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Abstract A phantom node method with mixed mode
cohesive law is proposed for the simulation of splitting
in laminates. With this method, a discontinuity in the
displacement field can be modeled at arbitrary loca-
tions. The micromechanical phenomenon that splitting
cracks grow parallel to the fiber, is incorporated on the
mesolevel, i.e., in the homogenized ply, by setting the
direction of the crack propagation equal to the fiber
direction. A new mixed mode cohesive law is intro-
duced for increased robustness of the incremental-iter-
ative solution procedure. The model is validated with
mixed mode bending tests, and its utility is illustrated
with examples for a single ply and for a laminate.

Keywords Composite laminates · Progressive
failure · Splitting · Phantom node method · Mixed
mode · Cohesive zone model

1 Introduction

Failure in composite laminates may involve different
processes such as fiber fracture, splitting, distributed
matrix cracking, delamination and fiber kinking. More-
over, it has been observed in experiments that the type
of failure that is observed in simple tests depends on the
specimen size (Hallett and Wisnom 2006a; Green et al.
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2007; Wisnom et al. 2008). This makes prediction of
strength and toughness of a laminate with a particular
geometry and layup a demanding job. There is a need
for numerical models for each of the relevant processes,
which, when combined, allow for reliable analysis of
progressive failure in laminates.

Numerical analysis of laminates is often endeavored
at mesolevel, which means that every ply is modeled
as a homogeneous continuum, with orthotropic mate-
rial properties related to the directions of the fibers in
the ply. Delamination, i.e., failure between the plies,
can then be modeled with interface elements (e.g.,
Turon et al. 2006; Yang and Cox 2005). For failure
inside the ply, numerous formulations have been pro-
posed for stress based failure criteria, ranging from
classical criteria by Tsai and Wu (1971) and Hashin
(1980) to more recent ones by Puck and Schürmann
(1998, 2002) and Dávila et al. (2005). These strength
criteria can be used in progressive failure analysis, when
they are extended with material degradation laws. For
this purpose, several continuum damage models have
been developed (e.g., Lapczyk and Hurtado 2007; Lau-
rin et al. 2007; Maimí et al. 2007; Matzenmiller et al.
1995; Pinho et al. 2006). However, it can be doubted
whether the continuum models are suitable to capture
the particular phenomenon of splitting correctly (van
der Meer and Sluys 2009). The reason for this is illus-
trated in Fig. 1. In the real material, failure will be con-
centrated in the weaker matrix domain, while homog-
enized continuum material models do not offer this
domain separation.
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Fig. 1 Crack propagation in an homogeneous orthotropic
medium and in a fiber-matrix material

Therefore, a discontinuous approach to modeling
failure is to be preferred for the representation of split-
ting. When a split is modeled as a discontinuity, it is
possible to fix the direction of propagation. Thus, the
micromechanical phenomenon that ply cracks tend to
propagate in fiber direction can be incorporated at mes-
olevel. One way to implement this is to model the split
with interface elements (see Wisnom and Chang 2000;
Yang and Cox 2005; Hallett and Wisnom 2006b; Ji-
ang et al. 2007). In that case, however, cracks may only
appear between elements, which may complicate mesh
generation. Moreover, the location of cracks must be
specified in advance, which limits the predictive capa-
bility of the model, except when interface elements are
placed throughout the specimen, which would aggra-
vate the meshing difficulties and lead to a significant
increase in the number of nodes.

With the phantom node method, it is possible to
model discontinuities at an arbitrary location in the
mesh. Following the work by Hansbo and Hansbo
(2004), Mergheim et al. (2005) and Song et al. (2006),
a crack is introduced by addition of an extra element
on top of an existing element. It has been shown (Song
et al. 2006), that this method is equivalent to the
extended finite element method (XFEM) in which a
discontinuity in the displacement field is introduced by
enrichment of the shape functions with the Heaviside
step function (e.g., Wells and Sluys 2001; Moës and Be-
lytschko 2002). While XFEM is suitable for additional
enrichment of the displacement field around the crack
tip to capture the singular field (Belytschko and Black
1999; Moës et al. 1999), the phantom node method
is only applicable to cohesive crack modeling where
the singularity in the stress field is removed due to the
presence of a cohesive traction. It has been shown by
Rabczuk et al. (2008) how the phantom node can be
extended to model the crack tip inside an element, but
here the simpler approach is followed, in which the
discontinuity grows elementwise and the tip is always
located at an element boundary.

