UC Riverside

UC Riverside Previously Published Works

Title

A Perturbation Theorem for Sensitivity Analysis of SVD Based Algorithms

Permalink

https://escholarship.org/uc/item/2d55p36b

Journal

IETE Journal of Research, 35(2)
ISSN
0377-2063

Authors

Hua, Yingbo
Sarkar, Tapan K

Publication Date

1989-03-01
DOI
10.1080/03772063.1989.11436795

Peer reviewed

ABSTRACT

We present a perturbation theorem on perturbations in the SVD truncated matrices and SVD truncated pseudo inverses. The theorem can be easily applied for sensitivity analysis of any SVD based algorithm that can be formulated in terms of SVD truncated matrices or/and SVD truncated pseudoinverses. The theorem is applied to an SVD based polynomial method and an SVD based direct matrix pencil method for estimating parameters of complex exponential signals in noise. With the theorem, it is simple to show that TLS-ESPRIT, Pro-ESPRIT and the state space method are equivalent to the direct matrix pencil method to the first order approximation.

1. INTRODUCTION

Singular value decomposition (SVD) has been used extensively in signal processing and especially for estimating parameters of superimposed exponential signals in noise [1-8]. Various kinds of SVD based algorithms have been proposed and tested by numerical simulations. Recently, there is a strong interest among several researchers in perturbation analysis of SVD based algorithms [9-19] since SVD plays a major role as a noise filter in all SVD based algorithms. But many analyses have heavily relied on the perturbations of singular values and singular vectors [1419]. Those approaches have led to complicated expressions which are difficult to understand except for simple cases (typically, single exponential case). However, we have observed that many SVD based algorithms can be formulated in terms of SVD truncated matrices or/and SVD truncated pseudoinverses [9-13]. For those algorithms, we do not have to rely on perturbation theory of singular values and singular vectors. Instead, we can base our analysis directly on the perturbations of the SVD truncated matrices and the SVD truncated pseudoinverses. As will be shown by the theorem in Section 2, the first order perturbations in the SVD truncated matrices or the SVD truncated pseudoinverses can be simply expressed in terms of the perturbations in the original data matrices.

It is important to note that for the case where two or more singular vectors are very close, the perturbations in the corresponding singular vectors can be very high [21], but the perturbations in the SVD truncated matrices or the SVD truncated pseudoinverses are virtually not affected, which can be seen from the theorem in the next section.

In Section 3 and 4 , we apply the theorem for the perturbation analysis of an SVD
based polynomial method and an SVD based direct matrix pencil method. The two methods are used for estimating parameters of complex exponential signals in noise. In contrast to the analyses in [14-19], our analysis is straightforward and the resulting perturbation expressions are simple and general enough for further study. In Section 5, we formulate TLSESPRIT [7], Pro-ESPRIT [8] and the state space method [22] in terms of the SVD truncations so that they are easily shown with the theorem to be equivalent to the direct matrix pencil method to the first order approximation.
2. A PERTURBATION THEOREM

Define an $N_{1} \times N_{2}$ matrix as

$$
Y=X+6 Y
$$

(2.1)
where X is a rank-M matrix, and $6 Y$ is a small (in norm) perturbation matrix. We write the SVD of Y as

$$
\begin{equation*}
Y=\Sigma i=1 . \min \sigma_{i} \underline{u} i \underline{i} i^{H} \tag{2,2}
\end{equation*}
$$

where $\sigma_{i}, i=1,2, \ldots, m i n$, are singular values in descending order; $4 i, i=1, \ldots$, min, are the corresponding left singular vectors; and $x_{i}, i=1, \ldots, m i n$, are the corresponding right singular vectors. min is the smaller number of N_{1} and N_{2}. The superscript "H" denotes conjugate transpose. It is clear that if $\delta Y=0$ then $\sigma,=0$ for $i>M$. Now we write the SVD truncated matrix of Y as
where $U=\left[\underline{u}_{1}, \ldots, u_{n}\right], V=\left[\underline{y}_{1}, \ldots\right.$, $\left.Y_{M}\right]$, and $\Sigma=\operatorname{diag}\left[\sigma_{1}, \ldots, \sigma_{M}\right]$. The SVD truncated pseudoinverse of Y is denoted by
$Y_{T}+\quad=\Sigma_{i=1 . M 1 / \sigma_{i}} Y_{i} y_{i} H$
$=\mathrm{VE-1} \mathrm{U}^{\mathrm{H}} \quad(2.4)$
where the superscript " + " denotes pseudoinverse. If $O Y=0$, then $Y_{T} \equiv X$ and $Y_{1}{ }^{*} X^{+}$. But if $6 Y$ is not equal to zero, we write

