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1 Introduction

The Business Process Execution Language for Web Services (BPEL) is part of ongoing
activities to standardize a family of technologies for web services. A textual specification
[CGK+03] appeared in 2003 and is subject to further revisions. The language contains
features from previous languages, for instance IBM’s WSFL [Ley01] and Microsoft’s
XLANG [Tha01]. The textual specification is, of course, not suitable for formal methods
such as computer aided verification. With computer aided verification, in particular
model checking, it would be possible to decide crucial properties such as composability of
processes, soundness, and controllability (the possibility to communicate with the process
such that the process terminates in a desired end state). For a formal treatment, it is
necessary to resolve the ambiguities and inconsistencies of the language which occurred
particularly due to the unification of rather different concepts in WSFL and XLANG.

Several groups have proposed formal semantics for BPEL. Among the existing at-
tempts, there are some based on finite state machines [FFK04, FBS04], process algebras
[Fer04], and abstract state machines [Fah05, FR05, FGV04]. Though all of them are
successful in unravelling weaknesses in the informal specification, they are of different
significance for formal verification. The semantics based on abstract state machines are
feature-complete. However, Petri nets provide a much broader basis for computer aided
verification than abstract state machines. Most of the other approaches typically do not
support some of BPEL’s most interesting features such as fault handling, compensation
handling, and event handling.

In this paper, we consider a Petri net semantics for BPEL. The semantics is complete
(i.e., covers all the standard and exceptional behaviour of BPEL), and formal (i.e., feasi-
ble for model checking). With Petri nets, several elegant technologies such as the theory
of workflow nets [vdA98], a theory of controllability [Mar04, Sch04], a long list of verifi-
cation techniques [Sch00] and tools [RWL+03, SR00, Sch00] become directly applicable.
The Petri net semantics provides patterns for each BPEL activity. Compound activities
contain slots for the patterns of their subactivities. This way, it is possible to translate
BPEL processes automatically into Petri nets. Using high-level Petri nets, data aspects
can be fully incorporated while these aspects can as well be ignored by switching to
low-level Petri nets.

The paper is structured as follows: In Sec. 2 we explain the general concepts of
BPEL. Next, in Sec. 3 we introduce the principles of our Petri net semantics for BPEL.
In the following sections we transform BPEL’s elementary activities (Sec. 4), structured
activities (Sec. 5), and the semantics of links (Sec. 6). BPEL’s specific structured activity,
scope, is transformed in Sec. 7. Afterwards we explain the transformation of the complex
components of a scope: event handler, fault handler, and compensation handler (Sections
8 – 10). Finally, conclusions are drawn in Sec. 11.
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2 Introduction to BPEL

BPEL is a language for describing the behaviour of business processes based on web
services. Such a business process can be described in two different ways: either as an
executable business process or as a business protocol. An executable business process
which is the focus of this paper models the behaviour and the interface of a partner (a
participant), in a business interaction. A business protocol, in contrast, only models the
interface and the message exchange of a partner. The rest of its internal behaviour is
hidden. Throughout this paper we will use the term BPEL process instead of “executable
business process specified in BPEL”. To execute a BPEL process means to create an
instance of this process which is executed.

For the specification of the internal behaviour of a business process, BPEL provides two
kinds of activities. An activity is either an elementary activity or a structured activity.
The set of elementary activities includes: empty 1 (doing nothing), wait (waiting for
some time), assign (copying a value from one place to another), receive (waiting for
a message from a partner), invoke (invoking a partner), reply (replying a message to
a partner), throw (signalling a fault), and terminate (terminating the entire process
instance).

A structured activity defines a causal order on the elementary activities. It can
be nested with other structured activities. The set of structured activities includes:
sequence (activities ordered sequentially), flow (activities ordered parallel), while
(while loop), switch (selects one control path depending on data), and pick (selects
one control path depending either on timeouts or external messages). The most im-
portant structured activity is a scope which links an activity to a transaction man-
agement. It provides a fault handler, a compensation handler, an event handler,
correlation sets and data variables. A process is a special scope. More precisely,
it is the outmost scope of the business process.

A fault handler is a component that provides methods to handle faults that may
occur during the execution of its enclosing scope. In contrast, a compensation handler
is used to reverse some effects that happened during the execution of activities. With
the help of an event handler, external message events and specified timeouts can be
handled. A correlation set is used for identifying the instance of a BPEL process
only by a message’s content. Thus, a correlation set is an identifier – more precisely,
it is a collection of properties – and all messages of an instance have to contain it. It is
either initialized by the first incoming or outgoing message.

Another important concept in BPEL are links. A link can be used to define an
order between two concurrent activities in a flow. It has a source activity and a target
activity. The source may specify a boolean expression, the status of the link. The target
may also specify a boolean expression which evaluates the status of all incoming links.
BPEL provides dead-path-elimination [LR99], i.e. the status of all outgoing links of a
source activity that is not executed anymore is set to negative. Consider, for instance,
an activity within a branch that is not taken in a switch activity.

1We use this type-writer font for BPEL constructs.
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In the forthcoming sections we transform BPEL into algebraic high-level Petri
nets [Rei91], a specific class of high-level Petri nets. We assume the basics of Petri
nets to be known by the reader. Thus, there is no section introducing this formalism.
We will only explain specific concepts of algebraic high-level Petri nets if necessary.
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3 Transformation of BPEL into Petri Nets

Our goal is to translate every BPEL process into a Petri net. The translation is guided
by the syntax of BPEL. In BPEL, a process is built up by plugging language constructs
together. Therefore we translate each construct of the language into a Petri net. Such a
net forms a pattern of the respective BPEL construct. Each pattern has an interface for
joining it with other patterns as it is done with BPEL constructs. Some of the patterns
are used with a parameter, e.g. there are some constructs that have inner constructs.
The respective pattern must be able to carry any number of inner constructs as its
equivalent in BPEL can do. We aim at keeping all properties of the constructs in the
patterns. The collection of patterns forms our Petri net semantics for BPEL.

3.1 Transformation Approach

Let us have a more detailed look at the general pattern’s design. Figure 1 depicts
the pattern for the BPEL’s receive activity. receive is responsible for receiving a
partner’s request. To identify whether the request is sent to this receive pattern and not
to another instance of the process, BPEL’s receive specifies at least one correlation
set. The pattern in Fig. 1 presents a receive with one correlation set which is
already initialized. More precisely, attribute initiate is set to “no”. The pattern of
BPEL’s receive where a correlation set is initialized by the incoming message, i.e.
initiate is set to “yes”, is depicted in Fig. 2.

Before we discuss details of the receive pattern we give some general comments on
the notion of patterns. Firstly, we use the common graphical notations for Petri nets.
Places and transitions are labelled with an identifier, e.g. p1 2 or t1 which are depicted
(contrary to common notation) inside the respective Petri net node. In addition, some
nodes have a second label depicted outside the node, e.g. initial. This label is used to
show the purpose of the node in the net. Secondly, a variable in small letters in arc
inscriptions, e.g. fault, symbolizes a single variable and a variable in capital letters, e.g.
X, symbolizes a tupel of variables. Thirdly, there are transitions, e.g. t2 that have a
transition guard. Such a transition can only fire when its guard, a boolean expression,
is evaluated to true. A guard is depicted (in braces) next to the transition it belongs to,
e.g. {!guard}.

In general, a pattern is framed by a dashed box. Inside the frame, the structure
of the corresponding BPEL construct is modelled. The interface is established by the
nodes depicted directly on the frame. Positive control flows from top to bottom while
communication between processes flows horizontally. In Fig. 1 the positive control flow
starts with a token on initial and it ends either with a token on finish or failed. Outside
the frame, there are external objects, e.g. obj1. An object is either a place of a scope
pattern (variable, correlation set) or of the process pattern (channel). An activity’s
pattern as the receive pattern in Fig. 1 relates to those places. The label on the top
of an object defines its sort whereas the role is defined at the bottom of the object. A

2We use this serif-free font for labels in a Figure.
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<MessageType>

[Variable]

t5

receive

(X,CS)

(X,CS) (X,CS)

(X,CS)

t2

X

V

Figure 1: Pattern for BPEL’s receive in case of initiate=“no”.

sort is the domain of the tokens lying on and arriving at this place. The object’s role is
independent of its sort.

When the pattern depicted in Fig. 1 is activated, it is executed in two steps. Firstly,
the message is taken from the channel (obj1) and the correlation set (obj2) is read3

(t1). Both values are saved in variables X and CS, respectively. In the second step this
information is analyzed. Either the message is saved in the variable (t2) or a fault
occurs (t3) because of a mismatch between the values of the receive’s correlation
set and the correlation set in the message or some other error. With it variable
V holds the old value of obj3 and fault holds the fault information. In both cases, the
pattern is finished.

The meaning of place stop, stopped and failed in Fig. 1 needs to be explained. In BPEL,
a process is forced to stop its positive control flow, e.g., when a fault occurs or activity
terminate is activated. However, the BPEL specification [CGK+03] tells only informally
the requirements how to stop a scope. For instance, activity receive “is interrupted
and terminated prematurely” [CGK+03, p. 79]. The specification does not describe
how to realize those requirements. Thus, we had to make some modelling decisions in
our model: The pattern of BPEL’s scope is extended by a stop pattern (see Sect. 9.1
for more details), which has no equivalent construct in BPEL. If a scope needs to be
stopped, the stop pattern controls this procedure. Our idea is to remove all tokens from

3The arc between obj2 and t1, depicted by the vertical line, is a read arc [Web03].
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the patterns, embedded in the scope pattern; thus the patterns of BPEL’s activities
and event handler contain a subnet – a so called stop component. In contrast, the
patterns of BPEL’s compensation handler and fault handler do not contain a stop
component, because they both need not to be stopped. In [Sta04] we proved that every
process can be stopped using stop components. In the case of Fig. 1, the stop component
is established by transitions t4 – t7 using the interface stop and stopped. Throughout this
paper, we will call this the negative control flow of an activity.

In order to explain how a stop component works, consider a scope that contains just
a receive and the latter throws a fault. This leads to place failed being marked – the
token is an object that consists of the fault’s name. This place is joined with a place
in the stop pattern; thus this pattern gets the control of the scope. First of all it stops
the inner activity of the scope and consequently a token is produced on the receive’s
stop place. Transition t6 fires and stopped is marked. This place is also joined with a
place in the stop pattern. In contrast, transitions t4, t5, t7 consume the token on stop

by stopping the receive pattern wherever the control flow is in this pattern. As a result,
a token is produced on stopped, too. One might assume that t4 obtains priority before
t1 and t5 before t2. Indeed, this would destroy the model’s asynchronous behaviour
without changing the possible set of runs. We use this asynchronous behaviour in our
patterns to model the aspect that sending the stop signal needs time, too. Consider, for
instance, two receive patterns executed sequentially. It is possible that the first receive
is finished (and so the second receive is activated) exactly in the moment signal stop
is sent. In our patterns, however, this possibility is taken into account. Alternatively,
a different modelling approach is possible: A transition of the receive pattern’s positive
control flow is only enabled when no fault has been occurred in the surrounding scope
pattern. This fact could be modelled by a place marked when no fault has been occurred.
But this, of course, would destroy the asynchronous character of any BPEL process.

As we already mentioned above, in BPEL it is possible to define an activity receive
where a correlation set is initialized by the incoming message. Therefore BPEL’s
receive specifies the attribute initiate, which is either set to “yes” or “no”. That
means, the correlation set can either be set or be read. Thus, for all constructs that
specify initiate we have built two patterns, one for “yes” and one for “no”. Figure 2
depicts BPEL’s receive in case of initiate=“yes”. In contrast to the pattern shown in
Fig. 1, it takes a message from the channel and the correlation set is initialized, while
c is a function extracting the correlation set from a message. Afterwards, either the
message is stored in a variable or a fault is thrown as explained before in Fig. 1.

3.2 Objects

Next, we present the four objects (message) channel, correlation set, variable, and clock
used throughout the patterns in more detail.

A message can only be sent or received through a message channel in BPEL. In
a BPEL’s process instance a channel is defined by a portType, an operation, the
direction of the communication (input or output) and a partnerLink. The latter is
automatically mapped to a concrete address. In our model a message channel is defined

11
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[CorrelationSet]

<MessageType>
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t5

receive

X

X X

X

X

V

Figure 2: Pattern for BPEL’s receive in case of initiate=“yes”.

by a role [Channel] and a sort <MessageType>. Thereby the information about BPEL’s
channel definition is encoded into the role. A channel will be depicted on the right of
the pattern’s structure, if the process sends a request to a partner. Otherwise, if the
process is requested by a partner, it is depicted on the left side.

A correlation set is used for identifying the instance of a BPEL process only by
the message’s content. Thus, a correlation set is an identifier – more precisely, it
is a collection of properties – and all messages of an instance have to contain it. It is
initialized by the first incoming or outgoing message. In our model a correlation set
is defined by a role [CorrelationSet] and a sort <propertyType>. If the correlation
set is already initialized, it is only read (see Fig. 1). Therefore the token is permanently
on the respective place. Otherwise, the correlation set has to be initialized by the
first incoming or outgoing message. Throughout the paper we will use a function c (see
Fig. 2) which extracts the correlation set of an incoming or outgoing message (a
token of sort <propertyType>) produced on the respective object. We do not define
this function and only refer to the work of Fahland [Fah05], modelling data aspects in
more detail.