Another variant to XFEM has been applied in the
context of splitting in composite laminates by Iarve

(2003) and Mollenhauer et al. (2006). Higher order
shape functions were used, instead of the Heaviside step
function, to approximate the discontinuity in the dis-
placement field. This method was applied for detailed
analysis of the stress field in laminates in the presence
of splitting cracks. However, crack propagation and ini-
tiation was not discussed.

In the analysis of mixed mode cohesive cracks, the
highly nonlinear nature of the traction-separation law
endanger the robustness of the computation. Moonen
et al. (2008) have introduced a new formulation for
cohesive tractions in which this nonlinearity is reduced
significantly. In this paper, this cohesive traction law
is adapted such that the energy dissipated in mixed
mode fracture can be given as a function of the mode
ratio. For this function, the interaction law proposed by
Benzeggagh and Kenane (1996) is used.

This paper is organized as follows. First the phan-
tom node method is presented. Then the formulation of
the cohesive law is treated, followed by a description
of the loading strategy with a dissipation-based arc-
length method. The cohesive law is validated with the
simulation of mixed mode bending tests. Furthermore,
the superiority of the approach over continuum mod-
els is illustrated with the example of an off-axis tensile
test. Finally, results are presented from an analysis of
a cross ply laminate in which splitting interacts with
delamination. With this last example, the usability of
the method in laminate analysis is demonstrated.

2 Phantom node method

In this section, the phantom node method for discontin-
uous representation of cracks including crack initiation
and propagation is presented.

2.1 Kinematical relations

Consider an element in a finite element mesh with
nodes n1, . . . , n4 (see Fig. 2). This element is crossed
by a crack at �c, dividing the element domain into
two complementary subdomains, �A and �B . In the
phantom node method, a discontinuity in the element
displacement field is constructed by adding phantom
nodes (here labeled ñ1, . . . , ñ4) on top of the existing
nodes. The existing element is replaced by two new
elements, referred to as element A and element B. The
connectivity of these overlapping elements is
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Fig. 2 Connectivity and
active parts of two
overlapping elements in
phantom node method
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nodesA = [ñ1, ñ2, n3, n4]
nodesB = [n1, n2, ñ3, ñ4] (1)

The elements do not share nodes, and therefore have
independent displacement fields. Both elements are only
partially active, the active part of element A is �A and
the active part of element B is �B . This is represented
numerically in the definition of the displacement field:
the displacement of a point with coordinates x is com-
puted with the standard finite element shape functions
N(x) and the nodal displacement values from either of
the overlapping elements, depending on the location of
the point:

u(x) =
{

N(x)uA, x ∈ �A

N(x)uB, x ∈ �B
(2)

The strain field is derived from the displacement field
in common fashion:

ε(x) =
{

εA(x) = B(x)uA, x ∈ �A

εB(x) = B(x)uB, x ∈ �B
(3)

where B(x) is the strain nodal displacement matrix
B(x) = LN(x) with

LT =
[

∂
∂x 0 ∂

∂y

0 ∂
∂y

∂
∂x

]
(4)

The displacement jump over the crack is defined as the
difference between the displacement fields of the two
elements.

�u�(x) = N(x) (uA − uB), x ∈ �c (5)

The displacement jump can be expressed in the local
coordinate frame with normal and shear components
as

¯�u� = {
�u�n ; �u�s

}T = Q�u� (6)

where

Q =
[− sin θ cos θ

cos θ sin θ

]
(7)

Closure of the crack tip is enforced when no phan-
tom nodes are added on the element boundary that con-
tains the tip (see Fig. 2). Here the overlapping elements
do share nodes, and therefore their displacement fields
are not completely independent. When the crack prop-
agates through the next element, phantom nodes are
added on top of those nodes that define the element
boundary on which the tip was previously located and
the connectivity of all cracked elements that contain
these nodes is adapted accordingly.

Because the element connectivity is defined such
that the old nodes are in the active part of the ele-
ment and the phantom nodes are in the non-active part,
the connectivity of neighboring elements that are not
cracked does not have to be adapted.

2.2 Discretized weak from

The weak form of the momentum equation for quasi-
static analysis in the absence of body forces is written
in Voigt notation as:∫
�b

δεT σ d� +
∫
�c

δ�u�T t d� =
∫

�N

δuT tN d� (8)

where �b is the bulk domain, �c is the cracked surface
and �N is the surface along which Neumann boundary
conditions are applied. The cohesive traction is denoted
t and the external traction is denoted tN .

