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A PERTURBED ALGORITHM FOR STRONGLY NONLINEAR
VARIATIONAL-LIKE INCLUSIONS

C.-H. LEE, Q.H. ANSARI AND J . - C YAO

In this paper, we define the concept of r/- subdifferential in a more general setting than
the one used by Yang and Craven in 1991. By using jj-subdifferentiability, we suggest
a perturbed algorithm for finding the approximate solutions of strongly nonlinear
variational-like inclusions and prove that these approximate solutions converge to the
exact solution. Several special cases are also discussed.

1. INTRODUCTION

Because of the applications in science, engineering and social sciences, the theory of
variational inequalities has been extended and generalised in many different directions.
An important and useful generalisation is variational-like inequality in the study of eco-
nomic equilibrium problems. It has been studied by Ansari and Yao [2], Dien [3], Noor
[5, 6], Parida et al [8], Siddiqi et al [11] and Yang and Chen [12] with further appli-
cations. Noor [5, 6] developed an auxiliary principle technique to prove the existence
of solution for strongly nonlinear variational-like inequality and suggested an iterative
algorithm for finding the approximate solution of this problem. Hassouni and Moudafi
[4] used the proximal mapping technique to study a perturbed method for solving a new
class of variational inclusions. Recently, Adly [1] considered a more general class of vari-
ational inclusions and used resolvent operator technique to prove a convergence result
under some minimal hypotheses which are less demanding than the one used in [4]. In
general we can not use resolvent operator or proximal mapping technique for studying a
perturbed algorithm for rinding the approximate solutions of variational-like inequalities.
In this paper, we define the concept of 77-subdifferential in a more general setting than
the one used by Yang and Craven [13] which is also suitable to use to the so called
proximal mapping technique to suggest a perturbed algorithm for finding the approxi-
mate solutions of a more general variational-like inequality, called a strongly nonlinear
variational-like inclusion. We also prove that these approximate solutions converge to
the exact solution. Several special cases are also discussed.
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Let if be a real Hilbert space endowed with a norm || • || and inner product (.,.).

Given nonlinear operators T,A:H—^H and 77: H x H —> H, we consider the following

problem:

PROBLEM 1. Find x e H such that x € dom<j> and

(1) (T(x) - A(x),n(v,*)) > 4>{x) - 4>{V), for all y e H,

where ^ : f f - > R U {+00} and dom0 = {z € H : <f>(z) < 00}. The inequality (1) is
known as a strongly nonlinear variational-like inclusion.

SPECIAL CASES.

(I) If r/(y,x) — g(y) — g(x), where g : H —> H is a nonlinear operator, then
Problem 1 is equivalent to the following problem considered by Yao [15]: Find x £ H

such that

(2) (T(x) - A(x), g{y) - g{x)) > </>(x) - <f>(y), for all y € H.

(II) If <f> = 5K, the indicator function of the closed convex set K, then Problem 1
reduces to the problem of finding x € K such that

(3) (T(x) - A(x), T){y, x)) > 0, for all y € K.

This problem was introduced and studied by Noor [6].

(III) If 4> = &K and A = 0, then Problem 1 becomes to find x S K such that

(4) (T(x),rj(y,x))^Q, for all y € K.

This has been studied in [5, 8, 11, 12]. The inequality (4) is known as a variational-like

inequality.

(IV) If r/(y, x) = y—g(x), where g : H -> H is a nonlinear operator, then Problem 1
is equivalent to a problem considered by Hassouni and Moudafi [4]: To find x £ H such
that x € dom $ and

(5) (T{x) - A(x),y - g(x)) > <*(z) - <P(y), for all y € H.

If g(x) = x, (5) is similar to a problem over a closed convex set considered by Siddiqi,
Ansari and Kazmi [10].

(V) If <j> = 5K and r](y, x) = y — g(x), where g : K -> K is a nonlinear operator,
then the class of strongly nonlinear variational inequality problems given by

(6) (T(x)-A(x),y-g(x))>0, for all y € K,

is recovered from Problem 1. Such problems were studied by Siddiqi and Ansari [9] and
Yao [14].

It is clear from these special cases that our Problem 1 is a more general unifying
one, which is one of the main motivations for this paper.
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2. 7?-SUBDIFFERENTIAL

We define the concept of 77-subdifferential in a more general setting than that given

in [13]. This notion of 77-subdifferential will be used in our perturbed iterative algorithm

for finding the approximate solution of variational-like inclusion (1).

Let r] : H x H -> H and <j> : H ->• R U {+00}. A vector w € H is called an

Tj-subgradient of 0 at x € dom<j> if

(7) (w, v(y, x)) < 0(2/) - <l>(x), for all y € H.