In BPEL a variable is used for either holding data or a message. An activity only
gets a copy of the variable’s value, but a variable can be overwritten (just a part or
the whole value). In our model, a variable is a place defined by the role [Variable] and
the data it holds is modelled by a token. So the variable’s sort is either <Data> or
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<MessageType>. To get a copy of the variable’s value we use a read-arc. Overwriting
means that the token is first consumed and afterwards it is edited and produced, i.e.
a loop is used in the respective patterns. In order to realize access on non-initialized
variables each variable is preinitialized to zero. This is done for syntactical reasons
only, whereas BPEL’s semantics is not changed.

Furthermore we need a timer to model waiting, for instance. We decided to use a
system clock, which is modelled by a place. The token’s value – the time – is incremented
continuously. This clock is defined globally in the process pattern and all constructs of
the process can read it. Therefore the outgoing arcs of the respective object are read-
arcs. Reading the token just means watching the time. The clock is defined by the role
[Clock] and the sort <Time>.
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4 Transformation of BPEL’s Elementary Activities

4.1 Empty

The pattern for BPEL’s empty is depicted in Fig. 3. Doing nothing, which is the activ-
ity’s semantics is modelled by firing a transition (t1). The pattern’s stop component is
established by transitions t2 and t3.

stop

stopped

final

t1

t2

t3

p1

p2

p3

p4

initial

empty

Figure 3: Pattern for BPEL’s empty.

4.2 Wait

“The wait activity allows a business process to specify a delay for a certain period of
time or until a certain deadline is reached” [CGK+03, p. 57]. Therefore we build two
patterns – one for each wait condition – visualized in Figures 4 and 5. To model waiting,

t1

stop

obj1

p3t2

stopped

p4t3

p2

initial

p1

final

x

wait

<Time>

{until <= x} 

[Clock]

Figure 4: Pattern for BPEL’s wait with an until condition.

we use a transition guard; thus control flows when the respective boolean expression
holds.

In Fig. 4 the pattern for BPEL’s wait with an until condition is depicted. If initial is
marked and the deadline saved in variable until is lower or equal than the current time
saved in variable x, the guard holds and transition t1 can fire. Furthermore the pattern’s
stop component is established by transitions t2 an t3.
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The pattern for BPEL’s wait with a for condition is visualized in Fig. 5. It is a little
bit more complex than the former pattern. After having read a time stamp (t1), the
control flow has to wait for a certain period of time saved in variable for. If the sum of x

x

y

TimeStamp

x

x

stopped

final

initial

stop

p3

p4

p5

obj1

p1

p2

t1

t2

t3

t5

t4

<Time>

[Clock]

wait

x

{x + for <= y}

Figure 5: Pattern for BPEL’s wait with a for expression.

and for is lower or equal than the current time stamp (y), the guard holds. Thus, t2 can
fire. The pattern’s stop component is established by transitions t3 – t5.

4.3 Assign

BPEL’s activity assign either copies the value of a variable into another variable
or it copies the value of an expression into a variable. Because of our abstraction
of WSDL (see Sec. 3.2) it is not necessary to model all other actions of assign being
specified in [CGK+03].

The pattern depicted in Fig. 6 copies the value of one variable into another. For
that purpose, first obj1 is read and its value is saved in variable X. In the second step the
transition guard, specifying the occurrence of a mismatched assignment or some other
error, is evaluated. If it holds, a fault is thrown (t3). Otherwise, obj2 is updated by the
value of X. In case of Fig. 6, the pattern’s stop component is established by transitions
t4 – t7.

The pattern of BPEL’s assign that copies the value of an expression into a variable
is depicted in Fig. 7. Again, the transition guard specifies the occurrence of a mismatched
assignment or some other error. If it holds, t2 fires and a fault is thrown. Otherwise, t1

fires and the old value of the variable obj1 is read. f specifies a function that replaces
the respective part in Y with expression x. The pattern’s stop component is established
by transitions t3 – t5.
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stop

final

p2

t1

t2

obj1

p5t4

obj2
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t3
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p4

X

t5

p6
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t7

p7

fault

[Variable]

<MessageType>
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assign

X

X X

X

X

Figure 6: Pattern for BPEL’s assign with a from variable.

final

initial

stopped

failed

stop

p2

p5

t4

t5

fault

t1 obj1

p1

t2

p4t3

f(x,Y)

p6

p3

Y {Variable}

<MessageType>

{!guard}

{guard}

assign

Figure 7: Pattern for BPEL’s assign without a from variable.

4.4 Reply

BPEL’s reply allows a business process to send a message holt in a variable in reply
to a message that was received through an activity receive. Similar to the construct
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receive it specifies an attribute initiate. Therefore we again have built two patterns:
Fig. 8 shows initiate=“no” and Fig. 9 shows initiate=“yes”. Each of them is very similar
to its respective receive pattern that was presented in Figures 1 and 2.

Let us take a look at Fig. 8. At first, a message is taken from the variable and
the correlation set is read. In the next step, the transition guard, specifying the

final

running

{guard}

failed

stop

stopped

initial

fault

{!guard}t2

t3

obj1
CS

reply

p2

t1

p6

p7

t4

t5

p3

p1

X

t7

p5

p4

obj3

t6

<PropertyType>

[CorrelationSet]

<MessageType>

[Channel]

<MessageType>

[Variable]

(X,CS)

(X,CS)

(X,CS) (X,CS)

obj2

X

Figure 8: Pattern for BPEL’s reply in case of initiate=“no”.

occurrence of a conflicting request or some other error is evaluated. If it holds, a fault
occurs (t3). Otherwise the message is sent (t2).

In contrast, the pattern in Fig. 9 takes a message from the variable and the
correlation set is initialized. In both figures the pattern’s stop component is made
up by transitions t4 – t7.
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final

running

fault

{guard}

stopped

failed

stop

{!guard}

initial

p3

t1

t2

t3

obj1

reply
p1

p6

p7

t4

t5p2

obj2

t7

p5

X

X X

p4

X

<PropertyType>

[CorrelationSet]

<MessageType>

[Channel]

<MessageType>

[Variable]

c(X)

X

obj3

t6

X

Figure 9: Pattern for BPEL’s reply in case of initiate=“yes”.

4.5 Asynchronous Invoke

Just like the reply activity, an asynchronous invoke sends a message which is stored in
a variable. In contrast to the reply activity though, the message is not sent in reply
to a received message but it is sent as a request to a partner.

This activity also specifies an attribute initiate. So we also have built two patterns.
They are visualized in Fig. 10 (initiate=“no”) and Fig. 11 (initiate=“yes”). There is only
one difference between each of them and its respective reply pattern. In the asynchronous
invoke pattern the variable is placed on the left side and the channel on the right side
whereas in the reply pattern it is the other way round. As explained in Sec. 3.2, if a
process is called, the channel is placed on the right side. Otherwise, if an activity reacts
to a partner’s request, the corresponding channel is placed on the left side of the pattern.
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Figure 10: Pattern for BPEL’s asynchronous invoke in case of initiate=“no”.
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Figure 11: Pattern for BPEL’s asynchronous invoke in case of initiate=“yes”.
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4.6 Synchronous Invoke

The semantic of a synchronous invoke activity is to send a request to a partner and to
wait for a result afterwards. In fact, it is an sequential execution of an asynchronous
invoke and a receive activity. Therefore the pattern of BPEL’s synchronous invoke
is a composition of these two known patterns. It also specifies at least one attribute
initiate. So again, we have built two patterns. The case of initiate=“no” is visualized in

{guard1}
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fault1

stop

{guard2}
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obj6

p4

p3

t5

p5

[Variable]

t4

obj4

p7t7

t8

t9

p2

t11

p8

<MessageType>

obj5

obj2

t12

CS1

CS2

invoke
p1

obj3

obj1

t10

<MessageType>

[Variable]

<PropertyType>

[CorrelationSet]
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X
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Y
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p6

Y
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Figure 12: Pattern for BPEL’s synchronous invoke in case of initiate=“no”.
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Fig. 12. The pattern’s stop component is established by transitions t7 – t12.
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Figure 13: Pattern for BPEL’s synchronous invoke in case of initiate=“yes”.

The case that correlation sets have to be set, i.e. initiate=“yes” is depicted in
Fig. 13. In this model we assume that two correlation sets are defined (one for
sending a message and one for receiving a message) and both have to be initialized.
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4.7 Throw

If a business process should generate an internal fault, the activity throw can be used.
The respective pattern is depicted in Fig. 14. It puts the name of the fault into place
failed by firing t1. In this pattern there is no need for a place final, because after signalling
the fault, the whole scope is finished by the stop pattern. For this reason, the control
flow neither needs to be passed to the successor activity nor to the enclosing scope. The
pattern’s stop component is established by transitions t2 and t3.

stop

initial

fault

stopped

failed

t1

p1
throw

t2 p3

p4

p5

p2 t3

Figure 14: Pattern for BPEL’s throw.

4.8 Terminate

In this section the pattern of BPEL’s terminate is presented (see Fig. 15). The activity
terminate is executed to terminate the whole process instance. In our model, the
process is transferred to the state Terminated and the stop pattern is used for execut-

stop

initial

stopped

!Terminate

Terminate

terminate

final

terminate
p1

p2

p3

p4

p5

p6

p7

t1

t2

t3

t4

Figure 15: Pattern for BPEL’s terminate.
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ing the termination of the process. Two scenarios are possible: Either the process is
already in state Terminated, i.e. another terminate activity has been executed before,
and nothing has to be done (t1) or the termination of the process is started by trans-
ferring the process to state Terminated (t2). The pattern’s stop component is made up
by transitions t3 and t4.

In contrast to the throw pattern, we do need a place final in this pattern for the activity
terminate. Consider the activity terminate, being embedded in a fault handler,
is executed. An active fault handler has to be fully executed in order to guarantee
firstly, the removing of the tokens and secondly, to ensure finishing of the patterns. After
having executed the fault handler, the termination process gets control of stopping
the process. Otherwise, if the activity throw is executed inside of a fault handler, the
generated fault stops the respective fault handler. Afterwards the fault is rethrown
to the immediately enclosing scope. Furthermore t1 is also needed, if two terminate
activities are executed in a fault handler concurrently. Otherwise, our model would
deadlock.
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5 Transformation of BPEL’s Structured Activities

In the following we transform BPEL’s structured activities. A structured activity embeds
at least one activity. Such an embedded activity (we will also call it an inner activity)
can be any BPEL activity. But how should such an inner activity be visualized in our
patterns?

In our model it is most important to see how the interfaces of an inner activity and
its enclosing activity are joined. Thus, only the interface of an embedded pattern is
visualized and all other information of the pattern is hidden. Therefore only the frame
and places initial, final, stop, stopped and if needed negLink are visible. This interface
concept allows plugging patterns together as it is done in BPEL. This notation is a
simplification and a generalization of an inner activity. It means, the inner activity can
be any BPEL construct, even a throw (although the pattern of BPEL’s throw has no
final place).

negLink is an abbreviation of negative link. It is an optional place that is only part of
a link pattern’s interface or of a structured activity pattern’s interface when it embeds
at least one activity that is source of a link. With the help of negLink the status of
all source links of an inner activity that are not executed anymore is set to negative.
Consider, for instance, an activity within a branch that is not taken in a switch activity.
In other words, negLink is a place for modelling dead-path-elimination [LR99]. If negLink
is depicted in a pattern, we suppose that the respective activity contains at least one
activity that is source of a link.

The patterns of the structured activities become larger than most of the basic activity’s
pattern. Thus, we extend our graphical notation in order to simplify the respective Petri
nets: Two places with the same identifier are joined.

5.1 Sequence

BPEL’s sequence “contains one or more activities that are performed sequentially”
[CGK+03, p. 59]. The general pattern of a sequence, which can carry a number of n
inner activities is depicted in Fig. 16.

As already mentioned, places with the same identifiers are joined, e.g. initial of the
sequence and initial of innerActivity1 (p2), final of innerActivity1 (p4) and initial of innerAc-

tivity2 (p4) and so on.
There are two possible interleavings, because either initial is marked or negLink: Either

innerActivity1, . . . , innerActivityn are executed sequentially or the status of all source links
embedded in the sequence is set to negative (t1).

If there is a token on stop, the sequence and its embedded activities will be stopped.
The places stop and stopped are joined with all stop places and stopped places of the
inner activities.
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Figure 16: Pattern for BPEL’s sequence embeds n activities.

5.2 Flow

A flow provides an environment for performing one or more activities concurrently.
After each of them has been finished, they are synchronized. The general pattern of
BPEL’s flow, which can carry a number of n inner activities is shown in Fig. 17.

Again, either initial or negLink is marked. So we have to look at two possible scenarios:
Either all inner activities are executed concurrently (t2) and afterwards they are syn-
chronized (t3) or the status of all source links embedded in the flow is set to negative
(t1). The pattern’s stop component is established by transitions t4 – t7.

If there is a token on stop, the flow and its embedded activities will be stopped. After
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Figure 17: Pattern for BPEL’s flow embeds n activities.

t5 has fired the token lying on running is consumed; thus t3 cannot be activated. Further-
more the stop place of each inner activity is marked. So innerActivity1, . . . , innerActivityn

can be stopped concurrently. Firing t6 synchronizes them.

5.3 While

BPEL’s while “supports iterative performance of a specified iterative activity. The
iterative activity is performed until the given boolean while condition no longer holds
true” [CGK+03, p. 60]. No link must cross the boundary of a while activity; thus the
respective pattern visualized in Fig. 18 does not contain a place negLink.

