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Energy levels of neutral atoms have been reexamined by applying an alternative per-
turbative scheme in solving the Schrödinger equation for the Yukawa potential model
with a modified screening parameter. The predicted shell binding energies are found to
be quite accurate over the entire range of the atomic number Z up to 84 and compare
very well with those obtained within the framework of hypervirial-Padé scheme and the
method of shifted large-N expansion. It is observed that the new perturbative method

may also be applied to the other areas of atomic physics.
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1. Introduction

In recent years the energy levels of neural atoms have been studied by several

analytic methods1–8 in which it is assumed that the screened potential of the atom

may be of static screened Coulomb (SSC) which is well represented by Yukawa

form:

V (r) = −
(

A

r

)

exp(−δr) , (1)

with A = αZe2, where α = (137.037)−1 is the fine-structure constant and Z is

the atomic number. This form is often used for the description of the energy levels

of light to heavy neutral atoms.7 It is known that SSC potential yields reasonable

results only for the innermost states when Z is large. However, for the outermost

and middle atomic states, it gives rather poor results. Although the bound state
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energies for the SSC potential with Z = 1 have also been studied. The screening

parameter δ is chosen to be

δ = δ0Z
1/3 , (2)

corresponding to the Z-dependence of the reciprocal of the Thomas–Fermi radius of

the atom. However, these analytic works, perturbative as well as nonperturbative,

fail to yield accurate shell binding energies for light atoms, particularly in the

range Z ≤ 9. Subsequently, it has been pointed out by Refs. 5 and 6 that the

major source of errors perhaps lies in the wrong choice of the Z-dependence of the

screening parameter. Invoking Fermi–Amaldi correction9 in the context of Ecker–

Weizel approximation (EWA) method,10 Dutt and Varshni5–7 have suggested a

modified form

δ = δ0Z
1/3

(

1 −
1

Z

)2/3

, (3)

with δ0 = 0.98. Clearly, when Z = 1, δ vanishes and the potential in (1) becomes the

Coulomb potential as it should be. Correctness of the choice of the modified screen-

ing parameter has been further justified by the recent work of Lai and Madan.8

They have shown that the hypervirial-Padé scheme which failed to reproduce cor-

rect shell binding energies for light atoms using the screening parameter given in

(2),4 yields very accurate energy eigenvalues using the modified screening coefficient

in (3).8 However, one of the shortcomings of the hypervirial-Padé technique is that

it involves elaborate computational time and effort for each numerical prediction.

Lai and Madan8 have to consider up to eleven terms in the perturbation series

for the energy eigenvalues in order to ensure the convergence of the Padé approxi-

mant E(N,M). Furthermore, application of this method becomes quite restricted

due to nonavailability of compact analytic expressions for the bound-state energies,

eigenfunctions and normalization constants.

On the other hand, Dutt and Varshni7 have investigated the bound-states of

neutral atoms using the large-N expansion method which has been claimed to be

very powerful for solving potential problems in nonrelativistic quantum mechanics.

This technique also requires an approximate treatment and computational time

as well.

In this paper, we investigate the bound-state properties of SSC potential using

a new perturbative formalism11,12 which has been claimed to be very powerful

for solving the Schrödinger equation to obtain the bound-state energies as well

as the wave functions in Yukawa or SSC potential problem11–17 in both bound

and continuum regions. This novel treatment is based on the decomposition of the

radial Schrödinger equation into two pieces having an exactly solvable part with

an additional piece leading to either a closed analytical solution or approximate

treatment depending on the nature of the perturbed potential.

It seems then logical and meaningful to probe whether the range of applicability

of this novel perturbation treatment may be widened. As a first attempt, we have
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shown recently that the method adequately explains the spectrum of hydrogen-like

atoms A = Z = 1 and also light and heavy atoms.18–20 With a view to make further

applications to problems of atomic physics, we compute here the shell binding

energies of light to heavy neutral atoms. The relevant steps of the perturbation

scheme are to obtain analytical expressions for the bound-state energy levels and

corresponding normalized eigenfunctions.

