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A PERTURBATION THEOREM FOR SENSITIVITY ANALYSIS 
OF SVD BASED ALGORITHMS 

Yingbo Hua and Tapan K. Sarkar 

Department of Electrical and Computer Engineering 
Syracuse University, Syracuse NY 13244-1240 

ABSTRACT 
We present a perturbation theorem on 

perturbations in the SVD truncated 
matrices and SVD truncated pseudo in- 
verses. The theorem can be easily applied 
for sensitivity analysis of any SVD based 
algorithm that can be formulated in terms 
of SVD truncated matrices or/and SVD trun- 
cated pseudoinverses. The theorem is ap- 
plied to an SVD based polynomial method 
and an SVD based direct matrix pencil 
method for estimating parameters of com- 
plex exponential signals in noise. With 
the theorem, it is simple to show that 
TLS-ESPRIT, Pro-ESPRIT and the state space 
method are equivalent to the direct matrix 
pencil method to the first order approxi- 
mation. 

1. INTRODUCTION 
Singular value decomposition (SVD) has 

been used extensively in signal processing 
and especially for estimating parameters 
of superimposed exponential signals in 
noise zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11-81. Various kinds of SVD based 
algorithms have been proposed and tested 
by numerical simulations. Recently, there 
is a strong interest among several resear- 
chers in perturbation analysis of SVD 
based algorithms [9-191 since SVD plays a 
major role as a noise filter in all SVD 
based algorithms. But many analyses have 
heavily relied on the perturbations of 
singular values and singular vectors [14- 
191. Those approaches have led to compli- 
cated expressions which are difficult to 
understand except for simple cases (typi- 
cally, single exponential case). However, 
we have observed that many SVD based algo- 
rithms can be formulated in terms of SVD 
truncated matrices or/and SVD truncated 
pseudoinverses [9-131. For those algo- 
rithms, we do not have to rely on pertur- 
bation theory of singular values and 
singular vectors. Instead, we can base 
our analysis directly on the perturbations 
of the SVD truncated matrices and the SVD 
truncated pseudoinverses. As will be 
shown by the theorem in Section 2, the 
first order perturbations in the SVD trun- 
cated matrices or the SVD truncated pseu- 
doinverses can be simply expressed in 
terms of the perturbations in the original 
data matrices. 

It is important to note that for the 
case where two or more singular vectors 
are very close, the perturbations in the 
corresponding singular vectors can be very 
high [211, but the perturbations in the 
SVD truncated matrices or the SVD trun- 
cated pseudoinverses are virtually not af- 
fected, which can be seen from the theorem 
in the next section. 
In Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 and 4 ,  we apply the theorem 

for the perturbation analysis of an SVD 

based polynomial method and an SVD based 
direct matrix pencil method. The two 
methods are used for estimating parameters 
of complex exponential signals in noise. 
In contrast to the analyses in [14-191, 
our analysis is straightforward and the 
resulting perturbation expressions are 
simple and general enough for further 
study. In Section 5, we formulate TLS- 
ESPRIT [7], Pro-ESPRIT [8] and the state 
space method [22] in terms of the SVD 
truncations so that they are easily shown 
with the theorem to be equivalent to the 
direct matrix pencil method to the first 
order approximation. 

2. A PERTURBATION THEOREM 
Define an NI xN2 matrix as 

Y = X + 6 Y  (2.1) 
where X is a rank-M matrix, and 6Y is a 
small (in norm) perturbation matrix. We 
write the SVD of Y as 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAui zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, i=1,2, ..., min, are singular 
values in descending order; yi , i=l, ..., 
min, are the corresponding left singular 
vectors; and yi , i=l,...,min, are the cor- 
responding right singular vectors. min is 
the smaller number of NI and N2 . The su- 
perscript "H" denotes conjugate transpose. 
It is clear that if ':BY = 0 then (ri = 0 for 
i > M. Now we write the SVD truncated 
matrix of Y as 

Y Z i = l . m i n  ~i yi yi H (2.2) 

YT = X i - 1 . n  O i  yi yi H 

= U Z V H  (2.3) 
where U = [ U I  , ..., un 1, V - [YI  , ..-., 
y n  1 ,  and X = diag[crl , ..., rrn I. The SVD 
truncated pseudoinverse of Y is denoted by 