Firstly, the data being stored in a variable is read (t2).4 Afterwards there are three
possible scenarios depending on the evaluation of the guards guard (describes a fault
case) and cond (describes the loop condition): Either a fault occurs, e.g. because of a
selection failure (t5) or the loop condition does not hold (t1). In the third scenario the
loop condition holds (t3). Therefore innerActivity is performed and the loop is repeated
(t4). The pattern’s stop component is established by transitions t6 – t9.

4Reading a message holt in a variable is also possible, but not shown. Then the variable is of sort
<MessageType>.
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Figure 18: Pattern for BPEL’s while.

5.4 Switch

BPEL’s switch “. . . consists of an ordered list of one or more conditional branches
defined by case elements, followed optionally by an otherwise branch. The case branches
of the switch are considered in the order in which they appear. The first branch whose
condition holds true is taken and provides the activity performed for the switch. If no
branch with a condition is taken, then the otherwise branch is taken” [CGK+03, p. 59].
In Fig. 19 the pattern of a switch that consists of two case branches is shown.

Two scenarios are possible, because either place initial or place negLink is marked. If
initial is marked (scenario 1), data being stored in a variable is read (t3).5 Afterwards
there are three possible sub-scenarios depending on the evaluation of guards guard (de-
scribes a fault case) and cond (describes the condition of the respective case branch).

5Reading a message holt in a variable is also possible, but not shown.
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Figure 19: Pattern for BPEL’s switch and two case branches.

Either a fault occurs (t7), e.g. because of a selection failure, or the condition of the first
case branch is evaluated. If the condition holds (i.e. t2 fires), innerActivity1 is performed
and the status of all source links embedded in the other inner activities that are not
performed anymore are set to negative, e.g. a token on place p8. Otherwise (t4) the
condition of the second case branch is evaluated. If none of the case branch conditions
hold, the otherwise branch is performed (t6). Again, on every negLink place of all other
inner activities a token is produced. If negLink is marked (scenario 2), the status of all
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source links embedded in the switch activity are set to negative (t1). The pattern’s
stop component is established by transitions t8 – t11.

5.5 Pick

A pick either waits on a message event or a timing event. This activity defines one or
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Figure 20: Pattern for BPEL’s pick in case of initiate=“no” that contains k− 1 onMes-
sage branches.

more so-called onMessage branches and any number of so-called onAlarm branches. As
known from activity wait an alarm event occurs when either a delay for a certain period
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of time is reached or until a certain deadline is reached. Each onMessage branch also
specifies an attribute initiate. So we have built two patterns. The general pattern of
BPEL’s pick defining k − 1 onMessage branches and any number of onAlarm branches
in case of initiate=“no” is visualized in Fig. 20.

Depending on the initial marking (either initial or negLink are marked) two scenarios
are possible. In the first scenario initial is marked and a time stamp is read (t5). Then
either a message (t2) or an alarm event occurs (t6). If the transition guard, specifying
the occurrence of a correlation violation or some other fault holds, the fault is thrown
(t4). Otherwise the message is written in the variable, innerActivity1 is performed (t3)
and the status of all source links embedded in all other inner activities not performed
anymore is set to negative, e.g. a token on place p8. In the case that an alarm has
occurred, innerActivityk is performed and the status of all source links embedded in all
other inner activities not performed anymore is set to negative, e.g. a token on place p2.
In the second scenario, negLink is marked, and the values of all source links embedded
in the pick activity are set to negative (t1). The pattern’s stop component is established
by transitions t7 – t10.

The equivalent pattern in the case of (initiate=“yes”) is depicted in Fig. 21.
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Figure 21: Pattern for BPEL’s pick in case of initiate=“yes” that contains k−1 onMes-
sage branches.
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6 Transformation of BPEL’s Link Semantic

For synchronizing subtasks of a flow, BPEL provides a construct of the so-called links.
Each link specifies two elements: a source and a target activity. Whereas a source
activity may specify a transition condition a target activity may specify a join condition6.
Furthermore, a link depends on the value of the attribute suppressJoinFailure which
is either “yes” or “no”. If the join condition does not hold, BPEL’s standard fault
joinFailure occurs. The fault is either suppressed, i.e. the target activity is not
executed anymore and the values of all outgoing links (i.e. links for that the activity
is the source) embedded in the target activity are set to negative. Otherwise, the fault is
not suppressed, that means, it is thrown to the stop pattern of the surrounding scope.

A link is only set once and it must be possible to check whether it is set or not.
Thus, we decided to model a link by two complementary places – !outLink1 and outLink1

in Fig. 22, for instance. !outLink1 is a low-level place marked at the beginning of the
process pattern whereas outLink1 is of the sort boolean. Note, link places are outside the
frame of the respective pattern, because they synchronize two activities. A link place is
no object.

We again extend our graphical notation in order to simplify the Petri nets: A place
depicted with a dotted line, e.g. p10 in Fig. 22 is a replication of a place depicted with
a solid line and the same identifier. This notation is used to avoid crossing edges in the
net.

6.1 Source Activity

In Fig. 22 the source link pattern is visualized. It does not depend on the value of the
attribute suppressJoinFailure. We suppose that X is a pattern of a structured activity
that embeds at least one activity that is source of a link.

There are two possible scenarios: Either initial or negLink is marked. In the case of
the positive control flow, there is a token on initial; thus, the embedded activity X is
activated. After X is executed faultlessly, place p4 is marked and either t2 fires or t3.
To set the links means firing t2. Variables transCond1 and transCond2 get the value of
the given transition condition that is produced on p10 and p11. Otherwise, a fault has
occurred and the values of all links were set to negative by the surrounding scope.
Then t3 fires.

If negLink is marked, X is an activity within a branch which is not executed anymore.
This is the case of dead-path-elimination where the values of all source links have to
be set to negative. By firing t1, outLink1 and outLink2 are set to “false”. Furthermore a
token is produced on p3, because the interface of activity X contains a place negLink.

6Both conditions are boolean expressions.
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Figure 22: Pattern for an activity that is source of two links.

6.2 Target Activity

The pattern of the target activity which shows suppressJoinFailure =“no” is depicted
in Fig. 23. We suppose that X is a pattern of a structured activity that embeds at least
one activity that is source of a link.

Depending on whether initial or negLink is marked or not there are two possible sce-
narios. If initial is marked, there are two interleavings: The join condition – modelled
as the guard joinCond – either holds and activity X is executed (t1) or joinCond does not
hold (t2) and the fault joinFailure – saved in variable fault – is thrown. Otherwise, if a
token is on negLink, X is not executed and the values of all source links being embedded
in X are set to negative.

Each link place is joined with the respective link place of the source pattern in Fig. 22:
!inLink1 with !outLink1, !inLink2 with !outLink2, inLink1 with outLink1 and inLink2 with
outLink2.

In contrast, Fig. 24 depicts the same pattern in the case of suppressJoinFailure
=“yes”. If the join condition does not hold (t2), the target activity is not executed and
the control flow is continued after this activity. Furthermore, if there are source links
embedded in X (as shown in Fig. 24), their values are all set to negative by producing a
token on p5.
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activity X

final

{!joinCond}

initial

{joinCond}

fault

stopped

failed

inLink2!inLink1 inLink1!inLink2

b2

b1

b1

stop

b2

negLink

link activity

p9

p10

p5

t2t1

p5 p8

t3

t4

p2p1

p12

p4p3

p11
p6

p7

p9

p10

Figure 23: Pattern for an activity that is target of two links in case of
suppressJoinFailure =“no”.

activity X

final

stop

{joinCond}

stopped

{!joinCond}

inLink2inLink1

b2

b1

b1

!inLink1

initial

!inLink2

negLink

b2

link activity

t1 t2

p8

p5

t3

p5

p6

p9

p2p1

p10

p7

p4p3

p9

p10

Figure 24: Pattern for an activity that is target of two links in case of
suppressJoinFailure =“yes”.
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6.3 Activity with Source and Target Element

Now we present the pattern for an activity that is source and target of two links. We
again need two patterns: Fig. 25 shows suppressJoinFailure =“yes” and Fig. 26 shows
suppressJoinFailure =“no”.

Figure 25 results from the patterns visualized in Figures 24 and 22. There are only
four new arcs: p5t5, p6t5, t5p7, and t5p8. The two possible scenarios are similar to the
patterns presented in the subsections before. Either there is a token on negLink or initial

is marked.

activity X

final

false

false

false

{joinCond}

b1

b2

outLink1

transCond2

stopped

outLink2

transCond1

!outLink1 !outLink2 outLink1 outLink2

b1

inLink1

b2

!outLink2

!outLink1

inLink2

initialnegLink

b1

false

!inLink2

{!joinCond}

b2

stop

!inLink1

link activity

p5

p6

p7

t2

p16

p1 p2

p8

p13

p3 p4

p14

p5 p6

t3

p15

p10

t1

p9

p7 p8

p12

p11

t4

t5

t6

t7

p14

p15

Figure 25: Pattern for an activity that is source and target of two links in case of
suppressJoinFailure =“yes”.

The case of suppressJoinFailure =“no” depicted in Fig. 26 results from Figures 23
and 22 and is as expected.
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activity X

final

false

false

{joinCond}

failed

b2b1

outLink2outLink1

transCond1

stopped

transCond2

fault

inLink2inLink1

!outLink1 !outLink2 outLink1 outLink2

!inLink2!inLink1

initialnegLink

b1

b1
b2

b2

stop

{!joinCond}

link activity

t2

p11

p9 p16

p14

p8p7

p1 p2

t8

p18

p3 p4

p15

p5 p6

t3

p17

p15

p14

p10

t1

p13

t4

t5

t6

t7

p7 p8

p12

Figure 26: Pattern for an activity that is source and target of two links in case of
suppressJoinFailure =“no”.

6.4 Summary Dead-Path-Elimination

Let us summarize the modelling of dead-path-elimination. In general, DPE is realized
by the place negLink which is used in the patterns of BPEL’s scope, source, target, and
structured activities. In the following we explain what happens, if the negLink place of
the respective pattern is marked:

In the source activity the values of all target links are set to negative. If the source
activity embeds an activity that is source of a link, the status of that link is set to
negative, too.

If the target activity embeds an activity that is source of a link, the status of that
link is set to negative.

The negLink places of all patterns enclosed in a sequence or flow are marked, if the
respective pattern is source of a link.

The patterns of pick and switch behave just like the flow and sequence. But in the
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case of the positive control flow, the negLink place of every pattern in a branch, which
is not performed anymore, is marked.

In a scope pattern the negLink place of the embedded activity is marked, if it is
source of an activity.

There is no negLink place in the pattern of BPEL’s process, because a process is
not enclosed by another activity.

The pattern of BPEL’s while does not have a place negLink as well, because no link
is allowed to cross this activity.

Last but not least the patterns of BPEL’s elementary activities do not have a place
negLink, because there is no activity which can be enclosed in an elementary activity.
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7 Transformation of BPEL’s Scope

In this section we want to transform BPEL’s scope which is also a structured activity.
A scope encloses one activity linked to the transaction management. It is a wrapper for
an activity, a fault handler and a compensation handler whereas both handlers are
defined at least by default. Optionally, a scope may enclose an event handler.

In order to transform the scope we have to link its elements. In addition, a stop
pattern is used in our model: If a scope has to be stopped, the stop pattern controls
this procedure. Furthermore, we use state places and a subnet which sets the status of
all links in the scope after the fault handler has finished. The scope pattern also
encloses variables and correlation sets.

7.1 State Places

Now we give an outline of the states a scope can be in. Most of the states are based
on the Business Agreement Protocol’s state diagram [CGK+03, pp. 116]. Modelling
the transaction management it is important to know which event has taken place. For
instance, whether a fault has occurred or a scope has been compensated. Such a state
is modelled by a state place. In more detail, if a state place is marked, the scope is
in that respective state. For every state there exists a complement state modelled by a
complement place. Except for Terminate and !Terminate defined globally in the process
pattern, every scope has the following state places:
(!)Active: As long as positive control flows in a scope, this scope is in state Active.

State Active is reached as soon as the scope’s inner activity is activated. After this
inner activity and the event handler have finished, the scope changes into state !Active.
The token on place Active is also consumed by the stop pattern, if the scope’s stop place
is marked. That means, either an activity terminate is activated, a forcedTermination
is signalled (i.e. a scope is forced to stop) or a fault has occurred.
(!)Completed: A scope changes into state Completed, after its inner activity has been
executed faultlessly and its event handlers have been finished.

When its inner activity is activated, the scope reaches state !Completed. After the
scope has completed faultlessly, it changes into state Completed. This state is queried
inside the scope’s compensation handler, because a scope is compensated only when
it has completed faultlessly. A scope in state Completed cannot leave this state.
(!)Compensated: A scope changes into state Compensated, if its compensation handler
is activated for the first time.

By activating its inner activity the scope reaches state !Compensated which is left
only when the compensation handler is executed. A scope can be compensated only
once. So this state is also queried in the compensation handler of the scope. A scope
cannot leave the state Compensated.
(!)Ended: A scope changes into state Ended if it has finished faulty, i.e. it was stopped,
and control does not flow after the scope, but in the hierarchy of its enclosing scope.
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With the activation of its inner activity, the scope changes into state !Ended. This
state can only be left, if control flow is inside the stop pattern or inside the fault han-
dler pattern. In the stop pattern state Ended is reached either if the activation of an
activity terminate is signalled and this signal stops the scope or if a fault occurs while
the compensation handler either is executed or was executed. In the fault handler
pattern the state is changed into Ended when the scope rethrows a fault to the imme-
diately enclosing scope. Note, if a user defined fault handler has caught a fault (i.e.
the fault is handled), the scope stays in state !Ended. Furthermore state Ended is used
for removing tokens in the fault handler pattern and in the stop pattern. Such a token
symbolizes a fault that cannot be handled anymore. A scope cannot leave state Ended.
(!)Faulted: If a scope was stopped by a signalled forcedTermination or a fault, it is in
state Faulted.