The contents of this paper is as follows. In Sec. 2 we briefly outline the method

with all necessary formulae to perform the current calculations. In Sec. 3 we apply

the approach to the Schrödinger equation with SSC potential and present the results

obtained analytically and numerically for the bound-state energy values up to third

perturbation energy shift. Finally, in Sec. 4 we give our concluding remarks.

2. The Method

For the consideration of spherically symmetric potentials, the corresponding Schrö-

dinger equation, in the bound state domain, for the radial wave function reads

~
2

2m

ψ′′

n(r)

ψn(r)
= V (r) −En (4)

with

V (r) =

[

V0(r) +
~

2

2m

`(`+ 1)

r2

]

+ ∆V (r) , (5)

where ∆V (r) is a perturbing potential and ψn(r) = χn(r)un(r) is the full radial

wave function, in which χn(r) is the known normalized eigenfunction of the unper-

turbed Schrödinger equation whereas un(r) is a moderating wave function corre-

sponding to the perturbing potential. Following the prescription of Refs. 11–17, we

may rewrite (4) in the form

~
2

2m

(

χ′′

n(r)

χn(r)
+
u′′n(r)

un(r)
+ 2

χ′

n(r)u′n(r)

χn(r)un(r)

)

= V (r) −En . (6)

The logarithmic derivatives of the unperturbed χn(r) and perturbed un(r) wave

functions are given by

Wn(r) = −
~

√
2m

χ′

n(r)

χn(r)
and ∆Wn = −

~
√

2m

u′n(r)

un(r)
, (7)

which leads to

~
2

2m

χ′′

n(r)

χn(r)
= W 2

n(r) −
~

√
2m

W ′

n(r) =

[

V0(r) +
~

2

2m

`(`+ 1)

r2

]

− εn , (8)

where εn is the eigenvalue for the exactly solvable potential of interest, and

~
2

2m

(

u′′n(r)

un(r)
+ 2

χ′

n(r)u′n(r)

χn(r)un(r)

)

= ∆W 2
n(r) −

~
√

2m
∆W ′

n(r) + 2Wn(r)∆Wn(r) = ∆V (r) − ∆εn , (9)
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in which ∆εn = E
(1)
n + E

(2)
n + E

(3)
n + · · · is the correction term to the energy due

to ∆V (r) and En = εn + ∆εn. If Eq. (9), which is the most significant piece of the

present formalism, can be solved analytically as in (8), then the whole problem, in

Eq. (4) reduces to the following form:

[Wn(r) + ∆Wn(r)]2 −
~

√
2m

[Wn(r) + ∆Wn(r)]′ = V (r) −En , (10)

which is a well-known treatment within the frame of supersymmetric quantum

theory (SSQT).21 Thus, if the whole spectrum and corresponding eigenfunctions of

the unperturbed interaction potential are known, then one can easily calculate the

required superpotentialWn(r) for any state of interest leading to direct computation

of related corrections to the unperturbed energy and wave function.

For the perturbation technique, we can split the given potential in Eq. (4) into

two parts. The main part corresponds to a shape invariant potential, Eq. (8), for

which the superpotential is known analytically and the remaining part is treated as

a perturbation, Eq. (9). Therefore, it is obvious that SSC potential can be treated

using this prescription. In this regard, the zeroth-order term corresponds to the

Coulomb potential while higher-order terms constitute the perturbation. However,

the perturbation term in its present form cannot be solved exactly through Eq. (9).