We can associate with each (f> the rj-subdifferential map dv<j> defined by

f ( ) 4 > ( x ) , Vy€H}, x£dom<t>

For x € dom <p, dv<t>(x) is called the rj-subdifferential of 4> at x.

In the definition of 77-subdifferential in the sense of Yang and Craven [13], the func-

tion 4> needs to be local Lipschitz and can not take the value +00. The following example

shows that our definition of 77-subdifferential is more general than that in [13].

E X A M P L E . Let <j>: K -> M u {+00} be defined by

v I + 0 0 , x > 0

and 77 : R x R -»• R by

V(x,y) =x + 2y.

Then we have dn<j>{x) = [l ,oo), x € dom0.

Let x € dom^>, that is, <f>(x) = x and x < 0. If w G dv<j)(x), then

«;(?/ + 2x) ^ 0(y) - a;, for all y € R.

Since (/>(y) = +00, for y > 0, we thus have

w(y + 2x) ^ y - x, for all y ^ 0.

If x = 0, then w(y) ^ 7/, for y ^ 0 and thus u> ^ 1. If x < 0, then

to ^ ^ ~ X , for all ? / ^ 0 .
«/ + 2x

Letting y -> —00, we have w ^ 1. In any case, we have w ^ 1, that is, dv<j>{x) C

[l,oo), for all x ^ 0. Now let w e [l,oo). If u; ^ 9̂ <A(a;) for some x0 ^ 0, then there

exists 7/o^O such that

w{yo + 2x0) > j/o - x0.
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It is clear that the case xo = yo = 0 can not happen. If Xo < 0 and j/o = 0> then we have
w < —1/2 which is a contradiction. If x0 = 0 and j/o < 0, then we have w < 1 which is
also a contradiction. Finally, if XQ < 0 and j/o < 0, then

2/o + 2x0

from which it follows that xo > 0 and this is also a contradiction. In our claim, we have
[1, oo) C dn<fr(x), for all x ^ 0. Consequently, dv<f>(x) = [l,oo), for all x < 0.

THEOREM 1 . Let <j> : H -> R U {+00} be nontrivial, that is, dom<f> ^ 0. Then
x £ H is a solution of Problem 1 if and only ifx € dom<^ and A(x) — T(x) £ 9^0(x).

P R O O F : This directly follows from the definition of the 77-subdifferential. D

Let us recall the following definitions.

DEFINITION 1: An operator T : H -> H is called:

(i) strongly monotone, if there exists a constant a Js 0 such that

<T(x) - T(y), 1 - y) > a\\x - yf, for all x,y € H;

(ii) Lipschitz continuous, if there exists a constant /? > 0 such that

||T(x) - T(y)\\ $ /3\\x - 2/||, for all x, y € H.

It is clear that a ^ /?.

DEFINITION 2: [5, 6] An operator r\: H x H -> H is called:

(i) monotone, if

(8) <x - y , r j ( x , y ) ) ^ 0, for a l l x , y € H;

(ii) strictly monotone, if the equality holds in (8) only when x = y.

(iii) strongly monotone, if there exists a constant a ^ 0 such that

(z - y, Tj(x, t/)> ^ <r||z - y\\2, for all x,y G H;

(iv) Lipschitz continuous, if there exists a constant <$ > 0 such that

When t](x, y) = T(x) - T(y) for T : H -> H, then Definition 2 ((iii) and (iv)) reduce

to Definition 1 ((i) and (ii), respectively). In particular, we have a ^ 5.

ASSUMPTION 1. The operator 77: H x H -4 H satisfies the condition

7](y, x) + T](x, y) = 0, for all x,y € H.
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Let Q : H —> 2H be a multivalued map. Then the graph of Q, denoted by Graph(Q),
is defined as follows:

Graph(Q) - {(x,y) e H x H : y € Q(x)}.

D E F I N I T I O N 3: Let 77 : H x H —¥ H be a given map. Then a multivalued map

Q : H -» 2H is called 77-monotone, if for all x,y € H,

(u - v, v(x, y)) ^ 0, for all u 6 Q(x), v € Q{y).

Q is called maximal rj-monotone if and only if it is 77-monotone and there is no other
77-monotone multivalued map whose graph strictly contains the Graph(Q).

The proof of the following lemma is on the lines of the proof of [16, Lemma 3] and
therefore we omit it.

PROPOSITION 1 . Let rj : H x H —¥ H be a map. A multivalued map Q is
maximal rj-monotone if and only ifQ is r)-monotone and it follows from (x,u) £ H x H
and

(u - v, r)(x, y)) ^ 0, for all (y, v) € Graph(Q)

that (x,u) € Graph(Q).