This state is needed to distinguish between the occurrence of a fault during the fault
handling or during the positive control flow. With the activation of its inner activity
the scope reaches state !Faulted. When a fault or forcedTermination is signalled,
the stop pattern stops the scope and all signalled faults are removed. Then the scope
changes into state Faulted. Afterwards the fault handler is activated. Therefore all
subsequently signalled faults (i.e. all faults that occur, if the state is already in state
Faulted) can only occur while the fault handler is being executed. A scope cannot
leave state Faulted.
(!)Terminated: The process and with it every scope changes into state Terminated, as
soon as the first terminate activity is activated.

As mentioned before, both places are defined globally in the process pattern and
every scope has access to them. If the process pattern is activated, it reaches state
!Terminated. It does not change this state until the first terminate activity is activated.
Being in state Terminate, a process pattern cannot leave this state.

7.2 Scope

As explained before, a scope is a wrapper for an activity, a fault handler, a compensa-
tion handler and optionally an alarm event handler and a message event handler.
Figure 27 depicts the pattern of a scope enclosing all these elements. It is also source
of a link scopeLink and embeds an activity which is source of the links sourceLink1 and
sourceLink2.

The idea of our pattern is as follows: Firstly, the scope activates its inner activity, the
event handlers and sets its state places (t2). After the scope’s inner activity is finished,
the event handlers (t3) and afterwards the scope itself is finished (t4). In addition, the
scope’s name, A, (saved in variable scopeName) is saved in the compensation handler
of the immediately enclosing scope (token on place push A). This is possible, because
starting the process pattern, on all places !push scopeName a token is produced (see
transition t2 in Fig. 28 in Sec. 7.3). More details to the concept of push places can be
found in Sec. 10.1. This behaviour is called positive control flow of the scope. The
stop pattern gets the control of the scope in case a fault occurs. The fault handler is
started by the stop pattern whereas the compensation handler is invoked by activity
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Figure 27: Pattern of BPEL’s scope.
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compensate which is either embedded in the fault handler or in the compensation
handler of the immediately enclosing scope. Furthermore, the scope is influenced by
the immediately enclosing scope as well as by scopes it encloses. Thus, it has an
interface for sending and receiving signals.

Looking at the interface, the places initial, final, stop, stopped, and negLink of Fig. 27
are known. The places ch in, scopeCompensated, and push are joined with the respective
places in the compensation handler. The places upperFH and upperTerminate are joined
with the places fault in and terminate in the stop pattern. As mentioned before, the places
Terminated and !Terminated are defined in the process pattern. The places completed and
compScope as well as upperTerminate and upperFH are joined with the respective places
in the compensation handler and the fault handler. The places push A and !push A

are joined with the respective places in the compensation handler of the immediately
enclosing scope. The variable and the correlation set on the left in Fig. 27 visualize
objects defined in the scope. They are visible in the scope only.

There are two possible interleavings: Either the status of all source links embedded
in the scope is set to negative, i.e. negLink is marked or positive control flows, i.e. initial

is marked.
The pattern’s stop component is established by transitions t7 – t11. Let stop be

marked. If the scope pattern is already stopped, it is in state Ended. Then t10 fires.
Otherwise, the scope pattern is in state Active. The scope is either in state !Terminated
or Terminated. Thus, either t7 is enabled (i.e. the immediately enclosing scope signals
a forcedTermination) or t8 is enabled (i.e. the immediately enclosing scope signals
the activation of an activity terminate). In contrast, place upperFH is marked if a
fault is signalled which has occurred in an enclosed scope. There is a token on place
upperTerminate, if the activation of an activity terminate, occurred in an enclosed scope,
is signalled.

If the stop pattern starts the stop procedure, place p23 is marked and two scenar-
ios are possible depending on whether the innerActivity is still executed (scenario 1) or
not (scenario 2): In scenario 1 the innerActivity is stopped, because of joining the stop
places. After stopping the inner activity, place p24 is marked. Firing t5 stops the event
handlers and afterwards the stop pattern continues its execution (t1). In scenario 2 the
innerActivity is already finished and has signalled a finish to the event handlers (t3).
If place stop is marked, the scope pattern is in state !Active; thus, t4 cannot be enabled
anymore. Then, the scope pattern is stopped by firing t6 and t1.

Let us take a look on how the fault handler is linked to the scope’s structure,
especially how links are set. Place out is marked, if the fault handler has caught a
fault and the processing continues after the scope. With the help of the places trueOut

and falseOut, respectively the status of links, e.g. scopeLink, whose source activity is
the scope, is set to the value of the transition condition (t12) or to negative (t13).
Furthermore, the status of all links whose source activity is enclosed in the scope and
that could not be executed because of a fault have to be set to negative. This happens,
if place sourceFalse is marked in our model. Then the status of all links is checked. We
explain the three possible scenarios by considering sourceLink1 as an example: Firstly,
consider this link not to be set by its source. So !sourceLink1 is marked and the status
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is set to negative by firing t14. Secondly, consider this link to be already set and the
join condition of the respective target activity is evaluated, too. Again, !sourceLink1 is
marked and t14 fires. However, the token on sourceLink1 does not influence the control
flow anymore. In the third scenario there is a token on sourceLink1, i.e. either the link
was set by its source activity or the second scenario was executed in an enclosed scope.
So the link is not set again, but t15 fires to consume the token.

7.3 Process

BPEL’s process is a special case of the scope. In more detail, it is the outmost scope
of the BPEL process. Figure 28 depicts the pattern of a process, which embeds the
similar elements as the scope in Fig. 27.

In fact, both patterns look very similar, but the process pattern is less complex. On
the one hand it has a smaller interface, because the process has no enclosing scope.
On the other hand links whose source activity is embedded in the process and that
could not be executed because of a fault, do not have to be set, because the process
will be stopped.

The interface is a subset of the scope’s interface. On the left there are variables and
correlation sets defined and therefore visible inside the process. Furthermore, all
channels and the clock are defined in the process. There is only one possible scenario,
i.e. initial is marked. Firing t2 initializes all source links as well as state places, the
inner activity, the event handlers, and for each scope embedded in the process its
respective place !push (we consider scope A to be the only scope embedded in the
process, so the !push place is !push A).
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Figure 28: Pattern of BPEL’s process.
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8 Transformation of BPEL’s Event Handler

In this section we present the transformation of BPEL’s event handlers. “The whole
process as well as each scope can be associated with a set of event handlers that are
invoked concurrently if the corresponding event occurs” [CGK+03, p. 80]. BPEL dis-
tinguishes between alarm and message event handlers. Whereas the alarm event
handler defines one or more onAlarm branches and is started when a timeout event
occurs, the message event handler defines at least one onMessage branch and is exe-
cuted when a message arrives. Both kinds of branches are already known from BPEL’s
pick activity (see Sec. 5.5). We present the respective patterns in Sections 8.1 and 8.2,
respectively.

Note, an event handler is no activity. Thus, we have to change the interface by
adding a place finish. If the scope’s inner activity is finished, the event handler receives
the signal finish, asking the event handler to finish the execution of the inner activity
and then to finish itself.

8.1 Alarm Event Handler

Figure 29 depicts the pattern of BPEL’s alarm event handler which has two onAlarm
branches. The general pattern with n branches is as expected. The idea of this pattern
is as follows: When it gets started, the alarm event handler reads a time stamp which
is copied into each branch (t5). Such a branch is modelled as it is in the pick pattern
(see Sec. 5.5). If an alarm is signalled, the respective branch and so its inner activity is
executed. When receiving the signal finish, all branches running are executed until they
have finished and afterwards they are synchronized (t7).

By firing t5 both branches are activated. If an alarm occurs, the respective branch is
chosen, i.e. either t1 or t9 fires. Then, either innerActivity1 or innerActivity2 is executed.
As long as control flows in the scope, running is marked. After the scope’s inner activity
is finished, a token is produced on finish (i.e. transition t3 in Fig. 27 in Sec. 7.2 fires).
During the finish procedure place finishing is marked. The specification demands to delay
this procedure until all active branches have completed. Thus, the token in each branch
is either removed before or after its inner activity is executed. By firing t7 all branches
are synchronized and the event handler is finished. Due to the involved concurrency
there could be a conflict between t3 and t4 (and also in the branch on the right) when
p3 and p5 are marked and the transition guard is evaluated to true.

In order to stop this pattern we need to consider two scenarios: stop is marked either
before or after the finish signal is received. It is impossible to receive stop before finish
(see the process pattern in Fig. 28). Both scenarios can be distinguished by either a token
on place running or finishing. When stop is marked before signal finish is received, the token
on running is consumed by firing the transition normalStop. So t11 could not be activated
anymore. Then each branch is stopped concurrently and at the end all branches are
synchronized (t16). Otherwise, if the finish procedure is running, the token on finishing is
consumed by firing transition stop+finish. Therefore t7 could not be activated anymore.
Afterwards in every branch the finish token has to be removed first. Then the branches
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Figure 29: Pattern of BPEL’s alarm event handler with two branches.

are stopped as in the former scenario. Note, when signals stop and finish are received
concurrently it is possible that place finish is still marked at the end of the stopping
procedure. In other words, for the event handler we cannot guarantee that all tokens
will always be removed after the stopping procedure.

8.2 Message Event Handler

A message event handler defines one or more onMessage branches, where each of them
specifies an attribute initiate. So we have built two patterns. The pattern of BPEL’s
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Figure 30: Pattern of BPEL’s message event handler in case of initiate=“no” that
contains two onMessage branches.

message event handler defining two onMessage branches in case of initiate=“no” is
visualized in Fig. 30. Again, the general pattern with n branches is as expected.

It can easily be seen that the pattern of BPEL’s message event handler is quite
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similar to the alarm event handler in Fig. 29. Firstly, all branches are activated (t6).
Afterwards, if a message is received, the inner activity of the respective branch is ex-
ecuted. When receiving the signal finish, all branches that are still running will be
executed until they have finished and finally they get synchronized (t9). Such an onMes-
sage branch is modelled as in the pattern of BPEL’s pick. But in contrast to the pick, a
branch can receive a message once more after it is executed faultlessly. The interleaving
of the pattern is similar to Fig. 29.

In order to stop the message event handler we need to consider the same two sce-
narios as in the alarm event handler. The realization is similar to Fig. 29 and it is also
possible that place finish is still marked at the end of the stopping procedure.

The equivalent pattern in case of initiate=“yes” is depicted in Fig. 31. Only the
onMessage branches differ from the one in Fig. 30. We add places p29, p30 and transitions
t29 – t34. All other net elements have the same identifier as in Fig. 30.

Let us have a look at the left branch in Fig. 31 in order to explain the differences to
Fig. 30: If the branch receives its first message, the correlation set (obj4) has to be
initialized. Transition t2 fires and a token, an object of type (<MessageType>, ∅), is
produced on place p2. Every further message is received by firing t29. That produces a
token, an object of type (<MessageType>, <PropertyType>), on place p2. In this case,
the correlation set being already initialized only has to be read. Note, transition
guard guard1 must distinguish between receiving the first (scenario 1) and a following
message (scenario 2). This can easily be done by evaluating the objects described above.
In scenario 1 only the first set of the tupel needs to be evaluated, because a standard fault
like correlationViolation (signalling that the <PropertyType> of the correlation
set is not equal to the <PropertyType> defined in the received message) cannot occur,
because the correlation set is just initialized by the message. In contrast in scenario
2, where the correlation set is already initialized, correlationViolation can occur.
Thus, both – the message and the correlation set – have to be evaluated.
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Figure 31: Pattern of BPEL’s message event handler in case of initiate=“yes” that
contains two onMessage branches.
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9 Transformation of BPEL’s Fault Handler

This section shows, how to transform the fault handler, a further component of
BPEL’s scope. Its “sole aim is to undo the partial and unsuccessful work of a scope in
which a fault has occurred” [CGK+03, p.75]. Firstly, the control flow of the correspond-
ing scope has to be finished. Secondly, the fault handler tries to match the fault with
one of its catch activities using the fault’s name or the associated fault data. If the fault
can be matched, it is handled. Otherwise, it is rethrown to the fault handler of the
enclosing scope. In any case a “scope in which a fault occurred is considered to have
ended abnormally, whether or not the fault was caught and handled without rethrow by
a fault handler” [CGK+03, p.77].

In order to finish the control flow of a scope, a stop component is embedded in every
activity’s pattern. Furthermore, every scope contains a so-called stop pattern which
triggers the stopping of the scope by signalling a stop signal to the inner activity of the
scope. After the stopping of the scope the stop pattern signals the fault to the fault
handler. The transformation of the stop pattern is described in Sec. 9.1.

We have to distinguish the implicit and the user defined fault handler. The trans-
formation of both constructs is explained in Sec. 9.2 and 9.3, respectively.

Throughout this section we need to take a look at more than one pattern. We rather
have to take a look at the interplay between a scope, its inner activity and its enclosed
scope. For this purpose it is useful to make the following commitment: The pattern we
have a look at is embedded in a scope B. B itself embeds a scope C called the child
scope of B. Furthermore B is child scope of A or in other words: A is the parent scope
of B.

