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~nasi-periodic motion (QPM) is structurally unstable and a small perturbation causes a 
transition to qualitatively different states. This problem is investigated by the asymptotic 
expansion method of Bogoliubov and Mitropolsky. It is shown that the structurally unstable 
QPM is in a sem;e "stable", and has its reality contrary to Ruelle's suggestion. 

§ I. Introduction 

A physical system showing a time dependence was often regarded as transient, 

or even in some cases it was discarded as a noise. However, the states for which 
macrovariables show time dependence are now attracting attention of physicists. 

This is particularly so because in the study of far-from-equilibrium phenomena, time 

dependent phases are frequently met in highly stressed states. 11 Usually the simp
lest time dependence is periodic motion described by a limit cycle orbit. If the 
stress or dissipation is increased further, the limit cycle orbit becomes unstable and 

the system undergoes transitions leading to a turbulent or a chaotic phase through 
a number of intermediate stages. 21 

Hop£31 has given a theory for the bifurcation of a limit cycle from the steady 
state. At this bifurcation, known as the Hop£ bifurcation, a steady state becomes 

unstable against the mode ± i(J)0 , and a new periodic orbit (limit cycle) of a period 

about 2r.:/ri10 bifurcates. Hence the system obtains a new degree of freedom, 1.e., 
a phase of the oscillation. 

If this limit cycle orbit loses its stability, one of the following three cases 
occurs;**) (1) it bifurcates into two limit cycles of nearly equal periods, (2) it 

bifurcates into a limit cycle of nearly double the period, (3) it bifurcates into a 

doubly-periodic motion on a torus (see Fig. 1). The second case was taken up 

111 a previous paper.''1 Now we consider the third case. As each Hopf bifurcation 

adds one periodic degree of freedom to the system, after the n-th Hop£ bifurcation, 

the system performs an n-dimensional quasi-periodic (multiply periodic) motion 

(QPM). If these bifurcations occur successively, the system obtains more and 

*l Present address: Radio Research Laboratories, Koganei 184. 
**l Except for the case in which the neighbourhood of the unstable limit cycle 1:-; no longer 

attracting, and the orbit wanders to a distant attractor. 
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A Perturbation Theory of a Quasi-Periodic Motion 621 

(a) 

Fig. 1. Three types of bifurcations 
which appear when a limit 
cycle loses its stability. (a) 
Two limit cycles of nearly equal 
periods, (b) a limit cycle of 
nearly double the period, (c) 
a doubly-periodic motion on 
a torus. 

more degrees of freedom and ultimately it becomes 

"turbulent''. This is what Landau and Lifshitz5l 

have given for the explanation of turbulence in their 

famous textbook. 

On the other hand, in 1971 Ruelle and Takens6J 

proposed a new interpretation for turbulence. They 

argued that QPM is structurally unstable, and in 

every neighbourhood of QPM there exists a struc

turally stable attractor which is qualitatively different 

from QPM. Especially for more than three-dimen

sional QPM, an attractor which can show a stochastic 

motion is possible (for detailed arguments, see their 

paper6l). They named it a strange attractor and 

proposed it as a model for turbulence. Motion on 

a strange attractor has the following features m 

contrast to QPM: (1) It is structurally stable, i.e., 

a small perturbation cannot change the qualitative 

feature of the motion. (2) Its time correlation 

function is clamped to zero in finite time. 

It is still controversial how well this model 

describes turbulence in fluid mechanics. However, 

their paper 1s remarkable in the point that it has focused the attention of theore

ticians to the transition mechanisms of turbulence, and triggered off the "boom" in 
stochastic motion. 

Anyway, after a number of Hop£ bifurcations the system nearly performs 

QPM. However, to some extent there must exist a coupling among the degrees 

of freedom, which Ruelle et al. claimed to be responsible for the appearance of 

stochasticity. As their argument is topological, it is not so obvious how this coupl

ing works. Therefore, we propose here to treat the problem from a different point 

of view, namely in the framework of a perturbation theory. The main aim of this 

paper is to construct a practical method of obtaining a solution. In any perturba

tion theory for (quasi) periodic motion, the appearance of secular terms is inevita

ble, and therefore it was necessary to employ the asymptotic expansion method of 
Bogoliubov and Mitropolsky. 7> 

In order to apply a perturbation theory, we had to restrict the perturbation 

to the form EX [E-independent analytic function] with small E. This restriction 

seems physically plausible, for we expect the coupling between modes not to be 

pathological. However, this leads to results a little different from Ruelle et al.'s, 

i.e., QPM is by and large stable against an infinitesimal perturbation. 

A perturbation theory of QPM was discussed by Kolmogorov, Arnold and 

Moser8) in the study of a Hamiltonian system. A model equation (2 ·1) has been 

investigated numerically by many authors, Sherman and Mclaughlin,') Yamada and 
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622 A. Ito 

Fujisaka,10l and Kidachi11l among others. This method was applied by the author12l 

to a model of entrainment due to Tomita and Kai13l and good agreement was 
obtained. 