$=X+\delta Y_{T}$
$=X+\quad+6 Y_{T}$.
(2.6)
where δY_{T} and δY_{T} + are called the perturbations in the truncated matrix and in the truncated pseudoinverse respectively. Now we are ready to present the following: Theorem: To the first order approximation,

$$
\begin{aligned}
& \operatorname{Lu}_{0} \mathrm{H}_{\mathrm{T}} \quad \delta Y_{T}=40 \mathrm{H}_{\mathrm{H}} \quad \delta Y \text { (2.7a) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (2.8) }
\end{aligned}
$$

where yo is any vector from $R(X)$, and yo is any vector from $R\left(X^{H}\right)$. $R()$ denotes the column span (i.e., range) of the corresponding matrix.
The proof is omitted here. (2.7a) and (2.7b) imply that the SVD truncations do not affect the first order perturbations.
3. PERTURBATION ANALYSIS OF AN SVD BASED POLYNOMIAL METHOD
Assume a data sequence is given by
$y(k)=\sum_{i=1, n} a_{i} \quad z_{i} k+n(k) \quad(3.1)$
where $k=0,1, \ldots, N-1, z ; ' s$ and a_{i} 's are unknown signal poles and unknown amplitudes. $\mathrm{n}(\mathrm{k})$ is the noise. If zi 's are known,
ai 's can be easily estimated by minimizing the quadratic function:
$J=\Sigma_{k=0, N-1} \quad \mid y(k)-\Sigma_{i=1, n}$ aizik $\left.\right|^{2}$ (3.2)

To estimate z_{i} 's, Kumaresan and Tufts [1] proposed the following algorithms (assum-
ing $\left|z_{i}\right| \leq 1$ for $i=1, \ldots$ M):

1) Define the data matrix:
$\mathbf{Y}^{\prime}=\left[\begin{array}{llll}Y_{L} & y_{L-1} & \cdots & y_{0}\end{array}\right]$
$=\left[\begin{array}{llll}y(L) & y(L-1) & \ldots & y(0) \\ y(L+1) & y(L) & \ldots & y(1) \\ y(N-1) & y(N-2) & \cdots & y(N-L-1)\end{array}\right]$
where $M \leq L \leq N-M$. The parameter L can be adjusted to minimize the noise
sensitivity.
2) Find the backward minimum-norm polynomial coefficients by
$\underline{b}=-Y_{T} \cdot y 0 \quad$ (3.4) where
$\mathrm{b}=\left[\mathrm{b}_{0}, \mathrm{~b}_{1}, \ldots, \mathrm{~b}_{\mathrm{L}-1}\right]^{\top}$

$Y_{T}+$ is the SVD rank-M truncated pseudo-
inverse of Y.
3) Estimate the signal poles by the M roots, with magnitudes less than or equal to one, of the (backward) polynomial:

$$
P_{B}(z)=1+\Sigma_{j=1, L} \quad b_{L-j} \quad z^{j} \quad \text { (3.5) }
$$

If $n(k)=0$ for $k=0,1, \ldots, N-1$, Kumaresan
[1] showed that the M signal poles are M roots of $\mathrm{P}_{\mathrm{B}}(2)$ and the $\mathrm{L}-\mathrm{M}$ extraneous roots of $P_{B}(z)$ are outside the unit circle in the complex plane.