9.1 The Stop Pattern

After an activity has thrown a fault, the fault handler of the enclosing scope has to
finish the positive control flow inside the scope first. Afterwards it has to handle the
fault. Every fault handler, implicit as well as user defined, behaves this way. We keep
this division and extend every scope by a so-called stop pattern which has no equivalent
construct in BPEL. When the stop pattern receives the fault, it finishes its enclosing
scope and afterwards it signals the fault to the scope’s fault handler. Furthermore
the stop pattern is also used to realize BPEL’s terminate activity, i.e. to stop the entire
process. We start with the transformation of the stop pattern of a scope (Fig. 32 in
Sec. 9.1.1). After this we introduce the stop pattern embedded in a process pattern
(Fig. 33 in Sec. 9.1.2).

9.1.1 The Stop Pattern Embedded in a Scope

Figure 32 depicts the stop pattern of a scope. First of all we have a look at the interface
of Fig. 32 which differs from the former patterns. On top there are four important
places: ft in (marked if A wants B to be stopped), fault in (a fault has occurred in an
enclosing activity of B, i.e. either there is a token on a failed place or C’s fault handler
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Figure 32: Stop pattern embedded in a scope.

rethrows a fault it cannot handle), terminate up (a terminate activity embedded in A is
activated) and terminate (a terminate activity either embedded in C or in B is activated).
The place fault in results from joining the failed places of all activities enclosed by B.
All other interface places on top are state places of B. The places on the right are
used to remove all tokens in B’s compensation handler (cleanCH, ch cleaned) and to
stop the positive control flow of B (stop, stopped). On the bottom there are places to
activate other patterns: ft and ft fault (signalling that A wants to stop B), fault and
faultSave (signalling the occurrence of a fault) and rethrow (signalling the occurrence
of a fault during the execution of B’s fault handler) activate the fault handler
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of B. In contrast, upperTerminate (signals scope A that it has to be terminated) and
upperFH (rethrows a fault to A’s fault handler that could not be handled by B’s fault
handler) activate the parent scope and the parent scope’s fault handler, respectively.
stopped s is the stopped place of B.

Next we explain the most important scenarios of the stop pattern. At first we describe
a special behaviour in BPEL and how this behaviour is modelled in the stop pattern.
In Fig. 32 the subnet consisting of places p6 – p8 and transitions t4, t5 plays a key role.
In this subnet a token on fault in (i.e. a signalled fault) leads to the sending of the stop
signal. In more detail, variable x holds the fault information. If there is more than
one token on fault in, one of them is nondeterministically chosen. Nondeterminism is a
suitable modelling, because it is nearly impossible to realize which of two or more signals
arrive first. As a result of firing t6 and t4, place stop is marked. This leads to a token
on place stopped which means that the control flow of scope B (and therefore its child
scope C as well) is finished successfully. For a proof see [Sta04]. Of course, at this point
no fault can occur, because B is finished. The remaining tokens on place fault in are
removed by firing t5 where X is a tupel holding the fault information of all remaining
faults. In the pattern this is realized by a special arc – a reset arc [DFS98] (the one
between p10 and t5 having a little circle at its source). This arc consumes all tokens of
p10 making no difference if there are 0, 1 or more tokens on this place. In other words,
p10 is emptied.
Scenario1: In scope A a fault is thrown. A’s fault handler has to finish the inner
activity of A and of B as well. To stop its child scope, A signals forcedTermination to
B.
Realization: B is in state !Terminated and Active. Place stop in B is marked; thus, t7
in the scope pattern fires. B changes into state !Active and a token is produced on ft in

in the stop pattern. By firing the transition sequence t1, t4, t5, t2 scope B is stopped
and changes into state Faulted. At the end of this scenario the places ft and ftSave are
marked.
Scenario2: Scope B is executed if one of its embedded activities signals a fault. Alter-
natively a fault, which occurred in scope C, is rethrown to scope B. In both scenarios
scope B has to be finished first. Afterwards the fault handler of B is activated and
tries to handle the fault.
Realization: B is in state Active. If a fault occurs in an inner activity of scope B,
its place failed is marked and therefore place fault in is marked as well. In contrast, if C
rethrows a fault, the respective token is produced on place upperFH in B’s scope joined
with fault in. That means, in both scenarios place fault in is marked. Then the transition
sequence t6, t4, t5, t7 is fired. As a result B is finished. It has changed into state !Active
and Faulted. Furthermore fault and faultSave are marked. If more than one fault occurs,
one fault (i.e. one token) is chosen nondeterministically.
Scenario3: B or C embed an activity terminate that becomes active. That means,
the entire BPEL process has to be finished without calling the fault handler nor the
compensation handler.
Realization: Let B be in state Active. If activity terminate is embedded in C, a
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token is produced on place upperTerminate of B’s scope joined with terminate of B’s
stop pattern. Note, it is possible that either C still stops its inner activity or C’s fault
handler is still executed. If activity terminate is embedded in scope B, a token is
also produced on place terminate, because it is joined with the terminate place of the
terminate pattern. In other words, in both scenarios place terminate is marked. The
implementation of the activity terminate is realized with the stop components. By
firing the transition sequence t10, t4, t5, t11 B changes into state !Active and B stops.
In contrast to the former scenarios, scope B changes into state Ended. Furthermore
upperTerminate is marked, propagating the terminate signal to A.
Scenario4: Analogue to Scenario3. As the only difference, B’s fault handler is acti-
vated.
Realization: Again, place terminate is marked. Scope B is in state !Active, because its
fault handler is activated. t12 fires and a token is produced on upperTerminate that
signals the terminate signal to the parent scope A. Scope B can be “left”, because the
active fault handler has already finished B or it will do so. Therefore the termination
of A can be started.
Scenario5: Analogue to Scenario3, with the terminate activity being embedded in the
parent scope A.
Realization: A has to finish its inner activity and therefore B as well. This is done by
sending the stop signal to B. There is a token on B’s stop place and B is in state Active
(up to now no fault has occurred) and Terminate. Therefore in scope B t8 becomes
active and produces a token on place terminate up in B’s stop pattern. B also changes
into state !Active. Then the transition sequence t8, t4, t5, t9 is fired. Afterwards B is
finished. It has changed into state Ended and there is a token on place stopped s which
is joined with B’s stopped place signalling A that B was finished.
Scenario6: Analogue to Scenario5. As the only difference B’s fault handler is acti-
vated.
Realization: B is in state !Active, because its fault handler is still executed. Fur-
thermore B’s stop place is marked, but no transition of its post-set is enabled. Thus,
the propagation of the stop signal has to wait as long as the fault handler is running.
If the fault handler can handle the fault, the control flow will go on immediately after
scope B. However, the control flow can be stopped by the token on stop. In contrast, if
the fault handler cannot handle the fault (i.e. the fault is rethrown to A), B is in state
Ended. Then, t10 in scope B is enabled and by firing this transition, place stopped is
marked signalling that B was finished.
Scenario7: Let scope B contain a user defined fault handler. Let f1 be a fault causing
B to finish. f1 is handled by B’s fault handler. During the execution of this fault
handler another fault, f2, is signalled which cannot be handled by the fault handler
itself (because its inner activity which throws f2 has no enclosing scope). Thus, B’s
fault handler is finished and f2 is rethrown to A.
Realization: Fault f1 initiates Scenario2. Afterwards B is in state Faulted and !Ended
and B’s fault handler is still active. If f2 occurs, a token is produced on fault in. At
the end of Scenario2 all faults are removed. Thus, f2 is the only token on fault in. If more
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than one fault has occurred by handling fault f1, the respective number of tokens is on
fault in. Transition t3 is fired and as a result, a token is produced on place rethrow. B
is still in state Faulted. Therefore for every fault being thrown by executing the fault
handler a token is produced on rethrow.
Scenario8: Let scope B contain a user defined compensation handler whose inner
activity is executed. A fault occurs within the compensation handler. This fault
cannot be caught by the compensation handler of B, because the activity throwing
the fault is not enclosed by a scope. Thus, the fault is rethrown to the fault handler
of A.
Realization: Starting the execution of B’s compensation handler, B changes into
state Compensated. If a fault occurs, a token is on place failed (in the respective activity
inside the compensation handler). This place is also joined with fault in in the stop
pattern of B. Thus, fault in is marked. As already mentioned in Scenario2, more than
one token on place fault in is possible, too. t14 is enabled and variable x holds the
information of the fault which is nondeterministically chosen. Firing t15 and t16, B
changes into state Ended and the tokens in B’s compensation handler are removed
(token on place cleanCH). Finally, the fault is rethrown to the parent scope’s fault
handler (place upperFH). All other faults (i.e. tokens on place fault in) are removed by
firing t14 and t13. Thus, at the end the stop pattern is cleared.

9.1.2 The Stop Pattern Embedded in a Process

Now we take a look at the stop pattern embedded in the process pattern (see Fig. 28
in Sec. 7.3). It is depicted in Fig. 33. Comparing this Figure with Fig. 32 only a few
differences can be established:

Both patterns have the same interfaces except places ft in and terminate up which are
missing in Fig. 33, because a process has no parent scope. Furthermore, Fig. 33 has a
new place final, the final place of the process pattern.

Let us have a look at the possible scenarios of Fig. 33 with respect to changes compared
to Fig. 32. We keep the same numbering of the scenarios as in Sec. 9.1.1 for Fig. 32.
Scenarios not listed in the following do not differ to the respective scenario presented in
Sec. 9.1.1. In the following B is the process.
Scenario1: It cannot occur, because a process has no parent scope.
Scenario3: For description see Scenario3 in Sec. 9.1.1.
Realization: We continue our explanation where place terminate is marked. By firing
the transition sequence t6, t2, t3, t7 the control flow of B is finished. At the end there is
a token on final, because the whole process is finished.
Scenario4: For description see Scenario4 in Sec. 9.1.1.
Realization: Place terminate is marked and B’s fault handler is active. After the
execution of the fault handler the process is finished. Thus the terminate signal
is not needed. So the token on terminate is removed by firing t8. In this scenario the
process can deadlock (see Scenario4 in Sec. 9.2.1). In our opinion, this is a bug in
BPEL and it is not caused by our Petri net model.
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Figure 33: Stop pattern embedded in a process.

Scenario5 & 6: Both scenarios cannot occur, because a process has no parent scope.
Scenario7: See Scenario7 in Sec. 9.1.1. B is the process, i.e. fault f2 cannot be
rethrown (because there is no parent scope). The process is finished instead.
Realization: For description see Scenario7 in Sec. 9.1.1.
Scenario8: BPEL allows the compensation of an executed process instance when the at-
tribute enableInstanceCompensation is set to “yes”. Let the compensation handler
of process B be active. Let further during the execution of the compensation handler
a fault occur that cannot be handled. This fault cannot be rethrown, because B is the
process. Furthermore, the fault handler of B cannot be activated, too. Therefore B
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is finished faulty.
Realization: For description see Scenario7 in Sec. 9.1.1. If t12 is fired, the fault is not
rethrown to the fault handler of the parent scope. A token is produced on place final,
i.e. the process is finished.

9.2 Implicit Fault Handler

Let B be a scope that embeds an implicit fault handler. Before the fault handler
can be activated, scope B has to be finished. Then the fault handler works as follows
(see [CGK+03, p.78]): Firstly, it runs all available compensation handlers for imme-
diately enclosed scopes in the reverse order of completion of the corresponding scopes.
More detailed, activity <compensate/> is executed. Secondly, the fault is rethrown to
the parent scope. If the fault was executed faultlessly, all outgoing links, for which
scope B functions as a source, have to be set to true. Otherwise, these links have to
be set to false. Furthermore, all outgoing links whose source activity is embedded in
scope B and that are not executed anymore because of the fault have to be set to false,
too7.

To finish the scope in the model, the stop pattern is used. Therefore the fault
handler’s work is reduced to three tasks: Firstly, the child scopes are compensated,
whereby the fault handler only initiates the compensation process with the help of
the activity <compensate/>. Secondly, the fault is rethrown. Thirdly, the links are set.
As the implicit fault handler has the same behaviour as the fault handler for the
standard fault forcedTermination, both patterns are merged to one pattern illustrated
in Fig. 34 in Sec. 9.2.1. The special case, the implicit fault handler embedded in the
process pattern, is shown in Fig. 35 in Sec. 9.2.2.

9.2.1 Implicit Fault Handler Embedded in a Scope

In this section we present the implicit fault handler embedded in a scope. The pattern
is depicted in Fig. 34.

Let us have a look at the interface of Fig. 34. Places ft, fault, ftSave, faultSave, and
rethrow are the same as the ones depicted in the interface on the bottom of the stop
pattern (see Fig. 32). Whereas ft and fault are marked in order to activate activity
<compensate/>, places faultSave and rethrow hold the information of the fault. In contrast,
place ftSave only holds black tokens. The places ft and faultSave are marked, if the fault
forcedTermination shall be handled. The places fault and faultSave activate the implicit
fault handler. If a fault is thrown during the execution of the fault handler, place
rethrow is marked. Ended and !Ended are (already known) state places of the scope. On
the right, the places ch fh and ch out are used to invoke B’s compensation handler and
receive the signal that the compensation handler has finished. Both places are joined
with fh and ch out in the compensation handler pattern (see Fig. 42 in Sec. 10.3). The

7In our model all outgoing links are set to false. That means, those links whose source activity is not
executed anymore as well as those links whose source activity was already executed. This modelling
decision is described in Sec. 7.2
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Figure 34: Pattern of the implicit fault handler embedded in a scope pattern.

places on the bottom have to forward the results of the fault handling: Place upperFH

is the same place as the one with the same name in the pattern of the parent scope.
Place stopped is the stopped place of scope B. A token on place trueOut (falseOut) sets all
links to true (false) whose source activity is scope B. A token on place sourceFalse sets
all links to false whose source activity is embedded in scope B. The exact realization
of these three places was explained in Sec. 7.2.