Thus, one should expand the functions related to the perturbation in terms of the

perturbation parameter λ,

∆V (r;λ) =

∞
∑

i=1

λiVi(r) ,

∆Wn(r;λ) =
∞
∑

i=1

λiW
(i)
n (r) ,

E
(i)
n (λ) =

∞
∑

i=1

λiE
(i)
n ,

(11)

where i denotes the perturbation order. Substitution of the above expansions into

Eq. (9) and equating terms with the same power of λ on both sides up to O(λ4)

gives

2Wn(r)W (1)
n (r) −

~
√

2m

dW
(1)
n (r)

dr
= V1(r) −E(1)

n , (12)

W (1)
n (r)W (1)

n (r) + 2Wn(r)W (2)
n (r) −

~
√

2m

dW
(2)
n (r)

dr
= V2(r) −E(2)

n , (13)

2[Wn(r)W (3)
n (r) +W (1)

n (r)W (2)
n (r)] −

~
√

2m

dW
(3)
n (r)

dr
= V3(r) −E(3)

n , (14)
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2[Wn(r)W (4)
n (r) +W (1)

n (r)W (3)
n (r)]

+W (2)
n (r)W (2)

n (r) −
~

√
2m

dW
(4)
n (r)

dr
= V4(r) −E(4)

n . (15)

Hence, unlike the other perturbation theories, Eq. (9) and its expansion, Eqs. (12)–

(15), give a flexibility for the easy calculations of the perturbative corrections to

energy and wave functions for the nth state of interest through an appropriately

chosen perturbed superpotential.

3. Application to the SSC Potential

Considering the recent interest in various power-law potentials in the literature,

we work through the paper within the frame of low screening parameter. In this

case, the SSC or Yukawa potential can be expanded in power series of the screening

parameter δ as22

V (r) = −
(

A

r

)

exp(−δr) = −
(

A

r

) ∞
∑

i=0

Vi(δr)
i , (16)

where the perturbation coefficients Vi are given by

V1 = −1 , V2 = 1/2 , V3 = −1/6 , V4 = 1/24, . . . . (17)

We now apply this approximation method to Yukawa potential with the angular

momentum barrier

V (r) = −
(

A

r

)

exp(−δr) +
`(`+ 1)~2

2mr2
=

[

V0(r) +
`(`+ 1)~2

2mr2

]

+ ∆V (r) , (18)

where the first piece is the shape invariant zeroth-order which is an exactly solvable

piece corresponding to the unperturbed Coulomb potential with V0(r) = −A/r
while ∆V (r) = Aδ − (Aδ2/2)r + (Aδ3/6)r2 − (Aδ4/24)r3 + · · · is the perturbation

term. The literature is rich with examples of particular solutions for such power-

law potentials employed in different fields of physics, for recent applications see

Refs. 23 and 24. At this stage one may wonder why the series expansion is truncated

at a lower order. This can be understood as follows. It is widely appreciated that

convergence is not an important or even desirable property for series approximations

in physical problems. Specifically, a slowly convergent approximation which requires

many terms to achieve reasonable accuracy is much less valuable than the divergent

series which gives accurate answers in a few terms. This is clearly the case for the

Yukawa problem.25 However, it is worthwhile to note that the main contributions

come from the first four terms. Thereby, the present calculations are performed up

to the third order involving only these additional potential terms, which surprisingly

provide highly accurate results for small screening parameter δ.
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3.1. Ground state calculations (n = 0)

In the light of Eq. (8), the zeroth-order calculations leading to exact solutions can be

carried out readily by setting the ground-state superpotential and the unperturbed

exact energy as

Wn=0(r) = −
~

√
2m

`+ 1

r
+

√

m

2

A

(`+ 1)~
,

E
(0)
n = −

mA2

2~2(n+ `+ 1)2
, n = 0, 1, 2, . . .