§ 2. A perturbation theory of QPM on an n-dimensional torus 

Let us first state the problem. QPM is described by a set of complex 
variables {Wk} .k~ 1 , 2 , ... ,n. Now assume that: 

(1) The time evolution of Wk is governed by a differential equation, which 
is an analytic function of {Wk}, {Wk *}. 

(2) The non-perturbed part of the differential equation is invariant with 
respect to the transformation Wk--7 Wke;"•. 

(3) A perturbation to the QPM is described by addition of a small term of 
the form f f k (W) *l to the original differential equation. fk (W) is also analytic 
in {Wk}, {Wk*}. 

( 4) The non-perturbed motion is stable. 
These specifications suggest the following form: 

By the change of variables Wk =Rkeie•, we obtain: 

_cj_Rk =Re {F k (R) }Rk + f Re {fk (Re;0 ) e-w•}, 
dt 

~ek =lm{F k(R)} + f Im {fk(Rei8) e-io•} /Rk. 
dt 

For f = 0, i.e., for the non-perturbed state, the equation 

d -Rk = Re {F k (R)} Rk 
dt 

n. (2·1) 

(2·2) 

(2· 3) 

(2·4) 

has a stable fixed point (R1 col, R 2 col, · • ·, Rn COl). The phase (jk advances at a constant 
velocity; 

(2·5) 

Our problem is to obtain the solution lVk (or Rk and 8k) by an expansion 111 

terms of a small f. 

If the {(l)k0} are linearly independent, i.e., the inequality I I:;klk(l)k0 l ~f is satisfied 

*l W stands for a set of variables {W.}. This simplified notation is used only for the argu
ment of a function. 
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.fl Perturbation Theory of a Quasi-Periodic Jl.1otion 623 

for any set of simple integers {lk}, *' the original QPM is stable against the pertur
bation. In this case the solution is easily obtained by ordinary expansion methods. 
Here the main aim is to investigate how a perturbation causes the appearance of 

new phases. Therefore we will consider the opposite case. In the next section we 
will investigate the stability condition of QPM in more detail. 

Let us, then, assume that I L:klkwk0 I "-'0 (E) is satisfied for m sets of integers 
{lk<sl},, ... 1, 2, ...• m. Then we can choose modulated frequencies wk in such a way so 
that they satisfy, 

I: l,(''uJk=O, s=1, 2, ... , rn. 
k 

(2· 6) 

(2. 7) 

Next we will determine Rk and ek by the asymptotic expansion method of Bogoliu
bov and Mitropolsky.n Expand R" ek and (d/ dt) 9k as 

ok = ro,t + 9k + r:e,w ( cp, t) + ... ' 

Rk = R, co'+ r:Rk (!) (cp, t) + .. · , 

(2. 8) 

(2· 9) 

(2 ·10) 

Substituting Eqs. (2 · 8) "-' (2 ·10) into Eqs. (2 · 2), (2 · 3), we can determine e,, cr>, 

Rk crJ and Ak <rl step by step. C(Jk in Eq. (2 · 8) is introduced in order that we may 
avoid the appearance of secular terms (diverging terms) in Ok <rl. For simplicity 
of explanation we rewrite Eqs. (2 · 2), (2 · 3) as follows: 

d 
dt Rk =Gk (R) + r:gk (R, 8), (2 ·11) 

d 
-Bk=Hk(R)+r:hk(R,B). (2·12) 
dt 

From Eqs. (2 · 4), (2 · 5), we see that Gk (Rc0') =0 and Hk (R<O!) =oJ,0 . Substituting 
Eqs. (2·8)"-'(2·10) into Eqs. (2·11), (2·12), we obtain 

E ~tRk<lJ (cp, t) + E2 gtRk<2l (cp, t) + ... 

+ I:[r: _f}_Rk clJ (cp, t) + <2 E_Rk czl (cp, t) + .. ·] [ r: Ar<1l (cp) + <2 Ar<2l (cp) + .. · J 
r acpr acpr 

*' Strictly speaking, this condition must be replaced by the following: "If there exist positive 
constants C and m(;:.:o;n+l), which are determined by {fi,(W)}, and the inequality 

holds for any set of integers {lk} ". Here IIIII is a norm of {lk} and n is the dimensionality of QPM. 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/62/3/620/1887396 by guest on 20 August 2022



624 A. Ito 

=Gk(R<0l + ER<1l (cp, t) + ···) 

+ f9k (R<0l + fR<1l (cp, t) + ·· ·, (l)t +ct + f(j(ll (cp, t) + ···), (2·13) 

(l)k+f.!e"<ll(cp t)+f2.!ek<2l(cp t)+··· 
at ' at ' 