We will explain the most important scenarios of the implicit fault handler as we
have done it for the two stop patterns in Sec. 9.1. Again, we describe a special behaviour
in BPEL and how this behaviour is modelled in Fig. 34.
Scenario1: This scenario completes Scenario2 described in Sec. 9.1.1. After B is
finished, the implicit fault handler is activated and invokes all the compensation
handlers of the child scopes (here C) in the reverse order of completion of the corre-
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sponding scopes. Then the fault is rethrown to scope A.
Realization: After the completion of Scenario2 in the stop pattern (see Sec. 9.1.1)
the places fault and faultSave are marked. Thus, <compensate/> is activated. If this ac-
tivity is executed, B’s compensation handler is invoked (token on place ch fh). The
compensation handler of B itself invokes C’s compensation handler. After the com-
pensation is finished faultlessly, a token is produced on place ch out. Reasons for this
unusual order of invocations are presented in Sec. 10.1. After the execution of activity
<compensate/>, place p2 is marked. By firing t1, scope B changes into state Ended. The
fault handler was executed faultlessly, thus links whose source activity is scope B
are set to true (token on trueOut) and all other outgoing links whose source activity is
embedded in scope B are set to false (token on sourceFalse). Furthermore the fault is
rethrown to scope A (token on place upperFH).
Scenario2: Analogue to Scenario1, but during the execution of C’s compensation
handler a fault f occurs that is rethrown to scope B. Consequently, B’s fault handler
is finished and f is rethrown to scope A.
Realization: Fault f is rethrown to the stop pattern of B. Scope B behaves as described
in Scenario7 in Sec. 9.1.1. As a result, place rethrow is marked and we continue at this
point. Apart from place rethrow there is also a token on place faultSave (caused by the first
fault). Activity <compensate/> is deadlocked, because it is still waiting for the answer of
B’s compensation handler which cannot be send anymore. By firing t3 and t4 activity
<compensate/> and the fault handler are finished. Furthermore, B changes into state
Ended. Variables x and y hold the information of the first fault and fault f. The latter
is rethrown to A. The execution of the fault handler failed, so all links whose source
activity is B are set to false (token on place falseOut) as well as the ones whose source
activity is embedded in B.

If more than one fault occurs during the execution of B’s fault handler, there can be
more than one token on place rethrow. Only one fault that is chosen nondeterministically,
is rethrown to A. All others are removed by firing t6 after B is in state Ended.
Scenario3: A’s fault handler has to finish B. Thus, it signals the standard fault,
forcedTermination. The control flow of B is finshed and B’s fault handler invokes
all the compensation handlers of the child scopes (here C) in the reverse order of
completion of the corresponding scopes. Then the finishing of scope B is signalled to
A.
Realization: The way how B is finished is described in Scenario1 in Sec. 9.1.1. As a
result, ft and faultSave are marked. At this point we continue. Activity <compensate/>

is activated and can be executed as described above in Scenario1. Transition t2 fires
setting the links as in Scenario1. But instead of rethrowing a fault to A, place stopped is
marked.
Scenario4: Analogue to Scenario3, but during the execution of C’s compensation
handler a fault f occurs that is rethrown to B. In B the forcedTermination fault
handler is active. So the fault can neither be handled by B (because the fault handler
of B is already activated) nor can it be rethrown to A (because of the forcedTermination
sent by A). Consequently, B and so the whole process runs into a deadlock.
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Realization: Fault f leads to a token on place rethrow (Scenario7 in Sec. 9.1.1) and
place ftSave is marked, too. Activity <compensate/> is still waiting for a signal of B’s
compensation handler that will never be signalled because of the fault. By firing
t5, the fault token is removed. Now neither the deadlock situation in which activity
<compensate/> ran into is abolished nor the fault is rethrown to A. Consequently, the
model is in a deadlock.

9.2.2 Implicit Fault Handler Embedded in the Process

Now we present the implicit fault handler embedded in a process pattern. This pat-
tern is illustrated in Fig. 35. In fact, there are only few differences between this pattern
and Fig. 34 described in Sec. 9.2.1. Thus, we want to restrict ourself to explain these
differences. The fault handler embedded in a process has to compensate its child
scopes, but there is no parent scope the fault can be rethrown to. Instead of rethrowing
the fault, the process is finished. The fault handler also does not have to react to
the standard fault forcedTermination, because it cannot occur for the same reason.
Furthermore, no outgoing links have to be set, because on the one hand the process
cannot be source of a link and on the other hand links whose source activity is embed-
ded in the process do not have to be set to false, because the whole process is finished.

Looking at the interface of Fig. 35, all places are already known except for the place
final which functions as the final place of the process pattern. Instead of rethrowing the
fault, the process is finished after the execution of its fault handler. Thus, a token
is produced on place final.

Let us now explain the possible scenarios of the implicit fault handler embedded in
a process. We will only list the differences to Fig. 34. We keep the same numbering as
in the last section.
Scenario1: See Scenario1 in Sec. 9.2.1. But instead of rethrowing the fault, the process
is finished.
Realization: The places fault and faultSave are marked. Activity <compensate/> is
executed. Then t1 fires and place final is marked. Thus, the process is finished.
Scenario2: See Scenario2 in Sec. 9.2.1. But instead of rethrowing the fault, the process
is finished.
Realization: The places rethrow and faultSave are marked. By firing t2 and t3 activity
<compensate/> is stopped and place final is marked. Thus, the process is finished.
Scenario3 & 4: Both scenarios cannot occur, because a process has no parent scope.

9.3 User Defined Fault Handler

In this section we present the transformation of BPEL’s user defined fault handler
which contains a finite number of catch branches and an optional catchAll branch. Every
catch branch has an inner activity which is executed when the respective branch is
chosen. The fault information of a signalled fault is compared to every catch branch.
If there is a matching, i.e. the catch branch is able to handle the fault, the respective
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Figure 35: Pattern of the implicit fault handler embedded in a process pattern.

branch is chosen and its inner activity is executed. Otherwise, catchAll is executed. In
case no catchAll branch is defined and none of the catch branches is chosen, the user
defined fault handler behaves like the implicit fault handler: It runs all available
compensation handlers for the immediately enclosed scopes in the reverse order of
completion of the corresponding scopes. Afterwards the fault is rethrown to the parent
scope. The user defined fault handler also embeds a special branch that catches
the fault forcedTermination. This branch is equal to the one in the implicit fault
handler.

The pattern of the user defined fault handler embedded in a scope is illustrated in
Fig. 36 in Sec. 9.3.1. The corresponding pattern embedded in the process is presented
in Fig. 37 in Sec. 9.3.2.
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9.3.1 User Defined Fault Handler Embedded in a Scope

Figure 36 depicts the general pattern of a user defined fault handler embedded in a
scope. It consists of n − 1 catch branches and a catchAll branch. Furthermore, there
is a branch that catches the standard fault forcedTermination. This branch is only
embedded if no catchAll is defined. For reasons of simplicity, it is illustrated in the
pattern, too. A branch is chosen, if one of the transition guards {catch1}, {catchAll},
etc. holds. The evaluation depends firstly on the fault name and the fault information
which is stored in variable x and secondly on the information of the branch saved in the
respective transition guard.

The interface of Fig. 36 on top and on the right is equal to the interface of the pattern
of the implicit fault handler (see Fig. 34 in Sec. 9.2.1). Only on the bottom there is
a new place – out. If a catch branch is executed faultlessly, the scope is finished. The
control flow, however, goes on as if the scope was executed faultlessly. This is realized by
a token on out, because this place and the scope’s final place are identical. Comparing
this pattern with the pattern of the implicit fault handler, both patterns only differ
in the catch branches.

Again, we consider the possible scenarios that can happen in BPEL and how this
behaviour is modelled in the pattern.
Scenario1: The control flow of A has to be finished. Therefore B has to be finished, too.
That means, the fault forcedTermination is signalled to B. This scenario is analogue
to Scenario3 and Scenario4 described in Sec. 9.2.1.
Scenario2: Either a fault occurs during the execution of B or C rethrows a fault to B.
The fault matches a catch branch. So the inner activity of this branch (e.g. innerActivity1)
is executed faultlessly. After the execution of this activity the fault handler and scope
B are finished and the control flow continues as if B was executed faultlessly.
Realization: We continue where Scenario1 in Sec. 9.1.1 ends. There, the places fault

and faultSave are marked. Variable x holds the fault information saved in the token on
place faultSave. This data is used to evaluate the transition guards. Let guard {catch1}
hold. Thus, t1 fires and innerActivity1 is executed. After its execution, place p2 is marked
and t2 fires. All links whose source activity is B are set to true (token on place trueOut)
and all other links whose source activity is embedded in B are set to false (token on
place sourceFalse). Furthermore, B is finished positively (token on place out).
Scenario3: Analogue to Scenario2, but as the only difference a fault f occurs during
the execution of innerActivity1. So B’s fault handler and B itself are finished and
furthermore f is rethrown to A.
Realization: If fault f occurs during the execution of innerActivity1, there is a token
on place faultSave. B’s stop pattern behaves as described in Scenario7 in Sec. 9.1.1. As
a result, place rethrow is marked. Variables x and y hold the fault information of the
first fault and fault f. By firing t7 and t8 innerActivity1 is stopped, i.e. all tokens inside
the pattern are removed. Furthermore scope B changes into state Ended. All links
(it makes no difference whether their source activity is the scope or whether they are
embedded) are set to false (the places falseOut and sourceFalse are marked), and fault f is
rethrown to A (token on place upperFH).
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Figure 36: Pattern of the user defined fault handler with n−1 catch branches embed-
ded in a scope.
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If more than one fault occurred during the execution of innerActivity1, then there is
more than one token on place rethrow. Variable y holds the fault information of a fault
that is chosen nondeterministically. By firing t8, Ended is marked and so the remaining
tokens (i.e. the remaining faults) can be removed one after another by firing t9.
Scenario4: Either a fault occurs during the execution of scope B or scope C rethrows
a fault to B. In contrast to Scenario2, the fault does not match any catch branch and no
catchAll branch is defined (in contrast to Fig. 36) as well. The fault handler behaves
like the implicit fault handler described in Sec. 9.2.1.
Realization: As in Scenario2, the places fault and faultSave are marked. Variable x

contains the fault information and the transition guard {rethrowComp} holds. t5 fires and
the remaining realization is analogue to Scenario1 described in Sec. 9.2.1. In case a fault
occurs during the execution of the fault handler, it is analogue to Scenario2 described
in Sec. 9.2.1.

9.3.2 User Defined Fault Handler Embedded in a Process

In the following we have a look at the user defined fault handler embedded in a
process pattern. This pattern is depicted in Fig. 37. Again, this pattern has only a
few differences to the one shown in Fig. 36. We will bring out these differences. They
are caused by the fact that a process has no parent scope and thus, it cannot rethrow
any fault. Instead of rethrowing the fault, the process is finished. The fault handler
also does not have to react to the standard fault forcedTermination, because it cannot
occur for the same reason. Furthermore, no outgoing links have to be set, because on
the one hand the process cannot be source of a link and on the other hand links
whose source activity is embedded in the process do not have to be set to false, because
the whole process is finished.

The interface is the same as in Fig. 36. So we only restrict ourself in bringing out the
differences to the scenarios described in Sec. 9.3.1. We keep the same numbering of the
scenarios.
Scenario1: This scenario cannot occur, because the process has no parent scope.
Scenario2: See Scenario2 in Sec. 9.3.1. B is the process. Thus, the control flow cannot
be continued. The process is finished.
Realization: The same as described in Sec. 9.3.1. As the only difference, by firing t2 a
token is produced on place final, i.e. the process is finished.
Scenario3: See Scenario3 in Sec. 9.3.1. B is the process. Thus, the control flow cannot
be continued. The process is finished.
Realization: The same as described in Sec. 9.3.1. As the only difference, by firing t8 a
token is produced on place final, i.e. the process is finished.
Scenario4: See Scenario4 in Sec. 9.3.1. B is the process. Thus, the control flow cannot
be continued. The process is finished.
Realization: The same as described in Sec. 9.3.1. As the only difference by firing t6 a
token is produced on place final, i.e. the process is finished.
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Figure 37: Pattern of the user defined fault handler with (n - 1) catch branches embedded
in the process.
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10 Transformation of BPEL’s Compensation Handler

In this section we transform the compensation handler. In case a fault occurs, it is
used to reverse some effects caused by the execution of the scope’s inner activities.

In general, the “compensation handler can be invoked by using the compensate activ-
ity, which names the scope for which the compensation is to be performed, that is, the
scope whose compensation handler is to be invoked. A compensation handler for a scope
is available for invocation only when the scope completes normally” [CGK+03, p.74], i.e.
faultlessly. “Invoking a compensation handler that has not been installed is equivalent
to the empty activity” [CGK+03, p.74]. Furthermore a compensation handler is never
invoked for a scope in which a fault occurred.

In order to invoke a compensation handler the elementary activity compensate is
needed. Section 10.2 explains the transformation of this activity.

As in the fault handler, BPEL distinguishes between implicit and user defined
compensation handler. The implicit compensation handler runs all available com-
pensation handlers for immediately enclosed scopes in the reverse order of completion
of the corresponding scopes. In contrast, the user defined compensation handler is a
wrapper for an activity that is executed, if the handler is activated. We transform both
components in Sections 10.3 and 10.4.

First of all, we will explain the idea of the transformation. We will clarify the interplay
of the patterns and introduce some design decisions.