(19)

and from the literature, the corresponding normalized Coulomb bound-state wave

function26

χ(C)
n (r) = N

(C)
n,l r

`+1 exp[−βr] × L2`+1
n [2βr] , (20)

in which N
(C)
n,l =

[

2mA
(n+`+1)~2

]`+1
1

(n+`+1)
1

√

~2

mAn!
(n+2`+1)!

is a normalized constant,

β = mA
(n+`+1)~2 and Lk

n(x) =
∑n

m=0(−1)m (n+k)!
(n−m)!(m+k)!m!x

m is an associate Laguarre

polynomial function.27

For the sake of calculation of corrections to the zeroth-order energy and wave

function, one needs to consider the expressions leading to the first- and third-order

perturbation given by Eqs. (12)–(15). Multiplication of each term in these equations

by χ2
n(r), and bearing in mind the superpotentials given in Eq. (7), one can obtain

the straightforward expressions for the first-order correction to the energy and its

superpotential:

E
(1)
n =

∫

∞

−∞

χ2
n(r)

(

−
Aδ2

2
r

)

dr ,

W
(1)
n (r) =

√
2m

~

1

X2
n(r)

∫ r

χ2
n(x)

[

E(1)
n +

Aδ2

2
x

]

dx ,

(21)

and for the second-order correction and its superpotential:

E
(2)
n =

∫

∞

−∞

χ2
n(r)

[

Aδ3

6
r2 −W (1)

n (r)W (1)
n (r)

]

dr ,

W
(2)
n (r) =

√
2m

~

1

X2
n(r)

∫ r

χ2
n(x)

[

E(2)
n +W (1)

n (x)W (1)
n (x) −

Aδ3

6
x2

]

dx ,

(22)

and for the third-order correction and its superpotential:

E
(3)
n =

∫

∞

−∞

χ2
n(r)

[

−
Aδ4

24
r3 −W (1)

n (r)W (2)
n (r)

]

dr ,

W
(3)
n (r) =

√
2m

~

1

X2
n(r)

∫ r

χ2
n(x)

[

E(3)
n +W (1)

n (x)W (2)
n (x) +

Aδ4

24
x3

]

dx ,

(23)
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for any state of interest. The above expressions calculate W
(1)
n (r), W

(2)
n (r) and

W
(3)
n (r) explicitly from the energy corrections E

(1)
n , E

(2)
n and E

(3)
n respectively,

which are in turn used to calculate the moderating wave function un(r).

Thus, through the use of Eqs. (21)–(23), one finds the ground state energy shift

up to the third order and their moderating superpotentials as

E
(1)
0 = −

~
2(3N2

0 − L)

4m
δ2 ,

E
(2)
0 =

~
4N2

0 (5N2
0 − 3L+ 1)

12Am2
δ3 −

~
6N4

0 (5N2
0 − 3L+ 1)

16A2m3
δ4 ,

E
(3)
0 = −

~
6N2

0 (5N2
0 − 3L)(5N2

0 − 3L+ 1)

96A2m3
δ4

+
~

8N4
0 (5N2

0 − 3L+ 1)(9N2
0 − 5L)

48A3m4
δ5

−
~

10N6
0 (5N2

0 − 3L+ 1)(9N2
0 − 5L)

64A4m5
δ6 ,

W
(1)
0 (r) = −

~N0δ
2

2
√

2m
r ,

W
(2)
0 (r) = −

~N0[Amr + ~
2N0N1][3~

2N2
0 δ − 4mA]δ3

24
√

2m(Am)2
r ,

(24)

where N0 = (`+1), N1 = (`+2) and L = `(`+1). Therefore, the analytical expres-

sions for the lowest energy and full radial wave function of the Yukawa potential

are then given by

En=0,` = E
(0)
n=0 +Aδ +E

(1)
0 +E

(2)
0 +E

(3)
0 + · · · ,

ψn=0,`(r) ≈ χ
(C)
n=0,`(r)un=0,`(r) ,

(25)

in which

un=0,`(r) ≈ exp

(

−
√

2m

~

∫ r (

W
(1)
0 (x) +W

(2)
0 (x)

)

dx

)

. (26)

Hence, the explicit form of the full wave function in (25) for the ground state is