+I: [o kl + f _fLek (I) Cct, t) + f 2_!__ek <2) Cct, t) + .. ·J 
z acpz acpz -

X [ f Az<1l (cp) + f 2 A 1<2l (cp) + · · · J 

= H k (R<0l + f R(ll (cp, t) + · · ·) 

+ fhk(R(O) + f R(ll (cp, t) +. ··, (l)t +ct+ f{)k(l) (cp, t) + .. ·). (2 ·14) 

Noting that ((l)k- (l)k 0) "-'0 (f), the terms of orders f in Eq. (2 ·13) give, 

(2 ·15) 

Equation (2 ·15), which governs the time evolution of Rk <D, has an asymptotic 

(t---HXJ) solution. As we are interested only in the asymptotic behaviour, we will 

represent this solution by Rk m (cp, t). If we represent the matrix (ajaR1 co>) Gk 

by "/kz, Rk <D (cp, t) is given by 

(2 ·16) 

Obviously it is a multiply periodic function of {(l)kt + cpk}. Next we obtain the 

equation for (a jat) ()k m and Ak m. We rewrite Eq. (2 ·14) as follows: 

Hk (R(O) + fR(I)) + f hk(R<0l, (l)t +ct)- (l)k 

= ((l)k0 - (l)k) + f I: q!j} exp {i I: z,c(l)Jt+cp,)} +0(f 2), 

{!j} j 
(2·17) 

where l:FJl stands for l:z,l:z;·· l:zn· Then we obtain: 

(2·18) 

m 

Ak (IJ (cp) = E-1 ((l)k0 - U)k) +I: qz,<•>} exp {i 2: l /'lcpJ}. 
8=1 . j 

(2 ·19) 

The second term in Eq. (2 ·19), which comes from the second term of Eq. (2 ·18), 

1s the sum over {l1} which satisfies l:Jl1(1)1 = 0, i.e., {l/'>} ,,~ 1 • 2 , .•.• m· If this term 

is left in Eq. (2 ·18), it will cause a secular increase of ()k· 

In like manner we can determine Rk ''>, ()k <r> and Ak <r>, r = 2, 3, .. · iteratively. 

However the calculation becomes very tedious for higher order terms. Moreover, 

it does not play an important role except for the case Ak o> (cp) =0. 
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A Perturbation Theory of a Quasi-Periodic 1'viotion 

In this way we obtain the solution to order f; 

Rk(t) =Rk(Ol+ERk(ll(q;,t) +0(E 2), 

(}k (t) = U);.{ + <f!k + EfJk Ul ( ip, t) + Q ( E2). 

62[) 

(2. 20) 

(2·21) 

\Ve note here that the qualitative behaviour of the system ts determined by 9·\· 

For q;k is the quantity of order 1, but R 1.< 11 and (}k w are of order E. <f!k follows 

the equation; 

d -- ,, (1) ( ) --({ik -- c.h..k Y,? • 
dt 

As is easily seen from Eq. (2 -19), the q;k dependence of 1-lk appears 

the form Z::,il/'1 <Pi· Therefore by the change of variables 

we obtain the closed equation for r/;_,, s=1, 2, ... , m; 

d-!, '\I l (S) 0+ )'' l (S) Y'1 ck i~s' 
'f/S == ~ k LOk f ;;;...._r k L....l {tj(s')} e ' . 

dt k k s' 

(2. 22) 

always ll1 

(2 ·23) 

(2. 2'1) 

If the first term dominates, {¢,} will remain quasi-periodic. However, if the second 

term becomes sufficiently large, {r/Js} is no longer quasi-periodic, but is attracted 

to a 11e\Y attractor. The property of the attractor is determined by c~l;}' i.e., the 

form of the function fk ( 1-V). 
Thus the perturbation separates the original QPM into two parts. One is the 

In-dimensional motion described by {¢,}, and the other is the remaining (n- m) 

dimensional QPM. The motion of the real system is the product of these two 

components. 

Here we must note that the dimensionality m is always less than (and not 

equal to) n. {lk <sl}, s = 1, 2, .. ·, m is defined as a vector satisfying Z::,klk <sl Oh = 0. 

In n-dimensional vector space the number of independent vectors orthogonal to 

{oh} is at most n-1. Therefore at least one-dimension must be left for the (quasi) 

periodic motion. 

