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In this letter, we demonstrate a two step casting process to fabricate a bifunctional hydrogel-based
microlens array, which responds to both temperature �becomes opaque above certain temperature�
and pH �changes its focal length at different pH levels�, and can be operated in air for an extended
period of time. Each lens in the array is 1 mm in diameter and its focal length changes from 4.5 to
55 mm when the environmental pH is varied between 2.0 and 5.0. The light-switching capability is
measured to be �92% when temperature increases from 25 to 35 °C. © 2009 American Institute of
Physics. �DOI: 10.1063/1.3089689�

Tunable microlenses have attracted considerable atten-
tion for their potential applications in consumer electronics
�e.g., cell phones� and microsystem platforms.1 The majority
of the ones demonstrated to date are based on electrical ac-
tuation of surface tension between two different liquid me-
dia, although there have also been reports on pneumatically
and hydraulically actuated ones.2–9 One can also fabricate
arrays of tunable microlenses for applications in imaging,
optical data interconnects, and biomimetics �insect eye�.10–13

More recently, several groups have used environmentally
sensitive hydrogels to modulate the focal length. This has
been accomplished by either varying the curvature of a
liquid-liquid interface14 or encapsulating temperature-
sensitive hydrogel in an artificial shell �polystyrene or thin
silicone membrane� and providing an external physical ac-
tuation source.15,16 The hydrogel-based tunable microlens
presented so far often requires complicated packaging meth-
ods in order to seal the liquid and provide actuation inlets. In
addition, such arrays are chemically unifunctional, i.e., focal
length variability is accomplished through physical methods.
In this paper, we demonstrate a simple two step casting pro-
cess to fabricate a bifunctional hydrogel-based microlens ar-
ray that responds to both temperature �becomes opaque
above certain temperature� and pH �changes its focal length
at different pH levels� and can operate in air for an extended
period of time.

Figure 1 shows a schematic illustration of the
bifunctional hydrogel microlens array. It consists of a glass
base with hemispherical array of etched cavities and a
bilayer of thermosensitive �poly�N-isopropylacrylamide
�poly�NIPAM��� and pH-sensitive �poly�methacrylic acid-co-
acrylamide �poly�mAA-co-AAm��� hydrogel. In this hydro-
gel bilayer, poly�NIPAM� is the light-switching layer, which
turns opaque and reduces light transmission once its tem-
perature is raised above 32 °C, while poly�mAA-co-AAm�
is the tunable layer and has a volume response with environ-
mental pH, thus changing the microlens surface curvature
and focal length. Figure 2 shows schematic of the fabrication
process. It starts with a glass wafer �500 �m thickness�
coated with a uniform layer of 1 �m thick parylene C �Fig.

2�a��. Subsequently, the parylene layer is patterned using
oxygen plasma �50 SCCM O2, 100 W, 100 mTorr� �SCCM
denotes cubic centimeter per minute at STP� and glass wafer
is etched down to 100 �m in 10:1 �vol/vol� HF/HCl solution
�Figs. 2�b� and 2�c��. In order to fix the hydrogel boundary in
etched cavities, glass is treated with an adhesion promoter
�-methacryloxypropyl trimethoxysilane ��-MPS� : acetone
=1:10 �vol /vol� for 1 h. pH-sensitive hydrogel �poly�mAA-
co-AAm�� is then loaded in the cavities by tight clamping
�Fig. 2�d��. After waiting 4 h for complete polymerization, a
layer of 50 �m thick poly�NIPAM� temperature-sensitive
hydrogel �volume transition temperature of 32 °C� is cast on
the top �Fig. 2�e��. Due to the isotropic nature of swelling
process, once the bilayer is immersed in phosphate buffered
saline solution, the hydrogel in the concaved-etched areas
swell more, creating a biconvex lens structure �Fig. 2�f��.

As mentioned above, when environment temperature is
above 32 °C, poly�NIPAM� layer shrinks and becomes
opaque, hence blocking the light transmission through the
array. Figure 3 shows light transmission through the array at
25 and 35 °C. The photographs show a qualitative view with
the letters underneath the microlens array being clear at
25 °C and unreadable at 35 °C. In order to quantify the
opacity, a 635 nm and 3.63 mW laser diode was set up as the
incident light source, and transmitted light through the mi-
crolens array was collected by a photodetector �Thorlabs
Inc., DET110�. The top panel in Fig. 3 shows the photode-
tector outputs at two above mentioned temperatures. At room
temperature �25 °C�, the photodetector output was 2.45 V,
which was almost similar to the value obtained by shining
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FIG. 1. �Color online� Schematic illustration of the bilayer hydrogel micro-
lens array.
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light directly onto the detector. At 35 °C, when the micro-
lens array became opaque, the output was reduced to 0.18 V
��92% reduction�. We also increased the poly�NIPAM�
layer thickness to 100 �m and measured the opacity. In that
case the detected signal dropped further to 0.043 V ��98%
reduction�.

The focal length of the microlens can be calculated by
knowing the lens geometry and refractive indices using17

f =
na

�nL − na�
�D/2�2 + h2

2h
, �1�

where D is the aperture of the microlens, h is the protruded
thickness of the hydrogel, na is the refractive index of sur-
rounding medium �air, in our case�, and nL is the refractive
index of the lens material. Based on the structure of our
microlens, nL should be approximated to the average of the
refractive indices of glass �1.4–1.5� and hydrogel ��1.33�.