ψn=0,`(r) =

[

2mA

(`+ 1)~2

]`+1
1

(`+ 1)

√

Am

~2(2`+ 1)!
r`+1 exp(P (r)) , (27)

with P (r) =
∑3

i=2 pir
i is a polynomial of third order having the following coeffi-

cients:

p2 = b

[

1 +
~

2N0N1c

Am

]

, p3 =
2

3
bc , (28)

in which

b =
1

4
N0δ

2 , c =
δ

12Am
[3~

2N2
0 δ − 4Am] . (29)
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3.2. Excited state calculations (n ≥ 1)

The calculations procedures lead to a handy recursion relations in the case of ground

states, but becomes extremely cumbersome in the description of radial excitations

when nodes of wave functions are taken into account, in particular during the

higher order calculations. Although several attempts have been made to bypass this

difficulty and improve calculations in dealing with excited states, (cf. e.g. Ref. 28,

and the references therein) within the frame of supersymmetric quantum mechanics

(SUSYQM).

Using Eqs. (7) and (19), the superpotential Wn(r) which is related to the excited

states can be readily calculated through Eqs. (21)–(23). So the first-order energy

shift in the first excited state (n = 1) and its superpotential are

E
(1)
1 = −

~
2(3N2

1 − L)

4m
δ2 , W

(1)
1 (r) ≈ −

~N1δ
2

2
√

2m
r . (30)

Consequently, the use of the approximated W
(1)
1 (r) in the preceeding equation in

(22) gives the energy correction in the second order as

E
(2)
1 =

~
4N2

1 (5N2
1 − 3L+ 1)

12Am2
δ3 −

~
6N4

1 (5N2
1 − 3L+ 1)

16A2m3
δ4 . (31)

We also find its supersymmetric potential

W
(2)
1 (r) = −

~N1[Amr + ~
2N1N2][3~

2N2
1 δ − 4mA]δ3

24
√

2m(Am)2
r , (32)

which gives the energy shift in the third order as

E
(3)
1 = −

~
6N2

1 (5N2
1 − 3L)(5N2

1 − 3L+ 1)

96A2m3
δ4

+
~

8N4
1 (5N2

1 − 3L+ 1)(9N2
1 − 5L)

48A3m4
δ5

−
~

10N6
1 (5N2

1 − 3L+ 1)(9N2
1 − 5L)

64A4m5
δ6 . (33)

Therefore, the approximated energy value of the Yukawa potential corresponding

to the first excited state is

En=1,` = E
(0)
1 +Aδ +E

(1)
1 +E

(2)
1 +E

(3)
1 + · · · . (34)

The related radial wave function can be expressed in an analytical form in the

light of Eqs. (21)–(23) and Eq. (25), if required. The approximation used in this

work would not affect considerably the sensitivity of the calculations. On the other

hand, it is found analytically that our investigations put forward an interesting

hierarchy between W
(1)
n (r) terms of different quantum states in the first order after

circumventing the nodal difficulties elegantly,

W (1)
n (r) ≈ −

~(n+ `+ 1)δ2

2
√

2m
r , (35)
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which, for instance, for the second excited state (n = 2) leads to the first-order

correction

E
(1)
2 = −

~
2(3N2

2 − L)

4m
δ2 , W

(1)
2 (r) ≈ −

~N2δ
2

2
√

2m
r . (36)

Thus, the use of the approximated W
(1)
2 (r) in the preceeding equation (22) gives

the energy shift in the second order and its superpotential as

E
(2)
2 =

~
4N2

2 (5N2
2 − 3L+ 1)

12Am2
δ3 −

~
6N4

2 (5N2
2 − 3L+ 1)

16A2m3
δ4 ,

W
(2)
2 (r) = −

~N2[Amr + ~
2N2N3][3~

2N2
2 δ − 4mA]δ3

24
√

2m(Am)2
r ,

(37)

which leads, via Eq. (23), into the third-order energy shift

E
(3)
2 = −

~
6N2

2 (5N2
2 − 3L)(5N2

2 − 3L+ 1)