§ :~. The stability of QPM 

In the prevwus section we have investigated how a small perturbation destroys 

QPM. Here we study this condition in more detail. First we rewrite Eq. (2 · 24) 

as 

(3 ·1) 
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626 A. Ito 

For a given {wk0}, we can assign to r=2:,Jkc•>wk 0 whatever small value we like 
by choosing {lk} properly.*' Hence we conclude: However small E is, we can 
make the first term smaller than the second, i.e., QPM can be destroyed. In 
topological terms, in every neighbourhood of QPM, there exist types of motion 
qualitatively different from it. This result is that which Ruelle et al. presented 
as an argument against the reality of QPM. This queer result depends strongly 
on the definition of "neighbourhood" or "distance". In fact, if we want to make 
the second part dominant, we must make r small for some {l1}, and at the same 
time we must choose fk (TV) properly so that e~!j} does not become too small. 
Because r~o is accomplished only in the limit IIlii ~oo, this means that we must 
choose fk (W) with abnormally large higher derivatives. This corresponds to the 
fact that Ruelle et al. employed C"- 1-topology**' for the discussion of n-dimensional 
QPM. If they had used em-topology (with m>n), the result would be different. 

If we use em-topology (m'Pn)' or in an ordinary terminology, if we re
strict the perturbation to the form E fk (TV) with <-independent fk (TV), the conclu
sion will be the following. For simplicity we will state the result in terms of a 
{Wk0} space instead of a more complex {Fk (W)} space. In {wk0} space, (i.e., n
dimensional Euclidean space R") , except for a small region of measure 0 (E),***' 
QPM maintains its property against a small perturbation of the form <fk (W). 
Therefore QPM is stable to an infinitesimal perturbation except in a region of 
measure zero. 

A rough sketch of the proof is given below. Now e~~J}' which is defined by 
Eq. (2 ·17), is the Fourier coefficient of the function Fk and fk> I.e., 

Im{Fk(RCOJ + ERC1l)} + E Im{fk (RCOJ ei9) e-iB•} /RkCOJ_ Wk 

= (Wk0- wk) + E 2:, q 1 ·l exp (i 2:, l 181) +0 (< 2). 
{!j} J J 

(3-2) 

Now suppose that they are both en-class (i.e., they have n-th continuous deriva
tives). Then we can differentiate the both sides of Eq. (3 · 2) n times, which 
gives the summation of the form 2:,{!}l1J1, ... l1.,e~!J}· Each term must be bounded by 
some constant and the following estimates are obtained: 

(3·3) 

Therefore the region m which QPM is destroyed satisfies 

*' We must choose C{11 c•J}, i.e., f,.(W) after {l.1''} is chosen. 
**' In C"-topology, one takes into consideration up to n-th derivatives in the definition of the 

distance,"' i.e., 

1/f-g//n=Max(Maxl j<•> (x) -g<•> (x) I). 
O:;>k:;>n :c 

Therefore C"-topology gives more detailed description than C"-'-topology. 
***' Obviously R"-Lebesgue measure is not appropriate. We first make the space compact by 

lw•'I~.!J, and further normalize it so that the measure of the total volume is 1. 
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A Perturbation Tlzeur.\' of a Quasi-Periodic Jiotion 627 

(C'>O) (3. 4) 

For a g1ven {wk0}, if inequality (3 · 4) 1s not satisfied for any {lk}, then QPM io 

stable. Therefore the measure of the region in which QPM may be destroyed is 

at most 

(3. 5) 

For this summation to converge, the condition n<m is sufficient. Hence we con

clude that Cn+ 1-topology is sufficient to obtain the stability QPM. This result is 

in contrast with Ruelle's in which C"- 1-topology is employed. The problem lies 

in the real nature of the perturbation among modes. This must be determined 

by some physical observations or assumptions. Anyway, here we adopted the 

form f f (1V) with C'-class f(1V). If this assumption seems physically justifiable, 

then in this sense QPM is realizable even if it is structurally unstable. 

§ 4. Summary and discussion 

We have developed a perturbation theory of QPM. The main aun 1s to 

prepare a practical tool for use in obtaining solutions. QPM is stable for a physical 

perturbation of order f except in a region of measure O(f). On the contrary, if 

a linear relation ! .Z.::klkoh 0 I ~0 (f) holds among the non-perturbed frequencies {oJ~c 0 ) 

for a set of simple integers {lk}, then QPM 1s destroyed and is attracted to a 

new a ttractor. 

Suppose .z:::;z,. ''1 oh 0 ~0 (f), for s = 1, 2, · · ·, m. Then m-dimensional motion on a 

new attractor is governed by Eq. (2 · 24). As C~1 jl is determined mainly by fk (W), 

we can assign any kind of motion to the system by choosing f~ (W) appropriately. 

As is argued by Ruelle et al., stochastic motion is also possible for m>3. Howev

er, at least one dimension must be left for a (quasi) periodic motion. 

As to the mechanism of transition to turbulence, this sort of discussions cannot 

give an all-round answer. It is known that there are many possible mechanisms 

for transition to turbulence. Therefore, we must investigate each problem separate

ly. 

In concluding this section, the author would like to express his sincere grati

tude to Professor K. Tomita, whose advices and encouragement were invaluable 

to him through this work. 
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