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Abstract 

Discretisation of for instance steady state eddy current equa- 
tions may lead to a linear system Ax = 6 in which the complex 
matrix A is not Hermitian, but may be chosen symmetric. In 
the positive definite Hermitian caw, an iterative algorithm for 
solving this system can be dehed. The residual vectors can 
be made mutually orthogonal by means of a two-term recur- 
sion relation which leads to the well-known Conjugate Gradi- 
ents method. 
For the non-Hermitian symmetric case orthogonality cannot be 
achieved in this simple way. In this paper another two-term 
recursion for the residuals is considered and although the gen- 
erated residuals are not orthogonal, this algorithm leads to an 
iterative method which ia very similar to the CG-method. 

Introduct ion 

One of the reasons for treating linear steady state AC eddy current 
problems separately from the more general transient case stems from 
the fact that in this special situation an elegant time-separation can 
be performed using complex arithmetic. One of the disadvantages 
of this approach however is that the linear system generated by the 
space discretization is also complex. 
For Hermitian (AT = A) positive definite systems a straight-forward 
extension of the Conjugate Gradients algorithm can be given, but for 
most problems this class is too restrictive. In this paper we will con- 
centrate on another class of complex systems which are symmetric 
(AT = A). This situation may occur in three dimensional AC linear 
eddy current problems where conducting and non-conducting regions 
coexist. Examples are the Carmen formulation (21 which uses a mod- 
ified vector potential (with an axial gauge in the time direction) in 
eddy current regions coupled to  a magnetic scalar potential in air and 
the RS formulation 111. In both casea the system can be made eym- 
metric [2] by a careful use of interface conditions, but not complex 
symmetric. Unfortunately the conjugate gradients method cannot be 
used straightforwardly. Experience shows however that if the complex 
inner product in the CC algorithm is replaced by its real counterpart 
the method, a useful algorithm is obtained. We will show that this 
method is actually a projection type method and an analysis of the 
applicability will be given. 

- The Conjhgate Orthogonal Conjugate Gradien t  method 

The well-known projection type methods, such as the Conjugate Gra- 
dients method [3],[5], the Conjugate GradienteSquared method [6] 
and GMRES [4] are based on forming Ln (orthogonal) basis for the so- 
called Krylov subspace. The j-dimensional Krylov subspace Kj(A; so) 
for a linear system Az = b with non-singular A is defined as the 

span of the vectors vo, Avo, .,. . , for a given initial residual 
vo = ro = b - Azo. 
For a Hermitian matrix (A = AH = AT) such an orthogonal basis can 
be constructed using a three term recursion relation for the residual 
vectors, thus forming the basis for the Conjugate Gradients method. 
However this attractive property is lost when A- is only symmetric 
(A = AT), but not Hermitian. We will show that it is still possible in 
this case to construct a useful basis for KJ(A; ro) by means of a three 
term recurrence relation. 
The key in our approach is the replacement of the Hermitian orthog- 
onality between the residual vectors by a conjugate orthogonality re- 
lation: 

(tjj,vk) = 0, if j #  k. (1) 

Here ( e ,  -) denotes the standard Hermitian inner product for complex 
vectors: 

(2, Y) = ZjVj 
i 

Note that (%,Ay) = (ATit,y) = ( x ,~ )  = (9,Az).  Now let the se- 
quence {U,} be generated as follows: 

1. uo is the starting vector: ~0 = ro = A z o  - b ; U-1 = 0 ; 0 0  = 0 

2. V j + l  = Avj + ajvj  + @juj-1 for j 2 1, where aj ,Pj  follow from 

Then, obviously, the vectors {VO, . . . , vj} form a basis for Kj+l(A; ro). 
For 0 5 k 5 j - 2 it follows that 

(Oj+l,vj) = 0 and (tjj+i,vj-i) = 0 respectively. 