Y T  + E Z i . 1 . n  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI / O i  yi yi n 
= v E - 1  un (2.4) 

where the superscript "+" denotes pseudo- 
inverse. If bY = 0 ,  then YT = X and 
YT = X+ . But if GY is not equal to zero, 
we write 

YT = x I' 6YT (2.5) 
YT ' as x' 4' 6YT ' (2.6) 

where ~ Y T  and 6Yr + are called the pertur- 
bations in the truncated matrix and in the 
truncated pseudoinverse respectively. Now 
we are ready to present the following: 
-: To the first order approxima- 
tion, 

y o  H 6YT = yo " GY (2.7a) 
GYT yo = 6Y yo (2.7b) 
yo n 6Y1 + yo = - yo " X+ 6Y X* yo 

( 2 . 8 )  
where yo is any vector from R ( X ) ,  and yo 
is any vector from R(XH ) .  R( ) denotes 
the column span (i.e., range) of the cor- 
responding matrix. 
The proof is omitted here. (2.7a) and 

(2.7b) imply that the SVD truncations do 
not affect the first order perturbations. 



3 .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPERTURBATION ANALYSIS OF AN SVD BASED 
POLYNOMIAL METHOD 

Assume a data sequence is given by 
y(k) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Zix1.H ai zi + n(F) (3.1) 

where k=O,l ,...,N-1, zi 's and ai s are un- 
known signal poles and unknown amplitudes. 
n(k) is the noise. If Zi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA' S  are known, 
ai 's can be easily estimated by minimizing 
the quadratic function: 

J = Zk.o.n-1 ly(k) - Zi=i.n ai Zi I( 

(3.2) 
To estimate zi 's, Kumaresan and Tufts [l] 
proposed the following algorithms (assum- 
ing IZi I L 1 for i-1, ... M): 
1)  Define the data matrix: 

Y' = IyL YL-1 . . .  yo 1 

(3.3) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 
= , Y W  Y(L-1) . . .  Y(0) 

Y(L+1) Y(L) . . -  Y(1) . . .  
y(N-1) y(N-2) . . .  y(N-L-1) 

where M zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 L i N-M. The parameter L can be 
adjusted to minimize the noise 
sensitivity. 
2) Find the backward minimum-norm polyno- 
mial coefficients by 

where 
b = - Y 1 *  yo (3.4) 

b - [bo , bi , ..., bL-i I T  (3.4a) 
Y = CyL YL-1 . . .  Yl 1 (3.4b) 

YT + is the SVD rank-M truncated pseudo- 
inverse of Y. 
3 )  Estimate the signal poles by the M 
roots, with magnitudes less than or equal 
to one, of the (backward) polynomial: 

If n(k) = 0 for k=O,l, ..., N-1, Kumaresan 
[I] showed that the M signal poles are M 
roots of P E  (z)  and the L-M extraneous 
roots of P E  (z)  are outside the unit circle 
in the complex plane. 

tions in the estimated signal poles due to 
the noise n(k), we proceed as follows. 
Since P E  ( z i  ) - 0, the perturbation in Zi 
(!.e., 6zi ) is related to the perturba- 
tions in bj 's (i.e., 6bj zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA' 5 )  according to 
(by differentiating (3.5)): 

This can be written as 

where 

P E  ( 2 )  = 1 + Zj-1.L bL-j zj (3.5) 

To evaluate the first order perturba- 

Zj.1,~ 6bL-j ~i + 
Zj.1.~ bL-j J zi 1 - l  6zi = 0 (3.6) 

6Zi = N(Zi )/D(Zi ) (3.7) 

N(zi ) = - zi 6k (3.8) 
zi = I z i  L , ..., zi 1 I T  (3.9) 
D(zi ) - C j . 1 . ~  bL-j j zi j - l  (3.10) 

In (3.6)-(3.10), only 6zi and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbb are noise 
perturbed. Differentiating (3.4), we can 
write 

Substituting (3.11) into ( 3 . 8 )  yields 
Gb = - 6Yr yo - Y* &yo (3.11) 

N(Zi ) zi GYT YO + zi T Y' 6x0 
(3.12) 

Now we note that the conjugate of zi 
belongs to R(YH ) and yo belongs to R(Y). 
Then applying (2.8) of the theorem to 
(3.12) leads to 