To evaluate the first order perturba-
tions in the estimated signal poles due to
the noise $n(k)$, we proceed as follows.
Since $P_{B}\left(z_{i}\right)=0$, the perturbation in z_{i} (i.e., $6 z ;$) is related to the perturbations in b_{j} 's (i.e., δb_{j} 's) according to (by differentiating (3.5)):

This can be written as
6zi $=N(z i) / D(z i) \quad$ (3.7)
where
$N\left(z_{i}\right)=-z_{i}{ }^{1} \quad 6 \underline{b}$
$z_{i}=\left[z i{ }^{2}, \ldots, z i\right]^{1} \quad$ (3.9)
$D(2 ;)=\sum_{j=1, L} \quad b_{L-j} \quad j 2 i j-1 \quad$ (3.10)
In (3.6)-(3.10), only $6 z$; and 6 b are noise perturbed. Differentiating (3.4), we can write

Substituting (3.11) into (3.8) yields

Now we note that the conjugate of $z ;$ belongs to $R\left(Y^{H}\right)$ and $y o$ belongs to $R(Y)$. Then applying (2.8) of the theorem to (3.12) leads to
where

$$
=z_{1}{ }^{T} Y Y^{\prime} \delta Y^{\prime} \mathrm{b}^{\prime}, 10+(3.13)
$$

$b^{\prime}=\left[1, b^{\top}\right]^{\top} \quad(3.14)$
δy^{\prime} is defined by (3.3) with $y(k)$ replaced

$$
\begin{aligned}
& \mathrm{N}\left(\mathrm{z}_{\mathrm{i}}\right)
\end{aligned}
$$

by $n(k) . N(z i)$ can be written more explicitly in terms of noise as follows.

where
$\mathrm{n}=[\mathrm{n}(0), \mathrm{n}(1), \ldots, \mathrm{n}(\mathrm{N}-1)]^{\top}$ (3.16)

$$
B=\left[\begin{array}{ccccccc}
b_{L} & b_{L}-1 & & \cdots & b_{1} & 1 & \\
& b_{L} & b_{L-1} & & \cdots & b_{1} & 1 \\
& & b_{L} & b_{L-1} & & \cdots & \\
& & \cdots & b_{1} & 1
\end{array}\right]
$$

For any given signal, (3.7) and (3.15) can be used to evaluate the first order perturbations. Comparing to the results in [14-19], (3.7) and (3.15) are not only very simple but also more general.
Detailed study of (3.7) and (3.15) is available in [11,13].

For the simple case where $y(k)=a_{1} z_{1} k$ $+n(k),|z i|=1$ and $n(k)$ is white with the variance σ^{2}, it is straight forward to show from (3.7) and (3.15) that
$\operatorname{Var}(8 z i)=$

$$
3(N-L)^{2} L(L+1)
$$

$=1$ /SNR

$$
\begin{equation*}
\frac{2\left(-(N-L)^{2}+3 L^{2}+3 L+1\right)}{3(N-L) L^{2}(L+1)^{2}} \text { for } L \geqslant N / 2 \tag{3.18}
\end{equation*}
$$

where $\operatorname{SNR}=\left|a_{1}\right|^{2} / 2 \sigma^{2}$.
4. PERTURBATION ANALYSIS OF AN SVD BASED DIRECT MATRIX PENCIL METHOD
Given the data of (3.1), the direct matrix pencil method [10,12] estimates signal poles by the M generalized eigenvalues of the SVD truncated data matrix pencil:

$$
\begin{aligned}
& Y_{1}-Z Y_{2} \\
& \approx Y_{1} T Y_{2} Y_{1} Y_{1} V_{1} H-Z U_{2} \Sigma_{2} V_{2}^{H} \\
& =U_{1} \sum_{1}
\end{aligned}
$$

(4.1)
where

$$
\begin{align*}
& Y_{1}=\left[\begin{array}{llll}
Y_{L} & Y_{L-1} & \ldots & Y_{1}
\end{array}\right] \\
& Y_{2}=\left[\begin{array}{llll}
Y_{L-1} & Y_{L-2} & \ldots & Y_{0}
\end{array}\right] \tag{4.3}
\end{align*}
$$

$Y_{1 T}$ and $Y_{2 T}$ are rank-M SVD truncations of Y_{1} and Y_{2} respectively. The M generalized eigenvalues of (4.1) are the M eigenvalues of $Y_{2 T}+Y_{1 T}$ or $Y_{1 T} Y_{2 T}+$. The parameter L satisfies $M \leq L \leq N-M$ and can be used to minimize the noise effect. In noiseless case, the M signal poles are the exact generalized eigenvalues of $\mathrm{Y}_{1}-\mathrm{ZY}_{2}$, i.e., $Y_{1}-z Y_{2}$ decreases its rank by one if and only if z is equal to the exact signal poles $z i, i=1, \ldots, M$.

