by vn, which converges strongly in Lp+l(Sl). Thus, |ün|p-1ü„ con-
verges strongly in L<-p+1)/p and also in //"'(fi) (since by (4.2), L(p+l)/p(ü) c
H~\ü)). From (4.8) we then derive that vn converges strongly in H¿(Sl). Thus, we
have proved the claim that / satisfies condition (P.S) in H¿(íl).

Turning back to the functional J and to un, we have w„ = un/||t¡J|. Observe that
since v„ -» v in H¿(ü), then I(vn) —> I(v). As I(vn) > e, this implies I(v) > e > 0
and v t^ 0. Therefore, un converges strongly in S (i.e. for the H¿(íl) topology on S).
This concludes the proof that J satisfies the (P.S)£ condition.

The proofs of Propositions 4.1 and 4.2 are now complete except for the fact that
J* verifies the condition in Theorem 3.3 which is included in the following more
general and more precise estimates. (Indeed J* is but a particular case of J by
taking h = 0.)    □
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A PERTURBATION METHOD IN CRITICAL POINT THEORY 15

Lemma 4.3. Let h G L2(ü) be given and p > 1 satisfy (4.2). Then for any sequence
(un) c S, the following are equivalent:

(Í) J(u„)-> + 00,
(ii)A(w„)^+oo,
(iii) un -^ 0 strongly in Lp+l(il) (or, equivalently,
(iv) u„ -» O wa/t/y i« //¿(ß)).
Furthermore, for any sequence (un) c S jwc/î í/iaí /(w„) —» + oo, one has3

(W+1) (4-11)

Proof. Let (w„) c S be a sequence such that /(wj —» +oo. Since /(wn) =
I(X(un)un) and / is bounded on bounded sets of H¿(£¡), it is clear that A(wn) —» + oo.
From (4.4) and (4.5) we know that A„ = A(wn) satisfies

KMr'fhr1' (4-13)Jq.

i-V/i^'-v'/k-a (4-14)

^ - *{I - 7TîA-'~,/j^1 - ^ X*4 <4-15>
Hence, un -^ 0 strongly in //+,(ß) if A„ -* + oo. Since the weak topology on 5 is
metrizable (//0'(fi) being separable) and the injection H¿(Sl)CL* Lp+1(ß) is compact,
w„ —>0 strongly in Lp + l(Q,) is equivalent to w„ ̂ 0 weakly in H¿(íi) for (w„) c S.
Conversely, suppose w„ —* 0 strongly in L''+1(ß), then, by (4.13) A„ -^ + oo. So far,
we have shown that (i) => (ii) <^> (iii) <=> (iv).

Now, if A„ -^ + oo, it follows from (4.14) (since fa hun is bounded) that

lim \r7kr*-i,
that is,

Furthermore, then,

»~ (kr        • (411>

lim    J(un)X~2- 2     p + l'

3In  the  sequel,  the   notation  an — b„  for  two  sequences  (an)  and  (d„)  means  as  usual  that
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16 ABBAS BAHRI AND HENRI BERESTYCKI

which shows firstly that lim„_+00 J(un) = + oo (hence (ii) => (i)), and also that (by
(4.15))

J^~{-2-jh){fj"-r')""""- (4..2)
Lastly, denoting by A*(w) the unique positive number such that J*(u) = /*(A*(w)w)
> 0, it is immediate from (4.14) and (4.15) that when h = 0, that is for the case of
J*, one then exactly has

i< ) (4-16)

and

^-(i-jhU^f"""- <4I7)
This completes the proof of Lemma 4.3.    □

In the next step, we derive an estimate for \J(u) — J*(u)\.

Lemma 4.4. There exists a constant y > 0 such that for any w G 5 with J(u) > 1
and J*(u) > 1, one has

(4.18)
\\J(u)-J*(u)\<y[J(u)]i/ip + i),

\\J(u)-J*(u)\<y[J*(u)}l/(p + ,).

Proof. We denote X = A(w) and A* = A*(w). Clearly,

J(u) - J*(u) < /(Aw) - /*(Aw) = -A f Aw,
Jn

J*(u) - J(u) < /*(A*w) - /(A*w) = A* f Aw.

Whence,

\J(u) - /*(«)| < {max(A, X*)}\\u\\L^a)\\h\\LKa) (4.19)

where \/(p + 1) + \/q = 1. Now, to derive for instance the first estimate in
(4.18), we argue by contradiction. We assume that there exists a sequence (w„) c S
such that/(w„) > 1 and/(w„) > 1 while

\J(un) - J*(un)\> n[J(un)]l/(p + l\   V/iGN. (4.20)

Then, \J(u„) - /*(w„)| -^ + oo, and comparing with (4.19) it follows that ||wn||Lf+i(£2)
—> 0. (For if not, along a subsequence where ||w||L„+i(52) is bounded away from zero,
A(w) and A*(w) would be bounded by Lemma 4.3, whence, by (4.19), |7(w) - /*(w)|
would be bounded.) But then, we derive from (4.11) and (4.19) that

\JM - •/*("„)! < K
with

An~\\h\\L^\un\-Jüp^\

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



A PERTURBATION METHOD IN CRITICAL POINT THEORY 17

On the other hand, An should satisfy An > n[J(un)]i/ip + l\ and since w„—>0
strongly in Lp+ '(ß), we know from Lemma 4.3 that J(un) -»+00 and

/(wj'^^-qw^/r1',
where C > 0 is a constant. This is contradictory and therefore (4.20) is impossible.