For purposes of simplification we make the following commitment: The respective
pattern introduced is enclosed by a scope B. As in Sec. 9, B is the child scope of A and
the parent scope of C.

10.1 The Idea of Transformation

Before we go into detail and explain the patterns we will first of all introduce the
idea of transformation. A compensation handler is invoked by using the activity
compensate which is either embedded in the parent scope’s compensation handler
or fault handler. On the one hand the compensate can invoke a compensation
handler explicitly. On the other hand activity compensate can invoke the compensation
handlers of all child scopes in the reverse order of their execution. In the latter case,
the activity compensate needs to know in which order the child scopes were executed.

In [Sta04] we suggested to embed a stack into every compensation handler. Every
stack stores the names of all child scopes of its enclosing scope that are executed fault-
lessly. If scope B finishes its execution, it puts a token into the compensation handler’s
stack of its parent scope. This token is an object that consists of the scope’s name, B.
If two scopes finish at nearly the same time, the two tokens would be ordered nonde-
terministically inside the stack. Finally, executing the implicit compensation handler
means, to clear the stack element by element. As every token in the stack saves the
name of a scope to be compensated, every child scope’s compensation handler that
should be invoked can be identified. This model has one disadvantage: it drastically
increases the state space. To avoid this, we now suggest another approach.
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Instead of using a stack, a compensation handler contains just two complementary
places push scopeName and !push scopeName for each child scope. That means, if scope
B is finished, it produces in addition to the token on place final a token on push B
and it consumes the token on !pushed B (see transition t4 in Fig. 27 in Sec. 7.2). If
the compensation handler of B’s parent scope is activated, it invokes all child scopes
that are executed faultlessly, i.e. such scopes that have produced a token on their
respective push scopeName place inside the compensation handler. The order in which
the compensation handler invokes the compensation handlers of the child scopes is
chosen nondeterministically. This is a reasonable modelling, because every possible order
can be chosen and in a concurrent system it is very difficult to decide which one of two
signals arrives first.

To embed the information about which child scope can be compensated and which
one not inside the compensation handler causes the following problem: If activity
compensate is embedded in a compensation handler, it has access to the places
push scopeName. Otherwise, if activity compensate is embedded in a fault handler, it
has no access to the respective places. In order to solve this problem, activity compensate
first invokes the compensation handler of the enclosing scope. That way it gets access
to the scope names to be invoked. Looking at the BPEL specification, this invocation
is not allowed. So, if a fault handler is activated, the compensation handler cannot
be activated anymore. But in our model it is only a modelling decision to use these
special structures to invoke the compensation handler of the child scopes. In order
to show that our semantic preserves the properties of BPEL, we proved in [Sta04] that
this invocation does not influence the compensation handler. We will not repeat this
proof in this document, so the interested reader is referred to [Sta04]. Note, this proof is
done for a compensation handler that embeds a stack, but the structure of the subnet
that contains either the stack or the push places is the same. We must further ensure
that the scope remains in the correct state. If a compensation handler is invoked by
an activity compensate, the scope changes into state Compensated. Otherwise, if the
compensation handler is only invoked in order to get access to the push scopeName
places, the scope does not change into state Compensated.

10.2 Activity Compensate

Next we present the transformation of BPEL’s compensate. The BPEL specification
distinguishes between explicit invocation of the compensation handler in child scope
C (i.e. <compensate scope=“C”>) and the sequential invocation of all child scopes
(i.e. <compensate/>). Furthermore, the activity compensate is either embedded in a
compensation handler or in a fault handler. So there are 4 different components.
Every component is transformed in a pattern presented in Sections 10.2.1 – 10.2.4.

10.2.1 <compensate/> Embedded in the Compensation Handler

<compensate/> is embedded in B’s compensation handler and should sequentially
invoke the compensation handler of all child scopes. The pattern’s idea is to activate
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the subnet. This subnet then invokes all child scopes and waits for the signal that the
last child scope has been compensated. The pattern is visualized in Fig. 38.
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initial

comp

p2

p3

p4

p1

t2

t3

t4

t5

p5

p6

p7

compensate

t1

Figure 38: <compensate/> pattern embedded in a compensation handler.

The interface is depicted by places initial, final, stop, stopped, comp, and done. The first
four places are already known from the other activity patterns. To understand the other
two places, it is helpful to have a look at Fig. 43 in Sec. 10.4.1. The inner activity of
this compensation handler pattern is the pattern depicted in Fig. 38. Places comp and
done are the same as places p11 and p12 in Fig. 43. Furthermore, place comp and the
place of the same name in the compensation handler in Fig. 43 are identical, too.

If place initial is marked and t1 fires, the subnet for invoking the child scopes is activated
(token on place comp). After the compensation of all child scopes a token on place done

is produced and t2 fires.
As expected, transitions t3 – t5 establish the pattern’s stop component. Place stop is

marked by the compensation handler (see Sec. 10.3).

10.2.2 <compensate/> Embedded in the Fault Handler

Figure 39 presents the pattern of activity <compensate/> embedded in a fault hand-
ler. This pattern invokes the compensation handler of the enclosing scope in order
to get access to all names of child scopes that should be compensated. If no fault
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occurs during the compensation, activity <compensate/> receives the signal that all
child scopes are compensated. This results in a token on place ch out.

stopped
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final

running

stop

initial

ch_fh

p2

p3

p4

p1

t2

t3

t4

t5

p5

p6

p7

compensate

t1

Figure 39: <compensate/> pattern embedded in the fault handler.

Comparing this pattern with the pattern in Fig. 38, both patterns only differ in two
labels: Places p5 and p6 are labelled with ch fh and ch out, because they are identical to
places fh and ch out in the compensation handler (depicted in Fig. 42 in Sec. 10.3).
Actually, the interface and the structure of both patterns are the same. For more details
see Sec. 10.2.1.

10.2.3 <compensate scope=“C”> Embedded in the Compensation Handler

Figure 40 presents the pattern of activity <compensate scope=“C”> embedded in an
inner activity of B’s user defined compensation handler (see Fig. 44 in Sec. 10.4.2). The
model directly invokes C’s compensation handler by producing a token, an object that
consists of the scope’s name (here C) on place compScope. The compensation handlers
of B’s child scopes compare that token with the names of their enclosing scopes. So
we can guarantee that such an invocation is always unique. After C is compensated, its
compensation handler signals its execution to the compensate pattern.

Comparing this pattern with the pattern in Fig. 38 in Sec. 10.2.1, both patterns only
differ in two labels. Place p5 is labelled with compScope and place p6 is labelled with
scopeCompensated. Place compScope and place p19 in the user defined compensation
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Figure 40: <compensate scope=“C”> pattern embedded in the compensation
handler

handler (see Fig. 44 in Sec. 10.4.2) are identical. Furthermore place scopeCompensated

and place p12 in the user defined compensation handler are identical, too.
Let us take a look at Fig. 40. By firing t1 variable scope saves “C”, the name of

the child scope to be compensated. C’s compensation handler identifies this signal
and therefore it is executed. After scope C is compensated, its compensation handler
produces a token, an object that consists of the scope’s name C, on place compensated.
Place compensated in C’s compensation handler and place scopeCompensated in Fig. 40
are identical. Variable scopeName holds C and variable scope holds the name of the child
scope to be compensated (here C). Thus, the boolean expression holds and t2 is enabled
and can fire.

With the help of the transition guard of t2, we achieve that the compensate pattern
is only finished, if the token of the invoked scope is received. Otherwise, two activi-
ties <compensate scope=“C1”> and <compensate scope=“C2”> can not be executed
concurrently.

10.2.4 <compensate scope=“C”> Embedded in the Fault Handler

In this section we transform activity <compensate scope=“C”> embedded in the user
defined fault handler (see Sec. 9.3). The pattern is presented in Fig. 41.

This pattern only differs from Fig. 40 in Sec. 10.2.3 in two labels ch in and compensated.
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Figure 41: <compensate scope=“C”> pattern embedded in the fault handler.

Each of the two places is the same as the respective place of the same name in C’s
compensation handler. Everything else is identically.

10.3 Implicit Compensation Handler

Next we show the transformation of BPEL’s implicit compensation handler. The pat-
tern is presented in Fig. 42. We start with an outline of the idea. After the compensation
handler is invoked, it first tests the state of its enclosed scope. If the scope has not
been completed faultlessly, the compensation handler is finished. If the scope has al-
ready been compensated, a fault is thrown. Otherwise, if the scope has been completed
faultlessly and if it has not been compensated, the handler is executed. For all child
scopes that have been completed faultlessly, the compensation handler is invoked. The
order of invocation is chosen nondeterministically. After all child scopes have been com-
pensated, the compensation handler is finished. This is signalled to the pattern that
has invoked the compensation handler in the first place.

Now let us have a look at the interface. On top of the frame the places ch in, fh,
scopeCompensated, and p20 – p23 are important – the other places are state places (see
Sec. 7.1). Usually, the compensation handler is invoked by a token on place ch in. Only
when the fault handler of the enclosed scope embeds the activity <compensate/>
(and so needs to know all child scopes that have already been executed) a token is
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Figure 42: Pattern of the implicit compensation handler.

placed on place fh. Place scopeCompensated is marked when a child scope signals its
successful compensation. For each child scope (here C and D) there exist two places:
push scopeName and !push scopeName. For example, there is a token on push C, if
scope C is completed faultlessly. Otherwise, !push C is marked. If there is neither a
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token on push C nor on !push C, scope C has been compensated. On the right of the
frame, the places clean and cleaned are analogue to the places stop and stopped. They
are used to remove the tokens in the pattern, if a fault occurs during the execution of the
compensation handler. A token on place failed signals a fault. This place is the same
as place fault in in the stop pattern of the enclosed scope. The places on the bottom
are used either to invoke the compensation handler of a child scope (compScope – the
same place as ch in in the child scope) or to signal that the compensation handler is
finished. So, if the compensation handler is invoked by a token on place ch in (fh) a
token is produced on place compensated (ch out).

Before we explain the possible scenarios, we have a more detailed look at the invocation
of the child scopes. This is done with help of transitions t13 and t14. If the child scopes
should be compensated, place p11 is marked. For example, to invoke the child scope
C (i.e. firing t13) means to invoke the compensation handler of C (token on place
compScope) first and then to save the information that the scope has been invoked
(token on place !push C). Place compScope and places ch in in all child scopes are joined.
So we have to ensure that the signal to invoke scope C is assigned to C. For that purpose,
the token and so the variable s holds the name of the scope, i.e. C. Now, let us have
a look at what happens in the child scope C. It is sufficient to explain this behaviour
by means of Fig. 42. If place compScope is marked, place ch in in C’s compensation
handler is marked, too (because both places are identical). Looking at the post-set of
place ch in, it can be seen that every transition can only fire when its guard (scope=s)
holds. Here the variable scope holds the name of the enclosed scope, i.e. C and s holds
the name of the scope to be compensated. If C is compensated, a token holding its
name is produced on place compensated which is the same as place scopeCompensated in
the compensation handler of the parent scope. Now we can go back to the parent
scope of C. Place scopeCompensated is marked. The token is an object that contains the
name of the compensated child scope, i.e. C. So variable compScopeName holds the value
“C”. Depending on if the compensation handler was invoked by a token on ch in or fh,
either t10 or t9 fires and the next child scope, i.e. D can be invoked until all child scopes
are compensated.

There are five possibilities to invoke B’s compensation handler:

1. Scope A encloses a user defined compensation handler H. H’s inner activity
embeds activity <compensate/>.

2. Scope A encloses a user defined compensation handler H. H’s inner activity
embeds activity <compensate scope=“B”>.

3. Scope A encloses an implicit compensation handler.

4. Scope A encloses a user defined fault handler F. F’s catch branch embeds ac-
tivity <compensate scope=“B”>.

5. Scope B encloses a user defined fault handler F. F’s catch branch embeds
activity <compensate/> which uses the compensation handler to invoke the
compensation handlers of all child scopes.
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For each of the five possibilities we will now present a scenario in BPEL and its realization
in our pattern.
Scenario1: Looking at the first possibility, three cases have to be distinguished: If B is
completed faultlessly the compensation handlers of B’s child scopes have to be invoked
in the reverse order of completion of the corresponding scopes (1a). Otherwise, activity
empty is executed (1b). When B has already been compensated, BPEL’s standard fault
repeatedCompensation is thrown (1c).
Realization1a: Place ch in is marked and evaluating the transition guard scope=s guar-
antees that only the compensation handler of one child scope can be activated at the
same time (see the above for an explanation). As we assumed above, B is completed and
it has not been compensated; thus it is in states !Compensated and Completed. The
transition guard holds and t3 fires (in our case both variables, s and scope, hold the scope
name B). Now, the compensation handler is activated and therefore B changes into
state Compensated. The compensation handlers of both scopes, C and D, are invoked
by firing t13 and t14 in any order (for detailed description see above). Afterwards t7 is
enabled, variable scopeName holds the name of scope B and the compensation handler
is finished by firing t7. This is signalled to scope A by a token on compensated. This
token is an object that consists of the the name of scope B. That place compensated and
the place of the same name in A’s activity <compensate/> are identical.
Realization1b: The Scenario1b has not been taken into account, because A’s activity
<compensate/> takes the name of the scope to be compensated from the respective
push place. This place is only marked, if the scope is completed faultlessly.
Realization1c: This scenario only happens, if the corresponding BPEL process is de-
signed incorrectly. The designer has to ensure that every scope is compensated only
once. After the first compensation, scope B is in state Completed and Compensated. If
the handler is invoked again, t1 fires and a fault is thrown. With it variable fault holds
the name of the fault – repeatedCompensation. Furthermore the occurrence of this
fault results in a token on p1.
Scenario2: This scenario is analogue to Scenario1.
Realization2b: B’s compensation handler is invoked directly, i.e. the name of B is
not taken from place push B in A’s compensation handler. Therefore it is possible
that B is not completed, i.e. it is in state !Completed and !Compensated. So t2 fires.
In our model we do not execute activity empty. Instead, variable scopeName holds the
name of the scope B which is produced on place compensated.
Szenario3: This scenario is analogue to Scenario1.
Szenario4: This scenario is analogue to Scenario1.
Scenario5: B’s fault handler invokes all child scopes in the reverse order of comple-
tion of the corresponding scopes. In the compensation handler of the corresponding
scopes we have to distinguish the same cases as described in Scenario1.
Realization5: In order to get access of the child scopes that are to be compensated,
activity <compensate/> invokes B’s compensation handler. This results in a token on
place fh. After firing t5, the push places can be accessed. The compensation handlers
of the child scopes are invoked as described in Scenario1. There are only two differences:
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t9 fires (instead of t10) if a child scope signals its compensation. Furthermore, when all
child scopes are compensated, t8 is fired (instead of t7) placing a token on place ch out.
Place ch out and the place of the same name in the <compensate/> activity inside B’s
fault handler are identical.