(@j+l, vk) = (@k,AVj + Q j U j  + PjUj-1) = (@k, AUj) = ( @ j , h k )  = 

= (@j, vk+1 - akvk - pkvk-1) = 0. 
h the other cases are obvious by construction, we have now shown 
that the vectors uj are conjugate orthogonal. . 
The relations for the v j  can be written in matrix notation as 

AV,. = V,.Tj + vj+leT, with 

-a0 -B1 

-a1 -P2 1;1 1 1 ;: :I: -Bj 1 
Vj is the matrix which has vo, . . . , v i  as its columns and e, is the j- th 
complex basis vector in @+'. 
The basis vo, . . . , uj can be used to  construct a solution z , + ~  of the lin- 
ear system in Kj+'(A; ro) which is chosen such that rj+l = Azj+l -  b 
is conjugate orthogonal to Kj+l(A; ro) . Then automatically rj+l = 
AZ.j+l - b E KJ+2(A;ro), because, since Azo - b E K' A;ro) c 
Kj+'(A; ro), it follows that Azj+l-b = A(zj+l-zo)+ro E Kjt3(A; ro) 
and by requiring that Azj+l-  b is conjugate orthogonal to Kj+l(A; ro) 
we have that rj+l = Azj+l - b = rj+lvj+l for some scalar 7j+l .  (It 
is evident that vj+l = 0 implies that we have reached the solution.) 
It can be seen that as long as YTQTj is nonsingular there is a unique 
yj+l in Ci+l such that 

-aj 
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Number of Complex*8 
Problem equations COCG BiCG 

Sphere 184 10 10 
Videohead 1414 >1414 >1414 

Coil on plate 3724 109 129 
MRI 6768 44 115 

Crankshaft 10415 178 192 

~ j + l v j + l +  b = A ~ j + l  = AV. ~ Y J + I  ’ = VjTjYj+l+ v j + l e r y j + l  (2) The above process has already been used successfully, e.g., in the eddy 
current code Carmen [2]. This, in fact, has motivated the formulation 

now. 
Combined with the requirement that “i+l is conjugate orthogonal to and the analysis of our method, which was not fully understood 
vo, . . . , v j  this leads to 

Complex*16 
COCG CGS 

10 5 
224 372 
64 63 
44 30 
123 89 1 

(3) 

Note that VTVj is a diagonal matrix with ( U k - 1 , w k - l )  as its k-th 
diagonal element. Since (U,, U,) may be zero for v j  # 0, one cannot be 
assured that VyVj is non-singular. We suggest to restart the process 
when a vector vj is encountered for which (Uj ,  v j ) / ( v j ,  w j )  is too small, 
or to switch to some other (but more expensive) iteration process, such 
as, e.g., GMRES [4]. 
Assuming then that V:Vj is non-singular, yj+l may be solved from 

(4) 

Note that, when starting with zo = 0, the latter relation reduces to 

TjYj+l = e l ,  

where e l  is the first unit vector in Cj+‘.  Either one of these systems 
can be solved by standard Gauss elimination (with partial pivoting!) 
or the QR method (Givens rotations). Pivoting may be necessary 
since Tj is not necessarily similar to a positive definite matrix as in 
the case when A is Hermitian. Once y , + l  has been determined, zj+l 

can be computed as xl+l = Vjyj+l. When Tj is nonsingular then y j + l  

is unique. 
Equation (3) for y j + l  is equivalent with the relation 

VT(Azj+l  - b)  = 0,  

which expresses the fact that A z , + l -  b is orthogonal to 00,  V i , .  . . , V I .  
This is a special case of Petrov-Galerkin conditions for xI+ l .  In the 
standard conjugate gradients procedure, for Hermitian A,  these condi- 
tions are replaced by the Ritz-Galerkin conditions VjH(Azj+l - b )  = 0 
(for different vectors v3 of course). If vk=O for some k the method 
finds the exact solution after k steps (provided that VzVk is nonsin- 
gular). 
If we assume that no partial pivoting for T is required, it is easily 
seen that the new iteration process is equivalent with the conjugate 
gradients procedure in which the (complex Hermitian) inner product 
has been replaced by the bilinear form 