PROPOSITION 2 . Let 77 : H x H -> H be strictly monotone and Q : H -* 2H

be an n-monotone multivalued map. If the range of (I + XQ), R(I + XQ) = H, for
X > 0 where I is the identity operator, then Q is maximal 77-monotone. Furthermore,
the inverse operator (I + XQ)'1 : H -> H is single-valued.

P R O O F : Suppose that Q is not a maximal 77-monotone, then there exists (XQ,UO) £
Graph(Q) such that

(9) (TJ0 -v,77(10,y)) 5*0, for all (y,v) <E Graph(Q).

By assumption that R(I + XQ) = H, there exists (x l l u 1 ) e Graph(Q) such that

(10) xi + Xui = xQ + Alto-

Since (9) is true for all {y,v) € Graph(Q), we have

(uo — Ui, 77(2:0,£1)) ^ 0.

But from (10), we have A(uo — ui) = X\ — XQ and hence

1 / , vv

j{Xi -X0,T](Xo,Xi)) > 0.

Multiplying by A > 0, we have

(xO-Xi, T](xo,Xi)) ^ 0.
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Since 77 is strictly monotone, we have xo = zi and hence from (10) we get u^ = u0. So,
we reach the contradiction that (xi,Ui) € Graph(<2) or (xo,%) 6 Graph(Q). Therefore
Q is maximal 77-monotone.

For the second part, let 1, y € (I+XQ)~l(z). Then (z-x)/X e Q{x) and (z-y)/\ €
Q(y). We set u — (z - x)/\ and v = (z — y)/X. Therefore, z = Xu + x and z — \v + y.
By 77-monotonicity of Q, we have

0=(z-z, r){x, y)) = (Xu + x- (Xv + y), TJ(X, y))

= X(u - v, r)(x, y)) + (x-y, r](x, y))

> (x-y,r](x,y)).

Since 77 is strictly monotone, we have x = y. And hence (/ + XQ)~l is a single-valued

map. D

O P E N PROBLEM: If Q is maximal 77-monotone then under what conditions do we have
R(I + XQ) = H?

The following lemma can be easily proved and therefore we omit its proof.

LEMMA 1 . Let r) : H x H -¥ H satisfy Assumption 1 and <f> : H -4 E U {+00}.
Then the multivalued map dvcj>: H —• 2H is 77-monotone.

3. PERTURBED ITERATIVE ALGORITHM

Throughout this section, we shall assume that 77: H x H —• H is strictly monotone
and satisfies Assumption 1 and <j>: H —• Ru{+oo} such that R(I + Xdv(j)) = H for X > 0.

From Proposition 1 and Lemma 1, we note that the mapping

Jf{x) := (I + Xdv<j>y\x), for all x € H

is single-valued.

Let us transform (1) into a fixed point problem.

LEMMA 2 . x is a solution of (1) if and only if it satisfies the relation

(11) x = Jt(x-X(T(x)-A(x))),

where X > 0 is a constant, Jjf = (/ 4- Xd^cj))'1 is the so-called proximal map and I stands
for identity operator on H.

P R O O F : From the definition of J%, we have

x - X(T{x) - A{x)) €x + Xdv<t>{x)

and hence
A(x) - T{x) e dv<j>(x).
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By using the definition of the 77-subdifferential, we have

(A(x) - T(x), 7y(y, x)) ^ 4>{y) - 4>(x), for all y € H.

This implies that a; is a solution of (1). D

Lemma 2 enables us to reformulate Problem 1 as the fixed point problem of solving

(12) x = F(x),

where

F{x) = 4{x-X(T(x)-A(x))).

On the basis of this observation, we have the following algorithm to find an approx-

imate solution of (1).

ALGORITHM. Given x0 € H, compute zn +i by the rule

(13) xn+l = J*(xn - X(T(xn) - A(xn))),

where A > 0 is a constant.

To perturb scheme (13), first we add in the right hand side of (13) an error en to
take into account a possible inexact computation of the proximal point and we consider
another perturbation by replacing cj> in (13) by <(>„, where the sequence {0n} approximates
0. Finally, we obtain the perturbed algorithm which generates from any starting point
xQ £ H a sequence {xn} by the rule

(14) iB + i = Jt {xn - \{T(xn) - A{xn))) + en.

LEMMA 3 . Let 77 : H x H —> H be strongly monotone and Lipschitz continuous
with constants o > 0 and S > 0, respectively, which satisfies Assumption 1. Then

\\jf(x) - J*(y)\\ ^ r\\x - y\\, for all x,y e H,

where T = 5/a.