The weak form is discretized with standard Galerkin
procedures. The assembly of the internal force vector
is executed elementwise, where the contribution from
uncracked elements is standard:

f int
(el) =

∫
�(el)

BT σ (ε) d� (9)

in which σ (ε) is a continuum constitutive law. For the
examples in this paper, an orthotropic linear elastic con-
stitutive law for plane stress is used:

σ (ε) = Dε (10)

123



110 F. P. van der Meer, L. J. Sluys

with

D = RT D̄R (11)

and

R =
⎡
⎣ cos2 θ sin2 θ sin θ cos θ

sin2 θ cos2 θ − sin θ cos θ

−2 sin θ cos θ 2 sin θ cos θ cos2 θ − sin2 θ

⎤
⎦

(12)

D̄ =
⎡
⎢⎣

1
E1

− ν12
E1

0

− ν12
E1

1
E2

0

0 0 1
G12

⎤
⎥⎦

−1

(13)

where E1 is the ply stiffness in fiber direction, E2 is
the transverse ply stiffness, ν12 is the in plane Pois-
son’s ratio, G12 is the in plane shear modulus and θ

is the angle between the x-axis and the fiber direction,
which is in the current context the same angle as that
in Fig. 2 and Eq. 7.

For the cracked elements, the contribution to the
internal force vector is less standard. For both over-
lapping elements, there is a contribution corresponding
with both terms on the left hand side of Eq. 8.

f int = fbulk + fcoh (14)

For the first contribution, i.e., the contribution from the
bulk stress, the definition of strain in Eq. 3 implies
that both elements should only be integrated over their
active part. Apart from the integration domain, the con-
tribution is similar to that for uncracked elements in
Eq. 9:

fbulk
A =

∫
�A

BT σ (εA) d�

fbulk
B =

∫
�B

BT σ (εB) d�
(15)

The second contribution, i.e., the contribution from
the cohesive traction, is defined as

fcoh
A =

∫
�c

NT t(�u�) d�

fcoh
B = −

∫
�c

NT t(�u�) d�
(16)

where the traction t is a function of the displacement
jump �u�. The exact form of this law will be presented
Sect. 3, along with the linearization of the internal force
vector. The difference in sign between the two expres-
sions in (16) is related to the definition of �u� in Eq. 5
and the presence of δ�u� in Eq. 8.

2.3 Crack initiation and propagation

For the modeling initiation or propagation of cracks
with XFEM or the phantom node method, generally
two criteria are needed.

– A criterion to decide whether an element is cracking
– A criterion to assess in which direction the crack

grows.

In the particular context of splitting in laminates, the
second criterion becomes trivial, because the propaga-
tion direction is fixed, viz. equal to the fiber direction.
To test for propagation, the stress in the tip element is
checked with a stress criterion.

f (σ ) =
√( 〈σ2〉

F2t

)2

+
(

τ12

F12

)2

(17)

in which σ2 is the transverse stress, F2t is the transverse
tensile strength, τ12 is the in plane shear stress, and F12

is the in plane shear strength. These stress quantities
are components of the material stress vector, which is
computed as

σ̄ = D̄Rε (18)

The criterion f (σ ) = 1 is the plane stress equiva-
lent the criterion for tensile matrix failure proposed by
Hashin (1980). With the operator 〈·〉 = max {·, 0} com-
pressive stresses are neglected.

The failure criterion (17) is evaluated in all integra-
tion points in critical elements.1 The maximum value
that is found is checked with the criterion f (σ ) ≤ 1. If
this criterion is violated, a new crack segment is intro-
duced through this element. In laminate analysis, this
check is executed for the maximum value in each ply,
therefore cracks may propagate concurrently in differ-
ent plies.

The following actions are taken when a new crack
segment is introduced:

– A new element is added on top of the existing ele-
ment.

– A numerical integration scheme for both overlap-
ping elements and the cohesive zone is constructed
(see Fig. 3). Delaunay triangulation is used, with
three integration points per triangle. Because a lin-
ear constitutive law is used for the bulk material, no
transfer of history variables is needed.

1 In cases with a single crack, there is only one critical element,
i.e., the element ahead of the crack tip. When multiple cracking
is allowed, all elements that are not too close to existing cracks
are critical.
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Bulk integration point (element A)
Bulk integration point (element B)

Cohesive integration point

Fig. 3 Integration schemes for a pair of overlapping triangular
or quadrilateral elements

– Phantom nodes are added on top of the nodes that
previously contained the crack tip.