In noisy case, there exist a noisy $z ;$, a corresponding noisy g_{i} in $\mathrm{R}\left(\mathrm{Y}_{2 \mathrm{~T}} \mathrm{f}\right)$ and a corresponding noisy g_{i} in R(Y2t H) such that

```
\(\operatorname{Ri}^{H}\left(Y_{1 T}-Z_{i} Y_{2 T}\right)=0\)
\(\left(Y_{1} T-Z_{i} Y_{2} r_{i}\right) g_{i}=0\)
The first order perturbation in the estimated \(z\); can be easily derived from the above two equations. One can verify that

\[
\begin{equation*}
\mathrm{Di}^{H} \mathrm{Y}_{2} \mathrm{~g}_{i} \tag{4.6}
\end{equation*}
\]

Note that in (4.6), all quantities except for \(\delta z_{i}, \delta Y_{1 T}\) and \(\delta Y_{2 T}\) are noiseless
quantities. It can be shown \([13,25]\) that
\(\mathbb{R i}^{H} Y_{2} g_{i}=a_{i}\). Applying (2.7a) and (2.7h
of the theorem to (4.6) yuelds
\(6 z\)
 (4.7)

Where \(\mathrm{GY}_{1}\) and \(\mathrm{OY}_{2}\) are defined by (4.2) and (4.3) with \(y(k)\) replaced by \(n(k)\). Explicitly in terms of the noise vector \(n\), Ezi can be rewritten as

where
(4.9)
qi.j is the jth element of gi
For the simple case defined in the previous section, it can be shown that \(\operatorname{Var}(62 i)\)
\[
\begin{align*}
& 1  \tag{4.10}\\
& (N-L)^{2} L \\
& 1 \\
& (N-L)^{2}
\end{align*}
\]

It is simple to verify that \(\operatorname{Var}\left(\delta_{z i}\right)\) poiynomial
\(z \operatorname{Var}\left(\mathrm{Ez}_{\mathrm{i}}\right)\) matrix pencil
5. PERTURBATION ANALYSIS OF OTHER MATRIX PENCIL ALGORITHMS
In this section, we show that Pro-ESPRIT [8], TLS-ESPRIT [7] and the state space method [22] have the same first order perturbations as the direct matrix pencil method [10,12] as discussed in the previous section. Note that the covariance filtering incorporated in Pro-ESPRIT and TLS-ESPRIT is not considered.

\section*{Pro-ESPRIT:}

This algorithm can be described based on (4.1). Multiplying (4.1) by \(U_{2} H\) from the left and by \(V_{2}\) from the right, one obtains the equivalent MxM pencil:
\(\mathrm{U}_{2} \mathrm{H} \mathrm{U}_{1} \Sigma_{1} \mathrm{~V}_{1} \mathrm{H} \mathrm{V}_{2}-\mathrm{z} \Sigma_{2} \quad\) (5.1)
Zoltowski [8] suggests that \(U_{2} H U_{1}\) and \(V_{2}{ }^{H} V_{1}\) be replaced by their best unitary approximations since in noiseless case they are unitary. In other words, he replaces (5.1) by the "cleaned" pencil:
\[
Q u \Sigma_{1} Q v^{H}-z \Sigma_{2} \quad(5.2)
\]
where
Qu \(=\left(U_{2} H U_{1}\right)\) unitary (5.3)
\(Q v=\left(V_{2} H V_{1}\right)\) unitary (5.4)
The unitary operator in (5.3) works as
follows. If \(U_{2} H U_{1}\) has the \(S V D U_{0} \Sigma_{0} V_{0} H^{\prime}\), then \(Q_{U}=U_{0} V_{0} H\). \(Q_{V}\) is similarly obtained.

To carry out the first order perturbation analysis, we present a matrix pencil which is equivalent to (5.2). Since [U1, \(\left.U_{2}\right]\) and \(\left[V_{1}, V_{2}\right]\) each span the same \(M\) dimensional column space in the noise case, one may compute the joint rank-M SVD truncations:
\[
\left[U_{1}, U_{2}\right] T=\left[U_{1} r, U_{2} T\right]
\]
\(=U_{u} \sum_{U}\left[\mathrm{Vu}_{1}{ }^{H}, \mathrm{Vu}_{2}{ }^{\mathrm{H}}\right]\)
\(\left.\begin{array}{lll}{\left[V_{1}, V_{2}\right] r=} \\ =U_{V} & \Sigma_{V}\left[V_{1} T, V_{21}\right]\end{array}\right]\)
\(\left.=U_{V} \sum_{V}\left[V_{V i}{ }^{H}, V_{V 2} H\right]\right\}\)
Then (4.1) can be

which is equivalent to the \(M \times M\) pencil
\(V_{U_{1}} H_{2} \quad \mathrm{EV}_{1}-z V_{V_{2}} H \Sigma_{2} \quad V_{V_{2}}\)