N(zi ) 

- zi T Y* 6Y' k '  (3.13) 

b' = [l, kr I T  (3.14) 

= - zi Y' 6YT Y' yo + zi T Y' 6ya 

where 

6 Y '  is defined by ( 3 . 3 )  with y(k) replaced 

-l/SNR 

for L ..: N/2 ------------- 
3(N-L)' L(L+l) 

2(-(N-L)2 +3Lz +3L+l) 

3(N-L)L2 (L+l)2 
for L ;1 N/2 ---_--_------------ 
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quantities. It can be shown zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA113,251 that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
pi ti Yz 9 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= a1 . Applying (2.7a) and (2.7h 
of the theorem to (4.6) yuelds 

l b 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

= 1 / a i  (p i  ti ilY1 Qi - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 1  Q i  ('y2 ai zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 
(4.7) 

where oYi and ( ~ Y Z  are defined by (4.2) and 
(4.3) with y(k) replaced by n(k). Ex- 
plicitly in terms of the noise vector n,  
( I Z I  can be rewritten as 

where 
l l 2 r  = 1/ai  D i  ti 91 (4.8) 

0 q 1 . L  q 1 . L - l  . . .  q i .1  

i I o  q 1 . L  C l i . L - 1  . . .  41.1 

- z 1  r q 1 . L  4 1 . L - 1  . . .  41.1 ", 
Q i  . . .  

l . L  q l . L - 1  . . .  4 1 . 1  

. . .  . I  

(4.9) 
q l . ,  is the jth element of g ,  . 

vious section, it can be shown that 
For the simple case defined in the pre- 

Var zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(c l z  ) 
1 

(N-L)? L 

1 

for L N/2 - - - - - - - - 

= l/SNR 

for L N/2 - - - - - - - - 
(N-L)LZ 

(4.10) 
It is simple to verify that 

Var ( 
- Var(Lz1 ) . a t r i ~  p e n c i l  (4.11) 

5. PERTURBATION ANALYSIS OF OTHER MATRIX 
PENCIL ALGORITHMS 

I ) p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 1 y n o rn 1 o 1 

In this section, we show that Pro-ESPRIT 
[ 8 ] ,  TLS-ESPRIT [7] and the state space 
method [223 have the same first order 
perturbations as the direct matrix pencil 
method [10,121 as discussed in the pre- 
vious section. Note that the covariance 
filtering incorporated in Pro-ESPRIT and 
TLS-ESPRIT is not considered. 

EZro-ESPRIT: 
This algorithm can be described based on 

(4.1). Multiplying (4.1) by U2 H from the 
left and by V2 from the right, one obtains 
the equivalent MxM pencil: 

Zoltowski [8] suggests that Uz H U1 and 
V2 V? be replaced by their best unitary 
approximations since in noiseless case 
they are unitary. In other words, he re- 
places (5.1) by the "cleaned" pencil: 

where 

U2 H U1 X l  vi H v 2  - 2 L z  (5.1) 

QU X I  Q V  ti - 2 x 2  (5.2) 

QU = (U2 ti Ut ) u n i t a r y  (5.3) 
Q U  = (V2 ti Vi ) u n i t a r y  (5.4) 

The unitary operator in (5.3) works as 
follows. If U2 UI  has the SVD U0 Z O  VO H , 
then Qu - U0 Vo H . Qv is similarly ob- 
tained. 
To carry out the first order perturba- 

tion analysis, we present a matrix pencil 
which is equivalent to (5.2). Since [U1 , 
U2 1 and [Vi , V2 1 each span the same M- 
dimensional column space in the noise 
case, one may compute the joint rank-M SVD 
truncations: 

[U1 I U2 I T  = [U11 , U21 1 

= uu X u  [Vu1 H , v u 2  ti 1 ( 5 . 5 )  

= u v  z v  [Vu1 ti , v v 2  ti 1 (5.6) 

U11 x i  Vi1 H - 2 U21 z z  V z r  H (5.7) 