96A2m3
δ4

+
~

8N4
2 (5N2

2 − 3L+ 1)(9N2
2 − 5L)

48A3m4
δ5

−
~

10N6
2 (5N2

2 − 3L+ 1)(9N2
2 − 5L)

64A4m5
δ6 , (38)

where N2 = (`+ 3). Therefore, the approximated energy eigenvalue of the Yukawa

potential corresponding to the second excited state (n = 2) is

En=2,` = E
(0)
2 +Aδ +E

(1)
2 +E

(2)
2 +E

(3)
2 + · · · . (39)

Finally, from the supersymmetry, we find out the nth-state energy shifts together

with their supersymmetric potentials as

E
(1)
n = −

~
2[3(n + l + 1)2 − L]

4m
δ2 ,

W
(1)
n (r) ≈ −

~(n + l + 1)δ2

2
√

2m
r ,

E
(2)
n =

~
4(n + l + 1)2[5(n + l + 1)2 − 3L + 1]

12Am2
δ3

−
~
6(n + l + 1)4[5(n + l + 1)2 − 3L + 1]

16A2m3 δ4 ,

W
(2)
n (r) = −

~
4(n+ l+1)[Amr+~

2(n+ l+1)(n+ l+2)][3~
2(n+ l+1)2δ−4mA]δ3

24
√

2m(Am)2
r ,

E
(3)
n = −

~
6(n + l + 1)2[5(n + l + 1)2 − 3L][5(n + l + 1)2 − 3L + 1]

96A2m3
δ4

+
~
8(n + l + 1)4[5(n + l + 1)2 − 3L + 1][9(n + l + 1)2 − 5L]

48A3m4
δ5

−
~
10(n + l + 1)6(5(n + l + 1)2 − 3L + 1)(9(n + l + 1)2 − 5L)

64A4m5
δ6 .

(40)
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Table 1. Calculated K-shell energies E00 in keV for some values of Z.

EWA Hypervirial-Padé Shifted-N Expt.
Z (Ref. 5) (Ref. 8) (Ref. 7) (Ref. 29) Present work

3 −0.053 34 −0.054 15 −0.054 14 −0.054 75 −0.054 056 87
4 −0.105 −0.106 34 −0.106 34 −0.111 −0.106 281 60
5 −0.178 −0.180 08 −0.180 07 −0.188 −0.180 078 08
6 −0.274 −0.276 23 −0.276 23 −0.284 −0.276 306 26
7 −0.393 −0.395 42 −0.395 41 −0.402 −0.395 579 11
8 −0.535 −0.538 09 −0.538 09 −0.532 −0.538 354
9 −0.701 −0.704 61 −0.704 61 −0.685 −0.704 983

14 −1.897 −1.903 20 −1.903 20 −1.839 −1.904 306
19 −3.716 −3.725 45 −3.725 45 −3.607 −3.727 639
24 −6.171 −6.182 77 −6.182 77 −5.989 −6.186 408
29 −9.268 −9.282 12 −9.282 13 −8.979 −9.287 593
34 −13.012 −13.028 30 −13.028 30 −12.658 −13.035 977
39 −17.407 −17.424 82 −17.424 82 −17.038 −17.435 077
44 −22.454 −22.474 38 −22.474 38 −22.117 −22.487 609
49 −28.157 −28.179 15 −28.179 15 −27.940 −28.195 740
54 −34.517 −34.540 92 −34.540 92 −34.561 −34.561 250
59 −41.535 −41.566 12 −41.561 17 −41.991 −41.585 000
64 −49.213 −49.241 18 −49.241 18 −50.239 −49.270 154
69 −57.553 −57.582 03 −57.582 03 −59.390 −57.615 917
74 −66.554 −66.584 70 −66.584 70 −69.525 −66.623 882
79 −76.217 −76.250 03 −76.250 03 −80.725 −76.294 897