We can show [23] that (5.8) and (5.2) are
equivalent. (Also (5.8) can be shown to be equivalent to the TLS-Pro-ESPRIT [8], i.e., Pro-ESPRIT is equivalent to TLS-ProESPRIT.)

Following the same approach which leads to (4.6), one can verify that the first order perturbations in the generalized eigenvalues obtained from (5.7) are given by (4.6) with its numerator equal to


Applying (2.7a) and (2.7b), one can verify that


Substituting (5.10)-(5.13) into (5.9)
yields that (5.9) is equal to
Qi \({ }^{H} \delta\left(U_{1} \Sigma_{1} V_{1} H^{H}\right) \mathbf{g i}_{i}\)
\(-2 i Q_{H} H_{i}\left(U_{2} \sum_{2} V_{2}^{H}\right) g_{i}\)

 (5.14)

Now it is proved that Pro-ESPRIT (i.e., (5.2), (5.7) or (5.8)) is equivalent to the direct matrix pencil method to the first order approximation.

\section*{TLS-ESPRIT:}

This algorithm consists of two steps
[24] of joint SVD truncations. The first step is to compute the joint SVD of [Y1, \(\left.Y_{2}\right]\) as follows
\(\left[Y_{1}, Y_{2}\right]_{T}\)
\(=U_{Y} \sum_{\sum_{Y}}\left[V_{1 Y 3} H, V_{2 Y}{ }^{H}\right](5.15)\)
The second step is to compute the joint
SVD of [ \(V_{1} Y_{3}, V_{2 Y 3}\) ] as follows:
[ \(V_{1 r_{3}}, V_{2 y_{3}}\) ]t
= Uvr3 Evr3 [Viv3 H, V2v3 H]
Then using (5.15) and (5.16), we can write
\[
\begin{equation*}
\mathrm{Y}_{1}-2 \mathrm{Y}_{2} \tag{5.16}
\end{equation*}
\]

which is equivalent to the MxM pencil \(V_{1} v_{3}-z V_{2} v_{3}\) (5.18)
This pencil can be shown [24] to be equi-
valent to the pencil used in TLS-ESPRIT.
With the above formulation of TLS-
ESPRIT, one can follow the approach used
for the direct matrix pencil method and
Pro-ESPRIT to show that TLS-ESPRIT yields
the same first order perturbations given by (4.6).

\section*{The State Space Method:}

This method computes the truncations of \(Y_{1}\) and \(Y_{2}\) as follows. Let \(Y\) ' have the SVD truncation
\(Y^{\prime}{ }^{T}=U \Sigma V^{H}\)
Then one defines that \(V_{1}\) be \(V\) with its
last row deleted and \(V_{2}\) be \(V\) with its
first row deleted. Hence,
\(\mathrm{Y}_{1}-\mathrm{ZY}_{2}\)
\(\approx U \Sigma V_{1}{ }^{Y_{1}}-2 U \Sigma V_{2} H^{H}\)
\(=U V_{1}\left(V_{1} H^{-z} V_{2} H\right)\)
This is equivalent to the pencil
\(V_{1}-z V_{2}\)
which is used in the state space (5.21)
[22]. that the space space method is equivalent to all the above matrix pencil algorintms to the first order approximation.

CONCLUSION
We have presented a perturbation theorem of SVD truncated matrices and SVD truncated pseudoinverses. The theorem indicates that SVD truncations do not affect the first order perturbations. For any method which can be expressed in terms of SVD truncations, the theorem can be directly applied for perturbation analysis without using complicated perturbations of singular values and singular vectors. The theorem has been applied for perturbation analysis of an SVD based polynomial method (i.e., SVD Prony method) and an SVD based direct matrix pencil method. The application of the theorem to pro-ESPRIT, TLSESPRIT and the state space method has shown that all those algorithms are equivalent to the direct matrix pencil method to the first order approximation. We note finally that formulating algorithms directly in terms of SVD truncations is vital for the application of the theorem.

\section*{REFERENCES}