The proof of the second estimate in (4.18) is very much the same.   □
Remark 4.5. The idea of looking for critical points of J on the sphere S in order

to solve (1.1) is related to a method introduced by Coffman [10] and Hempel [16].
In the odd case (i.e. when A = 0), to show the existence of infinitely many solutions
of (1.1), or, equivalently, to find critical points of /*, they look for "constrained"
critical points of the trace of /* on the manifold.

911* = [v G //01(ß);u^0and</*'(t>), v) =0}.

Indeed, clearly, any nontrivial critical point of /* is to be sought on this manifold.
In this case, since A*(w) is uniquely determined from the relation </*'(A*(w)w), w>
= 0 for any u G S, one has

git* = {,; = A*(w)w;w G 5},
and 911* is but the image of S under the mapping w —» \\u\\2pp^/<-p~1)u.

In the general case (i.e. A 2ê 0), defining 9H = {v G H¿(ü);v ^ 0, </'(«)> v} =
0}, then 911 is not exactly the image of 5. Nevertheless, the submanifold 91l£ = 911
n {v;I(v) > e) is again the image of Jt under the mapping w h* A(w)w for any
e > 0. However, we find it more convenient, having in mind the results of §3, to
work on S which is a symmetric or a fixed point free involution manifold rather
than on 911 (or 91tt) which are not.    □

5. Proof of Theorem 1.1. The results of §3 will now be applied to the functionals
J and J* on 5 introduced in the preceding section. Observe that J and J* satisfy
the hypotheses of Theorem 3.3. We recall that the Ck (k G N) are the critical values
of J* defined by (3.2). We first require an estimate from below on the growth of Ck
as k —> +00.

Proposition 5.1. Assume (4.2). There exists a constant C > 0 (respectively, there
exists, for any e > 0 a constant Ce > 0) íwcA that :

Ck > Cka" ifN > 3, VA: G N,
(5 1)Ck>Ctka>~c    ifN = 2,VkGN, K'

where

Proof. Let A* be the A:th eigenvalue (counting multiplicities) of -A: H¿(ü) -»
H _1(ß)- Let {<J>,, .. ., $k, ... } denote an orthonormalized set of eigenfunctions of
-A in //0'(ß) such that $k is associated with A^: -&<t>k = Xk<j>k. Let Hk be the
A:-dimensional subspace of //0'(ß) spanned by {<;>,, . . . , <f>k). We recall from §3 that

Ck >      inf      /*(«). (3.3)
«ew/ns
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18 ABBAS BAHRI AND HENRI BERESTYCKI

For any w G HkL n S, one has fa\ Vw|2 = 1 and ja u2 < Xk '. By Holder's inequal-
ity one has

8 \ — 6
||M||z.'+'(S2)  < ||"||l2(S2)||"||l2*(Q)

where 2* = 2N/(N -2) UN > 3 (whence 2 <p + 1 < 2* by (4.2)) and 2* is any
(finite) number larger than/? + \ if N = 2. Here, 9 is given by 9/2 + (1 - 0)/2*
= l/(/7 + 1) (0 < 9 < 1). That is, 9 = N/(p + 1) - (N - 2)/2 if N > 3 and 9
can be made arbitrarily close to (but smaller than) 2/(p + 1) by choosing 2*
arbitrarily large when N = 2. By Sobolev's imbedding theorem, since w G S, one
has || w|| ¿2« < C (the constant C depends on the choice of 2* in dimension 2).

Thus, for any w G Hk   n S, one has
n    m ^   „,  -9/2
||u||l'+i(îî) ** <-Xk     .

Hence, for any w G Hk   n S,

J*(u) = C||«||Z#(lV)/0'-I) > CA^+1)/C-'>,

where C > 0 denotes various constants. Now, recall that by the formula for the
asymptotic behaviour of Xk as k —> + oo (see Agmon [1, §14] or Courant-Hilbert
[12]) one has A^ ~ Ck2/N. Hence, we derive, using (3.3), that

Ck > Cka»    ifN > 3, VA: G N,

where

2/7 + 1 _2N-(N-2)(p+ 1)
""      7V/7-1 ;v(/>-i)

In the case of dimension 2, by choosing 2* large enough 9 can be made arbitrarily
close to 2/(p + 1). Thus, when N = 2, for any e > 0, there exists Ct > 0 such that
Ck > Ce k"2~e where a2 = 2/(p — 1). This concludes the proof of Proposition 5.1.
D

Remark 5.2. In the case of dimension N = 1, the above argument would merely
show Ck> C k2/(p~1). Actually, in this case, a more careful estimate of HwH^+i^)
when w G Hkx n S shows that Ck > C k(p+l}/(p~1\ An analogous estimate is
being derived and employed in our study of the existence of periodic solutions for
some forced second order systems of ordinary differential equations in [9]. (See also
[8]-)    □

We are now ready to complete the proof of Theorem 1.1. In view of Theorem 3.6
(cf. Remark 3.7 and also Theorem 3.8), it will suffice to show the existence of
infinitely many distinct values of k G N, together with the existence of ek > 0 and
at G R such that /*. . c¿ C/í . • From Lemma 4.3 we derive the existence
of A > I such that for any w G S with J*(u) > A one also has J(u) > 1 and,
similarly, J(u) > A => J*(u) > 1. (Indeed, just argue by contradiction and observe
that for any sequence (u„) c S, J(un) -* + oo «=> J*(un) -> + oo.) Hence, by Lemma
4.4 for any C > A, one has the inclusions