For this reason we have named this process the Conjugate Orthogo- 
nal Conjugate Gradients method (COCG). For the solution of Az  = b 
with a preconditioner K ,  it reads, in its simplest form (with the above 
assumptions), like: 

zo given; vo = b - Azo; 
p-1 = 0; p-1 = 0; 
WO = K-’ vo 
eo = (vo, WO) 

For j = 0 , 1 , 2 , .  . . 
P j  = wj + P i - I P ~ - 1  
U ,  = Apj 
p j  = ( t i j , p j ) ;  if pi = 0 then quit (failure) 

= e j l p i  
Z j + l  = xj + a j p j  

v3+1= v j  - a  3 3  U ‘  

if z j + l  is accurate enough then quit (convergence) 
uiI+1 = K-’vj+l 

e j + l  = (“+I, w j + l ) ;  if le j+l l  small then quit (failure) 
Pj = ej+i /e j  

next j 

(ul and wj can be stored in the same vector.) 

A number of problems remains to be solved. We have assumed that 
T can be decomposed without any pivoting. However it is doubtful 
whether this is the case for all problems of interest in which A is only 
symmetric, but not Hermitian. In case of failure (p ,  w 0), we suggest 
to form T explicitly and to check the decomposition process for T 
carefully (switching to partial pivoting or QR when necessary). Ad- 
mittedly, this has the disadvantage that all the vectors v j  have to be 
stored in order to construct the solution. The storage requirements 
might be limited by restarting the iteration after a fixed number of 
steps. 
Of course, the above formulated conjugate orthogonal conjugate gra- 
dients procedure can be combined with usual precondition techniques 
as long as the preconditioner K can be written in the form K = LL’, 
with L a lower triangular matrix, such that the preconditioned matrix 
L - ’ A L - ~  is still symmetric. 
We have observed that in relevant situations the COCG process has 
a convergence behaviour which is similar to the biconjugate gradients 
method. Since COCG requires only about half the amount of work 
per iteration as BiCG, this implies that COCG takes about half the 
CPU time required for BiCG. 
Other competitors of the new method could be GMRES 14) or CGS 
161. In GMRES an orthogonal basis for the Krylov subspace is gen- 
erated implicitly, so that GMRES may be expected to show better 
convergence results. However, since the orthogonalization process in 
GMRES becomes increasingly expensive, for growing iteration count, 
and since the amount of computer storage for GMRES also grows 
linearly, it is often advantageous to use COCG (and to switch to GM- 
RES in case of failure). In our experience CGS gave no advantage 
over COCG. 

Numerical  examples 

We will illustrate our method by comparing it with BiCG and CGS 
for some eddy current examples. The next tabIe shows the number of 
iterations for the three methods, both in sicgle and double precision 
complex arithmetic. An incomplete Choleski decomposition was used 
as a preconditioner. 

Table 1: Number of iterations for different problems, methods 

The problems used for testing were: “Sphere” : a simple conducting 
sphere in a homogeneous magnetic AC field. “Videohead” is a section 
of a rectangular videohead including the gap, showing large aspect 
ratio. “Coil on plate” is a copper plate with a slightly tilted coil 
just above it. “MRI” is a thin aluminum shield around a compli- 
cated system of coils. “Crankshaft” is a rather complicated conduct- 
ing crankshaft in a magnetic field. 
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Figure 1: Relative residuals for example Video” 

Figure 1 shows the behaviour of the residuals during the iteration 
processes for the videohead example. Problems of this type are no- 
torious for their difficulty, caused by large aspect ratios and strong 
couplings on the metal-air interface. As can be seen from figure 1, the 
use of double precision complex arithmetic is to be advised strongly 
for this kind of problems. The reason for this is a severe loss of or- 
thogonality during the process (which has been seen to occur after 3-4 
iterations already) in the single precision case. For most examples the 
COCG method takes about the same number of iterations as the BiCG 
method, which is twice as expensive. It is only in very favourable in- 
stances that the number of CGS iterations is about half the number 
of COCG iterations (a CGS iteration is also twice as expensive as a 
COCG iteration), but most of the times it is not competitive. 
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