[1] R. Kumaresan and D. Tufts, "Estimating the parameters of exponentially damped sinusoids and pole-zero modeling in noise," IEEE-T-ASSP, Dec. 1982.
[2] -----, "Estimating the angles of arrival of multiple plane waves," IEEE-TAES, Jan. 1983.
[3] D. Tufts and R. Kumaresan, "Estimation of frequencies of multiple'sinusoids making linear prediction perform like maximum likelihood," Proc. IEEE, Sept. 1982.
[4] B. Porat and B. Friedlander. "A modification of the Kumaresan-Tufts method for estimating rational impulse response," IEEE-T-ASSP, Feb. 1987.
[5] A Paulraj, R. Roy and T. Kailath, "Estimation of signal parameters via rotational invariance techniques - ESPRIT," Proc. of 19 th Asilomar Conf. on Cir. Sys. Comp., CA. Nov. 1985
[6] R. Roy, A. Paulraj and T. Kailath, "ESPRIT - A subspace rotation appraoch to estimation of parameters of cisoíds in noise," IEEE-T-ASSP, Oct. 1986.
[7] R. Roy and T. Kailath, "ESPRIT and total least squares," Proc. of 21 st Asilomar Conf. on Sig. Sys. Comp., Nov. 1987.
[8] M. Zoltowski, "Novel techniques for the estimation of array parameters based on matrix pencils, subspace rotations, and total least squares," Proc. of IEEE ICASSP-88.
[9] Y. Hua and T. K. Sarkar, "Statitiscal analysis of three high resolution techniques for radio direction estimation," Proc. of IEEE ICASSP-86.
[10] -----. "Further analysis of three modern techniques for pole retrieval from
data sequence," Proc. of 30 th Midwest Symp. on Cir. Sys., Syracuse, NY, Aug. 1987.
[1i] ---.. "Perturbation analysis of TK method for harmonic retrieval problems," IEEE-T-ASSP, Feb. 1988.
[12] ----, "Matrix pencil method and
its performance," Proc. of IEEE ICASSP-88.
[13] Y. Hua, "On techniques for estimating parameters of exponentially
damped/undamped sinusoids in noise," \(\mathrm{Ph}, \mathrm{D}\).
dissertation, Syracuse University, 1988.
[14] B. Porat and B. Friedlander, "On
the accuracy of the Kumaresan-Tufts method for estimating complex damped exponentials," IEEE-T-ASSP, Feb. 1987.
[15] D. Bhaskar Rao, "Perturbation analysis of an SVD based method for the harmonic retrieval problem," Proc. of IEEE ICASSP-85.
[16] ---- " "Sensitivity analysis of state space methods in spectrum estimation," Proc. of IEEE ICASSP-87.
[17] -----, "Perturbation analysis of an SVD based linear prediction method for estimating the frequencies of multiple sinusoids," IEEE-T-ASSP, July 1988.
[18] R. J. Vaccaro and A. C. Kot, "A perturbation theorem for the analysis of SVD based algorithms," Proc. of IEEE ICASSP-87.
[19] A.C.Kot, S. Parthasarathy, D. Tufts and R. J. Vaccaro, "The statistical performance of state-variable balencing and Prony's method in parameter estimation," Proc. of IEEE ICASSP-87.
[20] G. Golub and C. Van Loan, Matrix Computations, Johns Hopkins, 1983.
[21] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.
[22] S. Y. Kung, K. S. Arun, D. V. Bhaskar Rao, "State-space and singular value decomposition based approximation method for the harmonic retrieval problem," Journal of Opt. Soc. Ame. Dec. 1983.
[23] Y. Hua and T. K. Sarkar, "On SVD for estimating generalized eigenvalues of singular matrix pencil in noise", submitted to IEEE-T-ASSP.
[24] -----, "Maximum likelinood, weighted Kalman and subspace linear prediction algorithms for system identification," Proc. of Asilomar Conf. on Sig. Sys. Comp., CA. Nov. 1988.
[25] -----, "Matrix pencil method for estimating parameters of damped/undamped sinusoids in noise," IEEE-T--ASSP, to appear.```