/*. C /Mc) C 7*(C)    where «*(C) = C + yC1^^

and

Ml(C) = p(C) + y[ »(C)]1/(p+i) = ,t[ M(C)].
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(y > 0 is the constant in (4.18) of Lemma 4.4.) Since C > 1 and Cx/(p + l) < C, we
have n¡(C) < v(C) with v(C) = C + 8Cl/(p+l) where Ô = y + y(l + y)'/^+1).
Thus, we just need to show that for infinitely many distinct values of k, we have
Q+i > KQ)- Indeed, whenever Ck+i > v(Ck), we can choose tk > 0 small enough
so that Ck + X - ek > v(Ck + ek) and denoting ak = n(Ck + ek), we then have

JCk + ik   C Jak   C J*(Ck + ek)  C /éLí-%'

Thus, for any such /c, there exists a critical value of J in [ak, +oo). Note that since
ak > Ck and HmA:^+00 Q = + oo, the existence of infinitely many such k G N
implies the existence of infinitely many distinct critical values of J which converge
tO  +00.

We now argue by contradiction and suppose that there exists k0 G N such that
for any k > k0, one has Ck + l < v(Ck), that is:

Q + ,-Q<5Q'^+l>,   \/k>k0. (5.2)
We require the following simple observation.

Lemma 5.3. Let (dk)kfEN be a sequence of positive numbers such that 0 < dk+i — dk
< 8 dk, V A: > k0, where k0 G N, 8 > 0 and 0 < 9 < 1. Then there exists a constant
C > 0 such that dk < C frI/(I_#>, V k > 1.

Proof of Lemma 5.3. Set 8k = k~l/(l~9)dk > 0. We want to show that ó*¿
remains bounded as k —> + oo. Using the fact that (1 + t)ß > 1 + /?f for ß =
1/(1 - 9) > 1 and / > 0, we derive from 0 < dk + l - dk < 8dek that

\/(\-9)8k + xk^ + 8k + ,-8k<8 8ekk-\
whence, it follows that:

(i) either ó\+1 < 8k;
(ii) or 8k <8k + l < 8(1 - 9)8l, which implies ó\ < [0(1 - 9)]l/^~9) and thus,

8k+x<[8(l-9)]l^-e>= M.
Hence, we always have 8k +, < msLx(8k, M), V k > k0, from where it follows that

8k < max(8k , M) and the sequence 5¿ is bounded.    □
Let us continue the proof of Theorem 1.1. Assuming (5.2) we derive from

Lemma 5.3 that
Ck+l < C k(j'+i)/p,   VA: > 1. (5.3)

Now, recalling Proposition 5.1 we know that

Í Ck > C ka"        iiN > 3,\f k > I,
\Ck> Cc ka*-e    if N - 2, V k > 1 ^5'ly

(with some other positive constants C, Ce). Therefore, comparing (5.1) and (5.3)
yields in all cases aN < (p + \)/p, V N > 2. This inequality reads precisely

(2N - 2)p2 - (N + 2)p - N > 0.
Thus, if pN denotes the largest root of (2N - 2)/>2 - (N + 2)p - N = 0 (1 <pN <
(N + 2)/(N - 2) as is easily checked), for any p such that 1 <p <pN, the
preceding inequality is violated and therefore (5.2) cannot hold. Thus, there exist
infinitely many values of k G N such that J*k+ek C Jak C /Í _.. The proof of
Theorem 1.1 is now complete.    □
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Remark 5.4. In the case of dimension 1, we know that Ck > C kip + l)/<-p~l) (see
Remark 5.2 above and [9]). Thus, in this case (5.3) is always impossible, no matter
what p > 1 is. The preceding method shows therefore that the equation -w" =
Iwl^'w + A(x), x G (0, 1) and w(0) = w(l) = 0, has infinitely many distinct solu-
tions, for any/> > 1 and any A G L2(0, 1).    □

6. More general nonlinear i ties. In this section, we consider the following more
general problem than (1.1):

Lu = g(x, u) + h(x),       x G ß, „ j.
w = 0   on 3ß.

Here again ß c R^ is a smooth and bounded domain, L is now a second order
selfadjoint, uniformly elliptic operator:

l=- àMa-Ax)^+b(x)

with ay = aM G C'(ß), b G C°(ß), b > 0 and

2  av(x)t¿j > o\í\2,       V x G ß, V £ G R",
ij-i

p > 0 being the ellipticity constant. A G L2(ß) is a given function. We assume that
the function g satisfies the following conditions.

g: ß xR^Risa continuous function, and g = g(x, s)

is C ' and odd with respect to î £ R, for all x G ß.

3/i, s0, 0 < n < l,s0> 0, such that

0 < g(x, s)/s < ng's(x, s), V x Œ ß, V s > s0.

lim    g(x's) = q(x) > 0,    V x G ß, g G C°(ß), the convergence
r-»+oo SP

(6.2)

(6.3)

(6.4)being uniform with respect to x G ß ; here, 1 < p <pN

wherepN is the largest root of (2N — 2)p2 - (N + 2)p - N = 0.

Let us observe that condition (6.3) readily implies (by means of an integration by
parts) that

J G(x, s) < 9g(x, s)s + C, V x G ß, V s G R
I with 9 G (O, j) and C > 0 is some constant,

where G(x, z) = fz0g(x, s) ds and 9 = /i/(l + ju,). This condition (6.5) is classical
and is always assumed in the works of Ambrosetti and Rabinowitz [4] and
Rabinowitz [22] in order to ensure that the associated functional satisfies a
condition of the type (P.S). Thus, (6.3) is a stronger hypothesis than (6.5), but, in a
sense, it is a condition of the same nature.4

4Actually, this condition (6.3) could be somewhat weakened by using a method similar to the one we
develop in [8] and [9].
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The main result in this section is

Theorem 6.1. Assume that g satisfies hypotheses (6.2)-(6.4). Then, for any given
A G L2(ß), problem (6.1) possesses infinitely many distinct solutions.