– The element connectivity is updated where needed
with respect to the newly added nodes.

The solution algorithm is summarized in Fig. 4. The
core of the algorithm is a standard Newton–Raphson
iterative procedure to find equilibrium (indicated with
solid lines). When the relative norm of the residual
vector is sufficiently small, the iterative procedure is
considered to have converged. Then the equilibrium
solution is checked for failure as described above. When
failure occurs, an existing crack is extended or a new
crack is introduced, depending on the location of fail-
ure. After that, the Newton–Raphson loop is re-entered.
The previous converged solution, which satisfied equi-
librium but violated the failure criterion, is not dis-

carded since this is a better starting point for the iter-
ative procedure than the final converged solution from
the previous time step. This is repeated until an equi-
librium solution is obtained which does not violate the
failure criterion in any location where crack initiation
or propagation is allowed. This solution then is the final
solution for this time step.

However, when the Newton–Raphson procedure
does not converge within a limited number of iterations,
the load increment 	f is reduced. Then we go back to
the very beginning of the time step, which includes
that changes that have been made to the model dur-
ing this time step (addition of elements and nodes, as
well as changes in integration scheme and connectiv-
ity) are canceled. Before the next time step is entered,
the load increment is adapted, in order to keep time
steps as large as possible throughout the computation.
The increment is only updated when no crack propa-
gation has occurred. The new increment size is based
on the number of iterations (cf. Verhoosel et al. 2008).

The solution algorithm presented in Fig. 4 and
explained above is for load control. For the examples
presented in this paper, however, an algorithm was used
with alternating load and dissipation-based arclength
control (Verhoosel et al. 2008). When arclength control
is used, the Newton–Raphson loop is slightly different.
Furthermore, instead of reduction of 	f , reduction of
the dissipation increment may be applied, or in some
cases switching between the two loading methods.
However, the interaction between Newton–Raphson
loop, crack propagation loop and adaptive time step-
ping loop remains essentially the same. In Sect. 4,

Fig. 4 Solution algorithm
for single time step with
adaptive time stepping and
crack propagation under
load control
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more attention will be given to the implemented loading
strategy.

3 Mixed mode cohesive law

There is a difficulty in the application of a direct traction
separation law for mixed mode cracking. The problem
stems from the fact that the traction is not uniquely
defined for zero crack opening; in a uniaxial case it is
obvious that the traction should be equal to the strength,
but in a mixed mode formulation it can be either equal
to the normal strength with no shear traction, or to the
shear strength with no normal traction, or something
in between. The traction evaluation itself remains fea-
sible, because the crack opening will not be exactly
equal to zero. However, the highly nonlinear nature of
the traction separation law endangers the stability of the
Newton–Raphson procedure. Very small variations in
nodal displacements give rise to large changes in nodal
forces and also, more critically, to large changes in the
stiffness matrix.

However, more knowledge on the tractions is avail-
able. Equilibrium demands that the ratio between the
tensile and shear components of the cohesive traction
reflects the ratio between the components of the contin-
uum stress in the bulk material next to the crack. This
is taken into account in a cohesive law that was intro-
duced by Moonen et al. (2008), in which the bulk stress
is used besides the displacement jump for evaluation of
the traction.

In this section, an adapted form of this law is pre-
sented. In this new version, the fracture energy as a
function of the mode ratio is considered an essential
material property.

3.1 Damage law

We start from a discrete rigid-damage law (Oliver 2000),
written as

t = 1 − ω

ω
T �u� (19)

in which ω is a damage variable that evolves from 0 to 1
during crack opening and T is a stiffness parameter.In
this formulation, the traction is not well-defined upon
crack initiation, i.e., when ω = 0 and �u� = 0.

Therefore we rewrite it, following Moonen et al.
(2008), such that the bulk stress is taken into account.