Poly�mAA-co-AAm� is a well known pH-sensitive hy-
drogel, which has the free-swelling properties shown in Fig.
4�a�, with the micrographs showing increase in the diameter
of a cylindrical hydrogel rod at different pH values �150 �m
in dry state, 470 �m at pH=4, 618 �m at pH=6, and
638 �m at pH=9�. The curve summarizes the hydrogel free-
swelling behavior showing a sharp volume transition be-
tween pH of 3.0 and 6.0 �Fig. 4�b��. The variable focal
length corresponding to various pH values was measured
using the setup shown in Fig. 4�c�. A low power laser beam
with spot size of 2 mm was used as the incident light source.
Using a micromanipulator, the focal length was measured by
moving the focal plane and identifying the smallest and
brightest spot under microscope. The focal length has a sharp
transition �4.5–55 mm� when pH is between 2.0 and 5.0
while showing almost no variations when pH is above 7.0
�Fig. 4�d��. This is expected since, as shown before, the vol-
ume transition occurs between pH of 3.0 and 6.0. Figure 4�d�
also shows the theoretical curve closely matching the mea-
sured results �curve was obtained by inserting experimental

FIG. 2. �Color online� Hydrogel microlens fabrication process.

FIG. 3. �Color online� Testing the transparency of the hydrogel microlens
array at different temperatures �a� at 25 °C and �b� at 35 °C. Scale bar,
3 mm.

FIG. 4. �Color online� �a� Micrographs of a cylindrical pH sensitive hydro-
gel at different pH levels. �b� Free-swelling diameter of pH sensitive hydro-
gel vs pH. �c� Focal length measurement setup. �d� Measured focal length vs
pH values and comparison with theoretical calculations.

FIG. 5. �Color online� Micrographs of microlens array in different pH en-
vironments. Insets show close-up tilted images.
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values into Eq. �1��. Figure 5 shows the micrograph images
of microlens array under different pH conditions. The corre-
sponding insets show close-up tilted views, clearly showing
the curvature variations in the protruded hydrogel lens cor-
responding to pH values.

A sever limitation of hydrogel lenses is the requirement
for continuous operation in a liquid environment. This is due
to the fast evaporation of water from hydrogel matrix in air
environment. Addition of glycerol to the hydrogel can delay
the water evaporation while still preserving its chemical sen-
sitivity. This allows the microlens array to be used in dry
environment for several hours. Figure 6�a� shows the dry out
test results for hydrogel samples without glycerol �left� and
with 20% �vol� glycerol �right� at room temperature. The
sample without glycerol shows a noticeable shrinkage after
10 min and starts wrinkling after 40 min, whereas the sample
with glycerol shows a much slower evaporation rate and can
still be used after 2 h. Figure 6�b� shows the top and side
views of the above mentioned samples after 120 min where

surface wrinkles can be easily seen on the sample without
glycerol.

In conclusion, we reported on the fabrication and mea-
surement results of a bifunctional hydrogel microlens array
having both pH-tunability and temperature-activated light
switchability. The structure was fabricated through a double
casting process onto hemispherically etched glass cavities.
Addition of 20% glycerol preserved the hydrogel microlens
structural and functional integrity for up to 2 h expanding the
applications of such lenses beyond what has been reported so
far. Applications in analytical microsystems and hydrogel
physical characterization platforms �e.g., determination of
elastic constants of bilayer microstructures through simple
optical measurements� are envisioned.
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FIG. 6. �Color online� Dry out experiment comparing the hydrogel with
�right� and without �left� glycerol at room temperature. Dye has been added
to provide contrast. Scale bar, 2 mm.

081111-3 Z. Ding and B. Ziaie Appl. Phys. Lett. 94, 081111 �2009�

Downloaded 30 Aug 2010 to 128.210.124.244. Redistribution subject to AIP license or copyright; see http://apl.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1109/MSPEC.2004.1363638
http://dx.doi.org/10.1146/annurev.fluid.36.050802.122052
http://dx.doi.org/10.1063/1.1536033
http://dx.doi.org/10.1063/1.1779954
http://dx.doi.org/10.1109/JMEMS.2007.913229
http://dx.doi.org/10.1364/OE.16.008084
http://dx.doi.org/10.1063/1.1573337
http://dx.doi.org/10.1063/1.1573337
http://dx.doi.org/10.1088/0960-1317/14/5/003
http://dx.doi.org/10.1088/0960-1317/14/12/010
http://dx.doi.org/10.1088/0960-1317/14/12/010
http://dx.doi.org/10.1088/0960-1317/16/8/030
http://dx.doi.org/10.1016/S1369-7021(04)00678-9
http://dx.doi.org/10.1038/nature05024
http://dx.doi.org/10.1063/1.2354435
http://dx.doi.org/10.1063/1.2354435
http://dx.doi.org/10.1063/1.2944265

	Purdue University
	Purdue e-Pubs
	January 2009

	A pH-tunable hydrogel microlens array with temperature-actuated light-switching capability
	Ding Zhenwen
	B. Ziaie