84 −86.544 −86.578 78 −86.578 78 −93.105 −86.629 718

Thus, the total energy for the nth state is

En,` = E(0)
n +Aδ +E(1)

n +E(2)
n +E(3)

n + · · · . (41)

For the numerical results, in Tables 1–3, we list our calculated K- and L-shell

binding energies for some values of Z and compare those with the hypervirial-Padé

results,8 the shifted large-N expansion method7 and the experimental values29 for

the s-state energies E00 and E10 and also the p-state energies E01 and E11. It is

observed that inspite of calculational simplicity, the present approach yields results

as accurate as predicted by more elaborate hypervirial-Padé and shifted large-N

expansion calculation. Finally, the scope of extending the method to calculate oscil-

lator strength, bound–bound transition matrix elements etc. which have significant

importance in atomic physics is also possible.

4. Concluding Remarks

In Tables 1–3 we present our calculated K-shall binding energies E00 and E01 and

L-shell binding energies E10 and E11 for some values of Z and compare them with

the predictions of Lai and Madan8 and the experimental values.24 We quote only

the Padé approximant10,11 E results which provide upper bound to the energy

eigenvalues for E10 and E20 levels. We also depict our earlier results5 obtained

through EWA method which provides compact analytic expressions only for the
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Table 2. Calculated K-shell energies

E01 in keV for some values of Z.

Z E01 Z E01

9 −0.012 158 49 −4.207 958

14 −0.089 499 54 −5.358 162

19 −0.282 475 59 −6.655 877

24 −0.598 417 64 −8.102 492

29 −1.044 023 69 −9.699 206

34 −1.624 349 74 −11.447 062

39 −2.343 224 79 −13.346 979

44 −3.203 631 84 −15.399 774

Table 3. Calculated L-shell energies E10 in keV for some values of Z.

EWA Hypervirial-Padé Shifted-N Expt.

Z (Ref. 5) (Ref. 8) (Ref. 7) (Ref. 29) Present work

9 −0.018 −0.022 06 −0.026 30 −0.031 −0.042 259

14 −0.116 −0.124 92 −0.124 92 −0.149 −0.130 396

19 −0.320 −0.335 03 −0.335 03 −0.377 −0.338 344

24 −0.644 −0.665 54 −0.665 54 −0.695 −0.669 125

29 1.096 −1.124 48 −1.124 48 −1.096 −1.128 848

34 −1.692 −1.717 35 −1.717 35 −1.654 −1.722 569

39 −2.407 −2.448 16 −2.450 36 −2.373 −2.454 212

44 −3.272 −3.319 98 −3.322 03 −3.224 −3.326 856

49 −4.281 −4.335 27 −4.337 19 −4.238 −4.342 964

54 −5.435 −5.496 02 −5.497 83 −5.453 −5.504 555

59 −6.737 −6.803 90 −6.805 63 −6.835 −6.813 316

64 −8.187 −8.260 34 −8.261 99 −8.376 −8.270 675

69 −9.787 −9.866 54 −9.868 12 −10.116 −9.877 861

74 −11.538 −11.623 58 −11.625 10 −12.100 −11.635 946

79 −13.441 −13.532 38 −13.533 85 −14.353 −13.545 871

84 −15.496 −15.593 79 −15.595 21 −16.939 −15.608 473

bound s-state energy eigenvalues. As we have used throughout the atomic units,

our energies are measured in units of 2Ry = 27.212 eV is used.25 One may notice

that in comparison to our earlier calculation based on EWA method, the present

techniques gives much improved energy eigenvalues. Furthermore, our predictions

are surprisingly close to those obtained through the use of elaborate hypervirial

technique. This indicates that there is distinct advantage in using the shifted large-

N method to similar calculations as it yields very accurate results yet remaining

simple and straightforward.
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