Hσσσ

t t̄

QHσσσ

x

y

n
s

Fig. 5 Cohesive traction and corresponding bulk stress compo-
nents in local and global coordinate system

Equation 19 is reformulated by multiplication with ω

and addition of (1 − ω)t, which gives:

t = (1 − ω)
{
t + T �u�

}
(20)

Next, we use an equilibrium relation. Namely that the
cohesive traction acting on the crack surface must be
in equilibrium with the stress in the bulk material next
to the crack (see Fig. 5):

t = Hσ (21)

where pre-multiplication with H is the representation
in Voigt notation of multiplication of the stress tensor
with the normal vector, and

H =
[− sin θ 0 cos θ

0 cos θ − sin θ

]
. (22)

Equation 21 is substituted in the right hand side of
Eq. 20 which results in the following traction law that
is always uniquely defined:

t = (1 − ω)
{
Hσ + T �u�

}
(23)

We define the effective traction as the undamaged
traction vector in the local coordinate system:

teff = {
teff
n ; teff

s

}T = Q
{
Hσ + T �u�

}
(24)

The rotation with Q (see Eq. 7) is introduced so that
distinction can be made between normal and shear
crack opening. Notably, since the crack is parallel to
the fiber, the vector QHσ contains the material stress
components σ2 and τ12. In order to prevent interpen-
etration of the cracked parts, the damage variable is
replaced with a damage tensor. The traction in local
coordinate system is defined as:

t̄ = {
tn ; ts

}T = [I − �]Q {
Hσ + T �u�

}
(25)
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with

� = ω

⎡
⎣

〈
teff
n

〉
teff
n

0

0 1

⎤
⎦ (26)

Introduction of the factor
〈
teff
n

〉
/teff

n , which is equal
to one when teff

n > 0, and equal to zero otherwise,
suffices to prevent interpenetration,2 because with this
factor, teff

n < 0 ⇒ tn = teff
n , and, with the assump-

tion of equilibrium (tn = σ2), this gives in turn tn =
teff
n ⇒ �u�n = 0. Because equilibrium is only weakly

met, limited interpenetration may occur, but this can be
expected to vanish upon mesh refinement.

The final formulation for the cohesive law is obtained
after rotating this traction back to the global coordinate
system:

t = QT [I − �]Q {
Hσ + T �u�

}
(27)

During the failure process, the effective traction
increases. The damage evolution is driven by a state var-
iable, denoted κ , which is the maximum history value
of a scalar measure for the magnitude of the effective
traction:

κ(τ) = max
t≤τ

√√√√
(〈

teff
n

〉
F2t

)2

+
(

teff
s

F12

)2

(28)

This state variable is used for the evolution of damage
variable ω:

ω =
⎧⎨
⎩

κ f (κ − 1)

κ(κ f − 1)
, κ < κ f

1, κ ≥ κ f
(29)

which results in a linear softening relation between trac-
tion and separation. The derivation of the expression for
κ f will be outlined in Sect. 3.2.

The definition of κ in Eq. 28 corresponds with the
failure criterion in Eq. 17. As such, continuity in the
response of the cracking element is ensured (exactly
when the stress in the element is homogeneous, and
approximately otherwise). Upon crack initiation, the
stress in the element satisfies f (σ ) = 1, and the
displacement jump �u� is equal to 0. In the closed crack,
teff = QHσ , which gives κ = f (σ ) = 1 and ω = 0
and consequently t = Hσ .

In finite elements, the bulk stress at �c, which is
used in the evaluation of the effective traction, is not

2 Provided that rotations remain small.

uniquely defined. We use the averaged strain from both
overlapping elements:

σ = σ (ε�c ) (30)

with

ε�c = 1

2

(
ε�+

c
+ ε�−

c

)

= 1

2
B(x�c ) (uA + uB) (31)

3.2 Mixed mode fracture energy

We define the mode ratio α as:

α =
(
teff
s

)2

(
teff
s

)2 + 〈
teff
n

〉2 (32)

This expression can be rewritten to

〈
teff
n

〉
=

∣∣∣teff
s

∣∣∣
√

1 − α

α
(33)

Assuming equilibrium between the cohesive traction
acting on the crack surface and the bulk stress directly
next to this surface (Hσ = t), it follows from Eq. 27
that the ratio between the displacement jump compo-
nents is necessarily the same:

�u�n =
∣∣∣�u�s

∣∣∣
√

1 − α

α
(34)

Therefore, for a fixed mode ratio α, the ratio between
the energy release of the two modes is fixed:

G I

G I I
=

∫
tn d�u�n∫
ts d�u�s

= 1 − α

α
(35)

and, consequently

G I I

G I + G I I
= α (36)

Substitution of Eq. 33 and κ = 1 in Eq. 28 gives
the relation between the initial shear traction, t0

s , and
α (knowing that, initially, teff = t), which may be
written as:

∣∣∣t0
s

∣∣∣ =
(

1 − α

α
· 1

F2
2t

+ 1

F2
12

)− 1
2

=
√

αF2
α (37)

with

F2
α = F2

2t F
2
12

(1 − α) F2
2t + αF2

12

(38)
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Fig. 6 Schematic
representation of cohesive
law for pure mode I failure
(cf. Moonen et al. 2008)
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Similarly, substitution of (34) in (28) with κ = κ f

gives the relation between the shear crack opening that
corresponds with complete failure, �u�

f
s , and α:

∣∣∣�u�
f
s

∣∣∣ = κ f

T

√
αF2

α (39)

With Eqs. 37 and 39, the actual energy release in
mode II can be computed as a function of α (consid-
ering that the sign of t0

s will always be equal to that of

�u�
f
s ):

G I I = 1

2
t0
s �u�

f
s = κ f αF2

α

2T
(40)

Finally, with Eq. 36, the total energy release as a func-
tion of α is:

GT = G I + G I I = κ f F2
α

2T
(41)

Now, κ f can be defined as a function of α such that
the amount of energy dissipated for different mixed
mode cases matches the actual material behavior. We
assume that the fracture energy of the material can be
described properly with the phenomenological rela-
tion proposed for delamination by Benzeggagh and
Kenane (1996), which has been applied in interface
elements by Camanho et al. (2003) and Turon et al.
(2006):

GT c = G I c + (G I I c − G I c) αη (42)

in which G I c is the mode I fracture energy, G I I c is
the mode II fracture energy, η is an additional mate-
rial parameter, and α = G I I /(G I + G I I ). Equaliz-
ing GT c in (42) to GT in (41) and solving for κ f

gives:

κ f = 2T

F2
α

(
G I c + (G I I c − G I c) αη

)
(43)

Because equilibrium was assumed for this derivation,
while equilibrium is only weakly met, the amount of
energy dissipated in mixed mode conditions does not
satisfy Eq. 42 exactly, but it approaches the correct
value upon mesh refinement.

Now that the formulation is complete, we comment
on the significance of the stiffness parameter T .
Figure 6 gives a 1D representation of the evolution of
different variables with increasing displacement jump,
assuming that equilibrium is satisfied exactly. The
straight descending line in the left diagram depicts the
traction (and at the same time the bulk stress, since
those two are in equilibrium). This line is completely
defined with the material parameters F2t and G I c. The
increasing straight line in the left diagram is the effec-
tive traction. The significance of T is that it deter-
mines the slope of this line. As a consequence, it influ-
ences the ratio between the ‘displacement jump part’
and the ‘bulk stress part’ of the traction (indicated with
the curved dotted line), and therewith the influence
of substituting Hσ for t in Eq. 23. In the limit for
T → ∞, the direct traction separation law from Eq. 19
is obtained exactly. While, with a finite value for T , it
is only weakly met. A lower bound for T is given by
the fact that teff must be growing during crack opening,
i.e., that κ f > 1, which gives with Eq. 43:

T > max
α∈[0,1]

F2
α

GT c(α)
(44)

Furthermore, the right diagram in Fig. 6 shows the
evolution of ω from 0 to 1 and of κ from 1 to κ f ,
the growth of the latter being proportional to the
that of teff

n .
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3.3 Linearization

For robust analysis of nonlinear problems, consistent
linearization of the internal force vector is important. In
evaluation of the consistent tangent matrix, the interde-
pendence between a pair of overlapping elements due
to the cohesive traction must be taken into account.
The consistent tangent matrix for the two overlapping
elements together is derived from Eqs. 15 and 16. The
contribution related to the bulk stress is standard:

Kbulk
I = ∂fbulk

I

∂uI
=

∫
�I

BT DB d�, I = A, B (45)

The contribution related to the cohesive traction has to
be derived from the introduced constitutive law.