The proof of this result follows the steps of that given in §§4 and 5 for the case
g(x, w) = Iwl^'w, and rests on Theorem 3.8. Therefore, we only carry out in detail
the changes which are needed for treating the more general g. Let us set for
*, * G H¿(Q):

3<f>   3»//

The norm in //0'(ß) will be taken here to be

«*+>-2,I*m*£

||*|| = V «(</>, 4>) ,    S- {wG//0'(ß);||w||= 1}.
Define for w G H¿(Sl),

/(«)=i||w||2- (g(x,u)- (hu,
Jq Jq.

/*(w)=!||w||2-(g(x,w).
Ja

As before, we define for w G S,
J(u) = max /(Aw),   J*(u) = max I*(Xu).

In order to isolate clearly the role played by condition (6.4) on the growth
restriction of g, we will replace it whenever possible in the following statements by
the more general (and "usual" when N > 3) assumption.

g(x, s)                                N + 2There exists p such that   lim    -'—- = 0 with 1 < p < —-
J-..+00       sp N — 2

if N > 3 and 1 < p if N = 2, the convergence being uniform ^ ' '

with respect to x G ß.

As is well known, (6.6) can be weakened when N = 1 or 2. For N = 2, one just
requires liin,^.,.^, g(x, s)e~s — 0 and, actually, when N = 1 no growth hypothesis
at all is needed.

We require the following modification of Propositions 4.1 and 4.2.

Proposition 6.2. Assume that g satisfies hypotheses (6.2), (6.3) and (6.6). Then, for
any A G L2(ß), there exists A > 0 swcA that J, J* G C°(S, R), J,J*>0 and
J G C\JA, R), /* G C'(y*, R). J andJ* satisfy condition (P.S)^. Furthermore, J* is
even and verifies the condition in Theorem 2.9.

Proposition 6.3. Under the same hypotheses as in Proposition 6.2 for any u G S
with J(u) > A, there exists a unique X(u) > 0 íwcA that J(u) = /(A(w)w). Further-
more, the critical values of I in [A, +oo) coincide with the critical values of J in
[A, +oo).
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Before proving these propositions, let us recall that at a point A such that
J(u) = /(Aw), one has

A2
J(u) = — - / G(x, Aw) - A / Aw, (6.7)

2       Jq Jq,

-^-/(Aw) = A - (g(x, Xu)u- (hu = 0. (6.8)
«A Jq Ja

The proofs of Propositions 6.2 and 6.3 rest on the two following lemmas.

Lemma 6.4. Under the assumptions of Proposition 6.2 let A G Z.2(ß) be given. For
any sequence (un) c S, (A„) c R+ such that J(un) = I(Xnun), the following are
equivalent :

(i)J(un)^+cc,

(ii)A„-> +00,
(iii)wn-0//i//0'(ß).

Proof of Lemma 6.4. Since J(un) = /(A„wn), it is clear that (i)=>(ii). Suppose
that A„ —> +00. From (6.8), we derive

Ao¿//<*'*»«>,, = 1- (6-9)
It is easily checked that (6.3) implies that

g(x,s) > CsWli - C,       Vj>0

(in the sequel C denotes various positive constants). Hence,

ca^-1 f k|(1//l)+1 - C< 1.

It follows that w„ ̂  0 strongly in L(1/>)+ '(ß), and therefore w„ -* 0 weakly in //0'(ß)
(and un —> 0 in L*(ß), V ö, 1 < a < 2*). Thus (ii)=>(iii). Conversely, suppose
un —" 0 weakly in //0'(ß) and thus wn —> 0 strongly in Lp+ '(ß) (/> is defined in (6.6)).
From (6.6) it follows that G(x, s) < \s\p + l + C and therefore

J(u) > max í y - A"+1||w||^', - C7||m||í,*. j - C. (6.10)

Now, as w„—>0 in L/J+1(ß), it is easily derived from (6.10) that J(un)^> + oo.
Hence, (iii) =» (i) and the proof of Lemma 6.4 is complete.    □

Lemma 6.5. There exist positive constants X > 0, a, ß > 0 and A > 0 such that the
following holds. For any v G L°°(ß) n S with J(v) > A, (dI(Xv)/dX\x.x<¡ < ß and
A0 > À, then one has d2I(Xv)/dX2 < -a for all X > A0.

Remark 6.6. In the above lemma, some more regularity (L°° in addition to
//0'(ß)) is required from v. The reason is that otherwise the function A —> /(Au) need
not be a function of class C2. It should be noted indeed that we have not imposed
here any restrictions from above on the growth of g's(x, s), and thus, / is not
necessarily a C2 functional on //0'(ß). When u G L°°(ß) n S, however, then clearly
/(Au) is a C2 function of A.    □
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Proof of Lemma 6.5. For v G L°°(ß) n S, one has

d2

/(Au) = A — j g(x, Xv)v - \ hv,
Jo Jq.dX

I(Xv) = l-fg's(x,Xv)v2.dXz jq

Using (6.3) we derive

d2Ar/(M < l
dX2

1 1+ 1 -T fg(x,Au)u   + C(v2
A Jo Jo

(6.11)

(6.12)