PROOF: From the definition of J*, we have

and hence

and

\(y- Jf(v)) 6 dvHJtiy)), f° r all x,y € H.
Since dn<f> is ^-monotone, we have

i ( x - J+{x) - { y - 0.
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Multiplying by A > 0, we get

(x — y- (</jf(z) - J$(y)),n(j£(x),j£(y))) ^ 0,

or

{it>) \x-y,rj{jx(x), Jx\y>)/ & \\J\\x) J\\y))->7)\j\\x)i J\\.y))/•

Since T](., .) is strongly monotone, we have

(•\R\ /( ]<t>tT\-_ I't'tiiW n( T^(r) I^(7i\)\ > <TII T*t

From Lipschitz continuity of 7?(-, •), we get

(17) (x-y,r)(jt(x),Jt(y)))<\\x-y\\ \\r,(j*\

<6\\x-y\\\\J*{x)-Jt(y)\\.

By combining inequalities (15), (16) and (17), we have

\\ji(x)-Jt(y)\\^T\\x-y\l for all x,y G H,

where r = 5/a. U

Now we are ready to prove the main result of this paper.

THEOREM 2 . Let T : H -»• H and -n : H x H -»• H be both Lipschitz continuous
and strongly monotone and satisfy Assumption 1. Let A : H —• H be Lipschitz con-
tinuous. For each n, let <frn : H -» R U {+00} and <j> : H -> R U {+00} be such that
R{I + \dn(f>n) = R(I + Xd^4>) = H for A > 0. Assume that lim II Jtn(z) - Jt(z)\\ = 0,

n—»-foo

for all z e H, {xn} is generated by (14) with lim ||en|| = 0 and x is a solution of (1).

Then xn+i strongly converges to x, for
(a - rp)

A -

a < rp — \/(/32 — p2)(l - r 2 ) , 0 > p and r < 1,

where 0, p and 6 are Lipschitz constants ofT, A and r), respectively, and a and a > 0 are
strongly monotonicity constants ofT and r\, respectively, with T = 5/o.

P R O O F : From Lemma 2, we see that x £ H satisfying (1) is a solution of (11) and
conversely. Thus, we have

x = Ji(x-\{T(x)-A(x))).

By setting h(x) := x — X(T(x) - A(x)) and from (11) and (14), we have

||xn+1 - x\\ ^ \\4" (xn - A(T(xn) - A(xn))) - J*{x - \{T{x) - A{x)))\ + \\en\\

(18) = \\4n{H*n)) - Jf(h(x))\\ + \\en\\.
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By introducing the term Jf" (h{x)), we get

(19) \\jt(h(xn))-Jt(Hx))\\ < \\jt"(h(xn))

By Lemma 3, we have

\jf"(h(xn)) - Jf(h(x))\\ < r\\h(xn) - h(x)\\ + \\jt(h(x)) - Jt(h(x))\\.

Hence

\\jf"(h(xn)) - Jf{h(x))\\ *C r\\xn - \{T(xn)) - A{xn)) -x + \(T(x) - A(x)

+ \\jt"(h(x))-Jt(h(x))\\

< r\\xn -x- X(T(xn) - T(x))\\ + T\\\A{xn) - A(x

. +\\jf(h(x))-Jt(h{x))\\.

By using Lipschitz continuity and strongly monotonicity of T (see [6]), we have

| i B - x - X(T{xn) - T(x))|2 < (1 + A2/?2 - 2Aa)||xn - x||2.

By using Lipschitz continuity of A, we get

pt"(h(xn)) -Jf(h{x))\\ ^ (r^/(l + A2^2 - 2Xa))\\xn - x\\ + r\P\\xn - z||

+ \\4"{h(x))-Jt{h(x))

+ A2/?2 - 2Aa) + rXp) \\xn - x\\

+ \\jt»(h(x))-jt(h(x))\\

From the above second inequality and by combining (18) and (19), we get

||iB+1 - z|| ^ 9\\xn-x\\ + \\jfn{h(x)) - Jt(h[x))\\

where 6 = TJ(1 + A2/?2 - 2Aa) + rXp < 1, for

A -
(a - rp)

a<rp- y/(P2 - p2) (l - T2) , 0 > p and r < 1.

By settingen= \\jt"{h(x))-J*(h{x))^ + \\en\\, we can write | |zn + i-z | | ^ 6\\xn-x\\+en.
Hence

- x\\
j=0

Since lim en = 0, from Ortega and Rheinboldt [7], we have that xn converges strongly
TI-++0O

tox. D
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