[vl , v2 1 1  = [V i r  p VZT 1 

Then (4.1) can be replaced by the 
"cleaned" pencil : 

which is equivalent to the MxM pencil 

We can show [23] that (5 .8)  and (5.2) are 
equivalent. (Also ( 5 . 8 )  can be shown to 
be equivalent to the TLS-Pro-ESPRIT [el, 
i.e., Pro-ESPRIT is equivalent to TLS-Pro- 
ESPRIT. ) 
Following the same approach which leads 

to (4.6), one can verify that the first 
order perturbations in the generalized 
eigenvalues obtained from (5.7) are gjveri 
by (4.6) with its numerator equal to 
Qi d ~ ( U l l  ).:1 VlT )a i  

Vu1 H i : ~  Vvi - z V u 2  ti F:2 VVZ (5.8) 

- ~i pi  H h(U21 > : z  V21 )pi (5.9) 

p i  ti WIT p i  = p i  ti (5.10) 
~i H GU2r gi = pi H (5.11) 

Applying (2.7a) and (2.7b), one can verify 
that 

p i  H IrV1T ti gi = ~i H t V 1  H gi (5.12) 
pi GV21 ti ~i = ~i H [>V2 H gi (5.13) 

Substituting (5.10)-(5.13) into (5.9) 
yields that (5.9) is equal to 
~i H b ( U 1  X i  Vi H )a i  

H (.;(U2 x 2  vz H 

Y i T  g i  - z i  p i  [ ~ Y z T  gi 
Yi gi - ~i pi ti {.my2 a i  

(5.14) 
Now it is proved that Pro-ESPRIT (i.e., 
(5.2), (5.7) or (5.8)) is equivalent to 
the direct matrix pencil method to the 
first order approximation. 

IT: 
This algorithm consists of two Steps 

[24] of joint SVD truncations. The first 
step is to compute the joint SVD of [Yi  , 
Y Z  3  as follows 

[Yl  t 
y2 I T  * 

= Uv3 X v 3  [ V I V ~  H , Vzv3 ti 1 (5.15) 
The second step is to compute the joint 
SVD of [Viy3 , V2v3 3  as follows: 

[ v l V 3  , VZV3 1 1  

= Uuv3 X v v 3  [ V I V ~  ti , Vzv3 H 1 (5.16) 

Yl - 2 Yz 
Then using (5.15) and (5.16), we can write 

::: Uy3 Z V ~  [ V I V ~  - 2V2~3 1 1 . ~ ~ 3  U U V ~  H (5.17) 
which is equivalent to the MxM pencil 

This pencil can be shown [241 to be equl- 
valent to the pencil used in TLS-ESPRIT. 

ESPRIT, one can follow the approach used 
for the direct matrix pencil method and 
Pro-ESPRIT to show that TLS-ESPRIT yields 
the same first order perturbations given 
by (4.6). 

v 1 U 3  - 2 v 2 V 3  (5.18) 

With the above formulation of TLS- 

The state so- 

YI and Yz  as follows. Let Y' have the SVD 
truncation 

Then one defines that VI be V with its 
last row deleted and Vz be V with its 
first row deleted. Hence, 

This method computes the truncations of 

Y'T = U zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc VH (5.19) 

Y1 - Z Y Z  
0 ucvi H - 2 uxv2 H 



= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUL(V1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz v2 H ) (5.20 
This is equivalent to the pencil 

which is used in the state space method 
1221. Now it is a simple matter to show 
that the space space method is equivalent 
to all the above matrix pencil algorihtms 
to the first order approximation. 

v1 - z VZ (5.21) 

CONCLUSION 
We have presented a perturbation theorem 

of SVD truncated matrices and SVD trun- 
cated pseudoinverses. The theorem indi- 
cates that SVD truncations do not affect 
the first order perturbations. For any 
method which can be expressed in terms of 
SVD truncations, the theorem can be 
directly applied for perturbation analysis 
without usiny complicated perturbations of 
singular values and singular vectors. The 
theorem has been applied for perturbation 
analysis of an SVD based polynomial method 
(i.e., SVD Prony method) and an SVD based 
direct matrix pencil method. The applica- 
tion of the theorem to Pro-ESPRIT, TLS- 
ESPRIT and the state space method has 
shown that all those algorithms are equi- 
valent to the direct matrix pencil method 
to the first order approximation. We note 
finally that formulating algorithms 
directly in terms of SVD truncations is 
vital for the application of the theorem. 
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