From Lemma 6.4 we know that if A is sufficiently large, u

1
JA implies

Cfv2 +T   (hv
Jq, X\Jo

<±a

where C is the (fixed) positive constant appearing in (6.12) and where we set
a = -j(l - \/p) > 0. Hence, we derive from (6.11) and (6.12) that for any
v G JA, v G L°°(ß) and any A > Ä the following inequality is satisfied:

d2I(Xv)/dX2 < -fa + ^-lX~1[dI(Xv)/dX]. (6.13)

Now set ß = \ Xjua. It follows from (6.13) that, if for some A0 > A, (dI(Xv)/dX)\X=x
< ß, then dI(Xv)/dX decreases for A > A0 and therefore d2I(Xv)/dX2 < -a for all
A > A0.    □

Proofs of Propositions 6.2 and 6.3. The proofs of the remaining parts in these
propositions being the same as for Propositions 4.1 and 4.2, we will only show here
that there exists A > 0 such that for all w G S with J(u) > A there exists a unique
X = X(u) such that J(u) = /(Aw). In the case w G L°°(ß) n S, this can easily be
deduced from Lemmas 6.4 and 6.5. To conclude that the uniqueness of A(w) is also
valid for any w G S1 we will now use Lemma 6.5 together with a density argument.

First, we observe that in Lemma 6.5, A and A can be chosen so that for any
w G JA and A with J(u) = /(Aw) one has A > A. This is an easy consequence of the
equivalence of (i) and (ii) in Lemma 6.4 by choosing A large enough. Suppose that
for some w G S with J(u) > A there exist A < A, < A2 such that J(u) = /(A,w) =
I(X2u). Taking a sequence (vn) c L°°(ß) n S such that vn —> u in //0'(ß) (by density
and radial projection onto S), it is easily seen by using (6.6) that the sequence of
functions A i-» I(Xv„) converges uniformly in the C1 sense on A G [A,, A2] to the
function A h» /(Aw). Hence, (dI(Xvn)/dX)^=x¡ —> 0 as n -» oo. By Lemma 6.5 it
follows that for n large enough, say n > n0, one always has

d2

dX
I(Xvn) < -a,       X > A„ n > n0.

Therefore,

/(A2uJ - /(VJ < ¿x/(Xo«V- (A2 *l)  - t(^2  - *.)2-
a
2

Taking the limits as n —> + oo in the above inequality yields

0 = /(A2w) - /(A,w) < - (a/2)(A2 - A,)2
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which is absurd. This shows that A = A(w) is uniquely determined when w G JA and
the proof is thereby complete.    □

Next, we require more precise estimates of A(w) and J(u) as 'V(w) -^ + oo".

Lemma 6.7. Assume g satisfies (6.2)-(6.4), and let h G L2(ß) be given. Then, there
exist Ax> A and constants 0 < w, < w2 íwcA that for any u G S with J(u) > A,, one
has

if       +i) l/(p~l)
w, < A(w)|  j \u\p+   > < w2

and

w, <y(w)| Í \u\p+ | < w2,

where p is the exponent defined in (6.4). The same inequalities hold with J replaced by
J* and X replaced by A* such that J*(u) = I*(X*u).

Proof. By condition (6.4) there exist constants C > 0 and 0 < f, < f2 such that

Çl\s\p + l - C < g(x, s)s < S2\s\p + l + C,       VxGß, V^GR.      (6.14)

There exists Ax > A such that

i<|jg(x,A«)«<|,       Vwg/4i,A = A(w). (6.15)

This is easily derived from (6.8) by using a contradiction argument. Thus, using
(6.14) and (6.15) we derive

?,A'-' r|w|"+1 < 3/2+ C/X,JQ

f2A"-' (\u\p + 1 > 1/2 - C/XJQ

for all w G JA and A = A(w). This yields the first inequality in Lemma 6.7. For the
second inequality, we observe that limi_(±00 G(x, s) = + oo uniformly with respect
to x G ß. Hence, for u G JA,

J(u) < A2/2+ C -X(hu
Jq

with A = A(w). Therefore, by choosing Ax large enough so that A = A(w) is also
large enough, we derive

/(w)<§A2       Vw G./vA = A(w). (6.16)

From (6.5) it follows that

J(u) > A2(|- 9) + 9X2ll -^Jg(x,Aw)wl - C. (6.17)

By refining (6.15) it is seen that for any e > 0, e < 1, there exists A(e) > 0 such
that

1   r1 - e < Y I g(x, Xu)u < 1 + e,        V w G JA(t), X = X(u). (6.18)
A Jq
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Hence, using (6.18) and Ax sufficiently large we derive from (6.17) the existence of
T) > 0 such that

/(w)>r,A2,        Vw G74i,A = A(w). (6.19)

Lastly, comparing (6.16), (6.19) and the first inequality of Lemma 6.7 yields the
second inequality.    □

Our next estimate before proving Theorem 6.1 will consist in checking that
Lemma 4.4 continues to hold in the present situation.

Lemma 6.8. Assume g satisfies (6.2)-(6.4), and let A G L2(ß) be given. Then there
exist A2 > Ax and a constant y > 0 such that for all u G S with either J(u) > A2or
J*(u) > A2 one has

\J(u)-J*(u)\<y[J(u)],/(p + l),

\J(u)-J*(u)\<y[J*(u)]l/(p + l)

where p is the exponent defined in (6.4).