Similar to the stop component in the patterns of the activities, the pattern of BPEL’s
implicit compensation handler embeds a subnet to remove the tokens. These places
are clean and cleaned. They are not labelled by stop and stopped, because there are
scenarios where it is not possible to remove all tokens (see Sec. 10.4.2 for more details).
The control flow, however, can be finished in any case. This can be ensured by removing
the tokens on places fh call and ch call, respectively. If these tokens are removed, neither
t7, t8, t13 nor t14 can be activated anymore.

10.4 User Defined Compensation Handler

Looking at the user defined compensation handler we have to distinguish three differ-
ent kinds of handlers: the compensation handler that embeds activity <compensate/>
(Sec. 10.4.1), the compensation handler that embeds at least one activity <compensate
scope=“name”> (Sec. 10.4.2), and the compensation handler that embeds any activity
except activity compensate (Sec. 10.4.3). The BPEL specification does not allow to em-
bed both kinds of activity compensate, because <compensate/> invokes all child scopes
and therefore activity <compensate scope=“name”> would invoke one child scope twice.

10.4.1 User Defined Compensation Handler Embeds <compensate/>

Figure 43 depicts the pattern of the user defined compensation handler that embeds
activity <compensate/>. For purposes of simplification, compensate is the only inner
activity of the handler and it is not embedded in another activity. For the reader it
is only important to see how the handler and activity compensate are connected. The
interface and most of the pattern’s structure is the same as in the pattern of the implicit
compensation handler in Fig. 42. If t4 fires, a token is produced on the initial place
of activity compensate instead of place comp. To bring out the differences to Fig. 42,
we take a look at the possible scenarios of Fig. 43. We distinguish the same scenarios as
described in Sec. 10.3. Only Scenario1 differs.
Scenario1a: Scope B is completed when its compensation handler is invoked. So
the handler activates its inner activity – <compensate/>. This activity runs all available
compensation handlers for the immediately enclosed scopes in the reverse order of
completion of the corresponding scopes. The effect is the same as described in Sce-
nario1a in Sec. 10.3.
Realization1a: Place ch in is marked and firing t4 starts the handler. The token on
place ch call identifies the handler to be invoked via the place ch in. Next, activity
<compensate/> is executed. Places p11 and comp are identical. So the pattern reaches
the same marking (ch call and comp) as in Fig. 42. Therefore the invocation of the
child scope’s compensation handlers is analogue to the one depicted for the implicit
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Figure 43: Pattern of the compensation handler with <compensate/>.

compensation handler in Fig. 42. If all child scopes were invoked, t7 can be fired and it
produces a token on place p12. The token on place ch call is read only and is not removed
until the inner activity is completely executed. By firing t5 the name of the enclosing
scope (here B) is saved in variable scopeName. The value of this variable is produced on

74



place compensated.
In addition to the concept of removing the tokens by use of clean/cleaned presented

in Fig. 42, we have to remove the tokens of the inner activity, too. Hence, firing t11

produces a token on place p10, the inner activity’s stop place. The inner activity’s stop
procedure is started and results in a token on the stopped place of the inner activity
which is the same place as cleaned.

10.4.2 User Defined Compensation Handler Embeds
<compensate scope=“C”>

The pattern in Fig. 44 presents the user defined compensation handler that embeds the
compensate activity <compensate scope=“C”>. For simplification, we decided to that
compensate be the only activity. The interface and the main structure of the pattern are
already known from the former section. There are only two differences to Fig. 43: Firstly,
if the places ch call and scopeCompensated are marked, i.e. child scope C signals that it
is compensated successfully, there is no token produced on place comp. Secondly, places
scopeCompensated and compScope, respectively and its corresponding places in activity
<compensate scope=“C”> are identical. These changes are caused by the fact that activity
<compensate scope=“C”> needs no access to the places p20 – p23. But these four places
can be used by B’s fault handler, if it embeds activity <compensate/>.

The scenarios are the same as described in Sec. 10.4.1. Only Realization1a of Scenario1
differs.
Realization1a: After t4 has fired, the token on place ch call identifies the handler to
be invoked via the place ch in. Next, activity <compensate scope=“C”> is executed. If
there is a token on p19, C’s compensation handler is invoked directly. Furthermore,
the response of C is signalled directly to activity <compensate scope=“C”> (via place p12).

In the following we draw a scenario where it is not always possible to remove all
tokens in the pattern. Consider activities <compensate scope=“C”> and <compensate
scope=“D”> embedded in a flow, invoking the compensation handlers of scopes C
and D concurrently. Furthermore, let the compensation handler of C throw a fault
that is rethrown to B’s fault handler while D’s compensation handler is still running.
Via the stop pattern of scope B a token is produced on place clean in B’s compensation
handler. As a result, both compensate activities are stopped, but D’s compensation
handler is still running. When D’s compensation handler is completed, a token is
produced on scopeCompensated in B’s compensation handler. This token cannot be
removed anymore. In fact, we could extend our compensation handler pattern to
avoid this scenario, but in the current version it is not.

10.4.3 User Defined Compensation Handler Embeds no Compensate

If the compensation handler only embeds an activity that is no compensate, we only
need a simple modification of the implicit compensation handler pattern presented in
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Figure 44: Pattern of the compensation handler with <compensate scope=“C”>.

Fig. 42 in Sec. 10.3. The resulting pattern is depicted in Fig. 45. In contrast to the
pattern of the implicit compensation handler, the post-set of t4 only contains the
initial place of the inner activity. So the place ch call and its post-set (t7, t10, t11) are
not needed in the pattern. To remove the tokens of the <innerActivity> in the case of
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a fault, the places clean and stop and cleaned, and stopped are identical. Looking at the
possible scenarios only Scenario1a differs:
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Figure 45: Pattern of the compensation handler without activity compensate.

Scenario1a: Scope B is completed when its compensation handler is invoked. So the
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handler activates its inner activity which is executed. Afterwards the handler is finished.
Realization1a: Firing t4 activates the inner activity. After it is executed, the name
of the enclosing scope (here B), stored in variable scopeName, is produced on place
compensated.
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11 Conclusions

In the last sections, we presented our approach of a formal semantics for BPEL based
on Petri nets. Now, we want to summarize the properties of the Petri net patterns
and classify the net type (Section 11.1). Afterwards, in Section 11.2, we give a short
summary of our results and all modelling decisions we have made. The section closes
with a preview of further work.

11.1 Classification of the Patterns

Let P be a BPEL process transformed into a Petri net N. N is an algebraic high-level
Petri net, because in our patterns we model data: variables, correlation sets, the
clock, and fault information. We distinguish three different arc types in N : standard
arcs, read arcs and reset arcs. Because of the reset arcs N is of type Reset Net. A reset
arc is a very expressive construct. Thus, in a Reset Net less properties are decidable
than in a net without such arcs [DFS98]. In the following, we will show how read arcs
as well as reset arcs can be unfolded into a semantically equivalent low-level construct.

In our firing rule only one transition can fire at once. Therefore, a read arc is a short
notation for a loop.

The reset arc is used in the stop pattern to remove all tokens from place fault in.
In the following, we draft the idea how such an arc can be modelled as a high-level
construct which can be, in turn, unfolded into a low-level construct: It is possible to
safely over-approximate the maximal number k of tokens, i.e. the number of faults that
can be produced on place fault in. This is the number of activities of the enclosing
scope that can throw a fault. Every scope encloses only a finite number of activities.
Consequently k is bounded. So place fault in is a high-level place that is k-bounded, i.e.
the number of tokens on fault in is never greater than k. Then, unfolding the reset arc
means to replace fault in by k+1 places (0 tokens are possible, too). Furthermore, every
transition of the pre-set or post-set of fault in has to be replaced by k + 1 transitions.
It can be seen easily that a reset arc causes an increase of the net size. The value of
k can be narrowed, for instance, in the case of a sequence. Unaffected by the number
of its inner activities only one fault can be thrown, because after this fault is thrown
the control flow within the sequence is blocked. Calculating the best possible k of place
fault in is ongoing research.

To drive the conclusion, N can be unfolded into a high-level Petri net, more detailed
an algebraic high-level Petri net that only contains standard arcs and data.

11.2 Results

In this paper, we presented a feature-complete Petri net semantics for BPEL. Our Petri
net semantics consists of patterns: For each BPEL construct a pattern exists. The
semantics has the following properties:

• Only one instance of a BPEL process can be transformed into a Petri net.
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• The semantics abstracts from the connection of a BPEL process to its partner
processes. The interface of a BPEL process is transformed into a set of message
channels, i.e. places in the Petri net.

• In our Petri net patterns we model data, but we abstract from the definition of
the functions which edit the data. Furthermore, we did not specify the transition
guards and so we did not specify which circumstances are necessary that a specific
fault can occur.

• Every activity is limited to one correlation set (except the synchronous invoke
which is limited to two correlation sets).

To translate specific concepts of BPEL into our Petri net semantics we made the following
design decisions:

• In order to stop the positive control flow, e.g. when a fault occurs or an activity
terminate becomes active, we extended every activity’s pattern by a stop compo-
nent. Such a stop component can remove the tokens of the respective pattern. We
furthermore extended the scope pattern by a so-called stop pattern which has no
equivalent construct in BPEL. If a scope needs to be stopped, the stop pattern
controls this procedure. In [Sta04] we proved that every scope and thus every
process can be stopped using stop components.

• Modelling the compensation handler we met another problem: An implicit com-
pensation handler has to invoke all compensation handlers of its child scopes
in the reverse order of their execution. Thus, it was necessary to save all executed
scopes. For that purpose, we made the following design decision: If a scope B
is executed faultlessly, a token is produced on place push B in the compensation
handler of B’s parent scope A. If the compensation handler of A is activated,
it invokes the compensation handler of all child scopes which have already been
executed, i.e. their respective push scopeName place is marked. The order of invo-
cation is chosen nondeterministically, because nondeterminism covers all possible
orders.

In addition, we also detected a deadlock scenario in BPEL (see Section 9.2 for details).

11.3 Further Work

We have presented a translation from BPEL to Petri nets. This translation follows a
feature-complete Petri net semantics. Thus, we can transform every BPEL process into
a Petri net. Obviously, it is very laborious and takes too much time to generate the Petri
net of a BPEL process manually. Therefore tool support was necessary to transform a
BPEL process automatically into a Petri net.

Our tool, the parser BPEL2PN [Hin05], takes an BPEL process as an input. This
process is transformed into a Petri net according to the Petri net semantics. The output
of the tool is a Petri net in the data format of our model checker LoLA [Sch00]. In the
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current version BPEL2PN is limited to low-level Petri nets. That means, we decided
to abstract from data, i.e. messages and data are modelled as black tokens, because we
directed our attention to the control flow. Consequently all other high-level constructs
like transition guards and variables were left out, too. So selecting one of two control
pathes in the Petri net semantics, solved by the evaluation of data, is modelled by a
nondeterministic choice, e.g. t2 or t3 in Figure 1.

At the moment our tool LoLA can analyze Petri nets where the respective BPEL
process consists of 50 and more activities. Such a process embeds nested scopes. By
the use of LoLA we are able to verify every temporal property of a transformed BPEL
process. First results are presented in [SS04].

The models generated by the present version of our parser can be seen as brute force
models. The generated models are significantly larger than typical manually generated
models. This is due to the fact that the Petri net patterns are complete, i.e. applicable
in every context. For a particular process, many of the modelled features are unused.
For instance, if a basic activity cannot throw any error, many of the error handling
mechanisms in the surrounding compound activity can be left out.

In ongoing projects, we aim at an improved translation where several Petri net patterns
with different degree of abstraction are available for each BPEL activity. Using static
analysis on the BPEL code, we want to select the most abstract pattern applicable in
a given context. We believe that model sizes can be drastically removed. This way we
can alleviate the state explosion problem inherent to model checking.

Our goal is a technology chain that, starting at a BPEL process, performs static
analysis. Based on the analyzed information, the translator selects the most abstract
pattern for each activity that is feasible in the analyzed context and synthesizes a Petri
net model. On the Petri net model, a model checker evaluates relevant properties. The
analysis results (e.g., counter example paths) are translated back to the BPEL source
code.
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