Proof. Firstly, we choose A2> Ax by requiring that J(u) > A2=>J*(u) > Ax
and J*(u) > A2 => J(u) > Ax. (This is possible by Lemma 6.4.) Next, in exactly the
same way as in the proof of Lemma 4.4 we have

\J(u) - J*(u)\ < max{A(w), A*(w)}||w||z.,+,(S2)||A||L,(52),

where J(u) = I(X(u)u) and J*(u) = I*(X*(u)u). Using Lemma 6.7, we then deduce

\j(u) - j*(u)\ < qH|iz&&r°.     v u G h% u J\-
Hence, we derive the inequalities in Lemma 6.8 by applying the second inequality
in Lemma 6.7.    □

Now, as in (3.2) we define the numbers Ck by setting

Ck =   inf    max J*(u) (6.20)
A&Mk    ut£A

where Mk is the class defined in (3.1). The next results contain the few modifica-
tions required in Theorems 3.1 and 3.3 and Proposition 5.1. They assert that the
same estimates derived in §5 continue to hold for a more general g.

Proposition 6.9. Assume g satisfies (6.2)-(6.6), and let Ck be defined in (6.20).
Then, one has:

(i)0<Q <Q+1,V/cGN.
(ii) lim¿_+00 Ck = +00.

(iii) For all k G N iwcA that Ck > A, Ck is a critical value of J* and hence of I*.
(iv) For all a, b G R, k G N with Ck < b < a < Ck+X, J¿ is not contrac tibie to a

point in J*.

Proposition 6.10. In addition to the hypotheses of Proposition 6.9, assume that g
satisfies condition (6.4). Then, there exists a constant C > 0 (respectively, there exists
Ce > Ofor any e > 0) and k0 G N swcA that

Ck>Cka» ifN>3,Vk>ko,
Ck>Ceka*-e     ifN = 2,Vk>k0, ( '    '
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where

_ 2N - (N - 2)(p + 1)
N(p - 1)

VJV>2, and kQ G N.

Proposition 6.9 repeats results from §3. Note that since /* is C ' only on the set
y* and only satisfies (P.S)^, we need to know that Ck > A in order to ensure that
Ck is a critical value. Also observe that (ii) is derived from Theorem 3.3 (i.e. with
the same proof) by using Lemma 6.4.

Proof of Proposition 6.10. It rests on the fact that J* satisfies the following
inequality

/ r \-2/(p-D
J*(u) > C J \u\p+l\ - C,       VwGS. (6.22)

Indeed, by Lemma 6.4 we know that on the set («Ei;0< J*(^) < A), jQ\u\p+i
is bounded away from 0 so that (6.22) holds on this set provided C is large
enough. On the set (w G S;J*(u) > A) on the other hand, (6.19) is just derived
from Lemma 6.7. Hence, by repeating the same proof as for Proposition 5.1, we
derive

Ck> C ka" - C,       V k > 1, if N > 3,
Ck > Cc ka>-c - C',       VA: > 1, if N = 2.

Then (6.21) follows by choosing k0 sufficiently large.    □
The proof of Theorem 6.1 is now complete. Indeed, we have now the estimates

(Lemma 6.8 and Proposition 6.10) that enable us to repeat exactly the same
argument as in §5 for Theorem 1.1 and derive Theorem 6.1 from Theorem 3.8.    □

Remark 6.11. In the odd case, that is when A s 0, the preceding argument shows
the existence of infinitely many distinct solutions of the equation

Lu = g(x, w),        x G ß,
u = 0    on 3ß, { '    }

under assumptions (6.2), (6.3) and (6.6) only. (Condition (6.4) is not needed here.)
Indeed, this is precisely the content of Propositions 6.3 for /* (ii) and (iii). This
result is slightly weaker than the one established by Ambrosetti and Rabinowitz
[22] for (6.20), who only assume (6.5) rather than (6.3) and only assume g to be
continuous. On the other hand, the preceding method provides in this case a
somewhat simpler proof of this result. Here, the proof only relies on the study of
critical points of J* by means of classical inf-max characterizations of the Ck rather
than on the "dual variational" approach used in [22].

Remark 6.12. Specializing the preceding method to problem (6.1) in dimension
N = 1, we derive a result that seems new. Indeed, consider the problem

Í (-ay')' + by = g(x, y) + A(x),        x G (0, 1),
1 y(0) =y(l) =0

where a £ C'[0, 1], a > 0 on [0, 1], b G C°[0, 1] and b > 0. Here, g satisfies
assumptions (6.2), (6.3) and (6.4), but in (6.4) 1 </> <pN is not required any longer
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and is replaced merely by 1 <p < + oo. Then, the method of this section shows
that for any A G L2[0, 1], problem (6.21) has infinitely many solutions. The proof
in this case requires the more precise estimate for the Ck which is indicated in
Remark 5.2. The theorems (and methods) of Ehrmann [14] and Fucik and Lovicar
[15] concern the O.D.E. (see the Introduction)

Í -y" = f(y) + A(x),     x g (o, i),
\y(0)=y(l) = 0.

That is, a perturbation by A(x) of an autonomous equation. However, we recall on
the other hand that the condition they impose off, viz. iirtiy_>±00(f(y)/y) = + oo is
quite general in this case.    □

7. A perturbation and multiplicity result. In this section we study a more general
perturbation problem for which we obtain a perturbation and multiplicity type
result that generalizes an earlier work in this direction by A. Ambrosetti [2]. We
consider the problem

Lw = g(x, u) + e^(x, w),       x G ß, ^ js
w = 0    on 3ß.

We assume that ücR* and L, a second order selfadjoint elliptic operator, are as
in the preceding section. The function g: ß X R -» R is supposed to satisfy
conditions (6.2), (6.3) and (6.6). (Condition (6.4) will not be used any longer in the
sequel.) e > 0 designates a real "perturbation parameter". We assume that \p
satisfies the following conditions:

xp: ß X R -* R is continuous and u^ = \p(x, s) is C ' with respect to s GR;      (7.2)

i//(x, s)
lim    —;- = 0,    uniformly with respect to x G ß. (7.3)

*->±oo   gs(x, s)

The preceding condition asserts that in an appropriate sense, \p is "dominated" by g
as \s\ —* + oo. The main result of this section is the following.

Theorem 7.1. Assume g satisfies conditions (6.2), (6.3) and (6.6) and that \¡/ satisfies
(7.2) and (7.3). Then, for any v G N, there exists ev > 0 such that for any e,
0 < e < e„, problem (7.1) admits at least v distinct solutions.

The proof will make use of the same setting as in §6. We recall that H = H¿(Q),
\\u\\2 = jaLu-u,

/*(w) =|||w||2 -  (g(x, u),        u G H¿(Q),
Jq

with G(x, z) = /o g(x, s) ds and
J*(u) = max /*(Aw),       w G S.

We define *(x, z) = fz0 ¡p(x, s) ds,

He(u) = /*(w) - e />(x, w)    and    Ke(u) = max He(Xu).
Jq \>o

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



28 ABBAS BAHRI AND HENRI BERESTYCKI

We require the following adaptations of Propositions 4 and 5. (Recall that /* and
/* have the properties described in those propositions.)

Proposition 7.2. Assume that g verifies the hypotheses of Theorem 7.1 and let
e0 > 0 be given. There exists A > 0 such that for any e, 0 < e < e0, Ke G C°(S, R),
K' G Cl((K')A, R), K' satisfies condition (P.S)^. Furthermore, the critical values of
K" in [A, +oo) coincide with the critical values of H* in [A, +oo) for any e G [0, e0].

As usual, the key for Proposition 7.2 rests on the fact that for A large enough,
there is a unique A = A,,(w) such that K'(u) = Hc(Xu) > A for any e G [0, e0] and
w G (K')A. This will be derived from the next two lemmas.

Lemma 7.3. Under the assumptions of Proposition 7.2 for any e G [0, e0] and any
sequences (un) C S, (AJ C R+ swcA that Ke(un) = He(X„un), the following are equiv-
alent.

(i) K\un) -> + oo,
(ii) A„ -h» + oo,
(iii) w„ -» 0 weakly in H¿(íl).

The proof of Lemma 7.3 can be adapted from the proof of Lemma 6.4 with no
difficulty by observing that from (7.3) it follows that

V a > 0, 3Ca > 0 such that V x G ß, V s G R;
■   -ag's(x, s)- Ca < #(x, s) < ag's(x, s) + Ca; (7-4)

-ag(x, s)s - Ca < ^(x, s)s < ag(x, s)s + Ca.

It just suffices to observe that by choosing a appropriately small, the same type of
inequalities that we used for proving Lemma 6.4 continue to hold in the present
situation.    □

Lemma 7.4. Under the assumptions of Proposition 7.2, there exists X such that for
any e G [0, e0], u G S n L°° and any X > A with dH'(Xu)/dX = 0, one has
d2H'(Xu)/dX2 < 0.

The proof of this lemma closely follows that of Lemma 6.5 and will be omitted
here. (To adapt the proof of Lemma 6.5, one uses (7.4) with an adequate choice of
a.)

Proof of Proposition 7.2. As in §6, the preceding lemmas show that there exists
A > 0 such that for any e G [0, e0] and any u G S with Ke(u) > A, there is a
unique A = \,(w) such that Ke(u) = He(Xu). This Ae(w) is easily seen to be a C1
function on (K')A.

Then Proposition 7.2 follows in very much the same way as Proposition 4.1 was
derived in §4 and details are omitted here. In particular, condition (P.S)^ for K' is
derived from the fact that //e satisfies an analogous (P.S)^ condition. To see this,
we observe that

H'(u)={\\uf- (g'(x,u)Jq
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where Ge = G + ety and ge = g + «/>. Now using (6.5) and (7.7) it is easily seen
that g ' satisfies

G\x, s) < 9'ge(x, s)s + C,       V e G [0, e0] (7.5)

for all x G ß and s G R where 0 < 9 < 9' < {. Thus, condition (P.S)^ for He
follows from the results of Ambrosetti and Rabinowitz [4].    □

In order to prove Theorem 7.1 by applying Theorem 3.8 or rather Theorem 3.9
we need to know that the level sets of K' become close in some weak sense to those
of J* as e —» 0. This will be the aim of the next two lemmas.

Lemma 7.5. For any u G S denote by A*(w) and Xe(u) two real numbers such that
J*(u) = /*(A*(w)w) and A:e(w) = He(Xc(u)u). Then there exist constants a, b > 0
jwcA that

[A*(w)]2 < aJ*(u) + b,

[Ae(w)]2 <aK<(u) + b        (eG[0,e0]).

Proof. In the sequel, we denote Ae = Ae(w), A* = A*(w). One has

■/*(») =-^r~- (g(x,x*u).
L        JQ

Hence, by using (6.5) we have

J*(u) > (A*)2(i - 9) + 0A*{a* - fg(x, A*w)w] - C.

Now, when A* > 0 we know that

¿/*(Aw),^x. = A* - fg(x, A*w)w = 0.

Thus, J*(u) > (X*)2(\ — 9) — C and the first inequality is proved. The second
inequality in the lemma follows similarly by using (7.5).    □

Lemma 7.6. For any w G 5 and any e G [0, e0] the following estimates hold:

\J*(u) - K'(u)\ < e(/*(w) + a),

\J*(u) - K'(u)\ < e(Ke(u) + a)

where a > 0 is some constant.

Proof. From (6.5) and (7.3) we know (compare (7.4)) that for any a > 0 there
exists a constant Ca > 0 satisfying

|*(x, s)\ < ag(x, s)s + Ca,

\<f(x, s)\ < ag<(x, s)s+ Ca

for any x G ß, í G R, e G [0, e0] and where ge = g + e^. For a positive A*, one has
A* = /s2 g(x, A*w)w and, similarly, if Ae > 0, Ae = fQ ge(x, A^w. Thus, it follows
from (7.6) that

( |*(x, A*w)| < a(A*)2 + Ca    and     ( |^(x, Aew)| < a(Ae)2 + Ca.
Jq jq
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Therefore, using Lemma 7.5 yields (with another value of Ca)

J*(u) - Ke(u) < e (*(x, A*w) < eaf*(u) + eCa,
a (7.7)

K'(u) - J*(u) < -£ f *(x, A£w) < eaA:£(w) + eCa.
Jq

From the preceding inequalities we also derive (for some constants a, b > 0) by an
adequate choice of a:

| /*(„),< aK<(u) + b,        v„eStV,e[a    , (7.g)
( K*(u) < al*(u) + b, L      0J V     '

In showing the above inequalities we have assumed A* =£ 0 and Ac ^ 0. However
(7.7) and (7.8) also hold when either A* = 0 or Ae = 0. Indeed from Lemma 7.3 it
follows that AE is bounded on the set where A* = 0, and vice-versa A* is bounded
on the set where AE = 0. (It just suffices to argue by contradiction and to use the
fact that Ae(w„) -> + oo <=¿>A*(w„) -» + oo.) Thus, /„ *(x, A*w) and fa *(x, Aew) are
bounded on each of these sets. This allows us to prove (7.7) and (7.8) directly in
this case.

Combining inequalities (7.7) and (7.8) completes the proof of Lemma 7.6.    □
Proof of Theorem 7.1. Lemma 7.6 shows that the following inclusions hold:

J*   C  ^1 + d.b + a)  C J*+Mb+a) (7-9)
for any e G [0, e0], b > 0; a is given by Lemma 7.6 and we have restricted ourselves
to 0 < e0 < 1. Let Ck be the critical values of J* defined by (6.20). By adapting the
proof of Lemma 6.4 one can show that Lemma 7.3 can be strengthened in the
following manner. For any sequence (un) c S and e" C [0, e0], K'\u„) -> + oo if
and only if w„ —" 0 weakly in H. We omit the details of this adaptation. (It uses for
instance the fact that in (7.5), 9' <\ is independent of e.) Therefore, we can apply
Theorem 2.9 (see Remark 2.10): there exists /x(a) > a, for all a with the property
that K* is contractible to a point in K^for any e G [0, e0]. Hence, by Theorem 3.9
if the inclusions J*k+P G K-l c ATa+p c /£ _p hold for some p > 0, a G R,
k G N, e G [0, e0], then K' has a critical value in [a, ix(a)].

Now we recall from Proposition 6.9 that lim^.^ Ck = + oo. For any integer
v G N therefore, there exists e„ G [0, e0] and p > 0 with the property that there are
at least v distinct integers kx < ■ ■ ■ <kv satisfying A < Cki < Q2 < • • • < CK
and

Ckj+x-2p>Ckj+3eXCkj + p+ a),       j - 1.v, (7.10)
(where a is given by Lemma 7.6) and

jx(Ckj + p + e,(Q. + p + a)) < Ckj+¡,      j=\,...,v-\. (7.11)

Denote a, = Ck + p + e(Ck + p + a). Since ju. can be chosen to be an increasing
function, ¡i(af) < C,.   . From (7.9) and (7.10) we derive, for any e G [0, e„],

Therefore, by Theorem 3.9, Ke has at least one critical value in [aJt n(Oj)] (recall
that Oj > A and that Proposition 7.2 applies), for ally = 1, . . . , v.
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Since ¡x(aj) < Ck + ¡ < aj+x, the intervals [ap ju(o,)] do not overlap.
Thereby, for any e, 0 < e < e„, problem (7.1) has at least v distinct solutions and

the proof of Theorem 7.1 is complete.    □
Remark 7.7. The perturbation method developed in §3 can also be applied to

study other related problems. Propositions 6.9, 6.10 and 7.2 could serve as proto-
types for the results needed to use a similar setting to those we have employed here.
For instance, one can show the existence of infinitely many solutions for some
nonlocal equations of the type

Lu = j I w21 w + A(x)    in ß, ,- ...

w = 0   on 3ß,
under the condition 0 < a < (N - 2)"1 if N > 3 or 0 < a < oo if N = 1, 2. This
method also applies, e.g., in the case of the biharmonic operator and allows us
under a suitable condition on p, to prove the existence of infinitely many solutions
to equations of the type

A2w = \u\p~lu + A(x)    inß, ,j Y4)
u = 3w/3m = 0   on 3ß.

Lastly, let us indicate that one could consider somewhat more generally phrased
conditions of the type (6.5) concerning equation (6.1). One can also obtain by this
method results for more general perturbations in (6.1), i.e. equations of the type

Lw = g(x, u) + <f>(x, ")    in ß> ,-, l5)
w = 0   on 3ß, { '   )

under various suitable hypotheses on g and <j>. As an example, if g satisfies (6.2),
(6.3) and hm^+0O g(x, s)s~p = m > 0, with 1 <p < (N + l)/(N - 1) and <f> is
C ', £ satisfies (7.3) with respect to g and <j> is such that /0 <i>(x, t) dt is bounded
independently of x G ß and s G R, then (7.14) possesses infinitely many solutions.
D
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