∂fcoh
A

∂uI
= −∂fcoh

B

∂uI
=

∫
�c

NT ∂t
∂teff

∂teff

∂uI
d�, I = A, B

(46)

From the definition of the effective traction (24) it fol-
lows

∂teff

∂uI
= QH

∂σ

∂uI
+ T Q

∂�u�

∂uI
, I = A, B (47)

where the kinematic relations (5) and (31) give

∂�u�

∂uA
= −∂�u�

∂uB
= N (48)

and (with Eq. 10)

∂σ

∂uA
= ∂σ

∂uB
= 1

2
DB (49)

The nonlinearity of the system is in the term ∂t/∂teff .
Considering ω to be computed from teff , we write

∂t
∂teff = QT A (50)

with

A = ∂ t̄

∂teff = I − � − t̄ ⊗ ∂ω

∂teff (51)

In an integration point that is not damaging (ω̇ = 0),
the final term in Eq. 51 is equal to zero, otherwise it is
computed with the following expressions, derived from
the definitions for ω, κ, κ f and α in Eqs. 29, 28, 43
and 32:

∂ω

∂teff = ∂ω

∂κ

∂κ

∂teff + ∂ω

∂κ f

∂κ f

∂α

∂α

∂teff , j = n, s (52)

with

∂ω

∂κ
= κ f

κ2(κ f − 1)
(53)

∂ω

∂κ f
= 1 − κ

κ(κ f − 1)2 (54)

∂κ f

∂α
= 2T

F2
α

∂GT c

∂α
− 2T GT c

F4
α

∂ F2
α

∂α
(55)

∂κ

∂teff =
{〈

teff
n

〉
κ F2

2t

; teff
s

κ F2
12

}T

(56)

∂α

∂teff =
{

2α(1 − α)

teff
s

; −2α(1 − α)

teff
n

}T

(57)

in which
∂GT c

∂α
= (G I I c − G I c) ηαη−1 (58)

∂ F2
α

∂α
= F2

2t F
2
12

(
F2

2t − F2
12

)
(
(1 − α)F2

2t + αF2
12

)2 (59)

The consistent tangent matrix for two overlapping
elements together can be summarized as

K =
[

Kbulk
A 0
0 Kbulk

B

]
+

[
Kcoh

�u�
−Kcoh

�u�

−Kcoh
�u�

Kcoh
�u�

]

+
[

Kcoh
σ Kcoh

σ

−Kcoh
σ −Kcoh

σ

]
(60)

with Kbulk
I from Eq. 45 and

Kcoh
�u� = T

∫
�c

NT QT AQN d� (61)

Kcoh
σ = 1

2

∫
�c

NT QT AQHDB d� (62)

4 Loading strategy

When splitting occurs in fibrous materials, whether or
not in combination with delamination, two processes
take place simultaneously:

– matrix material damages (by definition), and
– fibers unload (as a possible consequence).

Because the fibers are very stiff and the matrix failure
process is not very ductile, the amount of elastic energy
released by the second process easily exceeds the amo-
unt of energy necessary to drive the first. Hence, unsta-
ble crack propagation occurs, and snapback behavior
is observed when the equilibrium path is followed.
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In the examples in this paper, a dissipation-based
arclength method is employed to follow this behav-
ior. For details of this method we refer to the work by
Gutiérrez (2004) and Verhoosel et al. (2008). As usual
in arclength methods, a constraint equation is added
to the system of equations that is solved iteratively. In
this particular formulation, the constraint equation is
defined such that it is only satisfied when a predefined
amount of energy is dissipated in the time step.

The dissipation-based arclength method is only
applicable when the material is damaging. Therefore
it is not suitable for the initial phase of the analysis
or for possible elastic loading stages which may occur
after a snapback. Therefore, a hybrid loading strategy
is adopted in which load control is used in some of
the time steps and arclength control in the other time
steps.

The analysis is started in load control. For every
converged solution the amount of dissipated energy is
computed, also when the converged solution does not
satisfy the failure criterion (see Fig. 4). When this
amount exceeds a certain threshold value, we switch
to arclength control and this amount is used as initial
value for the prescribed energy dissipation.

As explained in Sect. 2.3, the increment is reduced,
when the Newton–Raphson procedure does not con-
verge, where the increment is either the prescribed
amount of dissipated energy or the load increment.
However, when this increment becomes too small, we
switch from the current strategy to the other. Only
when, within a given time step, no converged solution
can be found in a range of increments for both loading
strategies, is the computation terminated. Also when in
the arclength method the factor with which the external
force vector is scaled changes sign, which may happen
when the load approaches zero during brittle snapback,
a switch to load control is made.

5 Numerical Examples

5.1 Mixed mode bending

The performance of the cohesive law is assessed with
mixed mode bending tests. Material parameters from
Camanho et al. (2003) for carbon/PEEK fiber rein-
forced composite are used (see Table 1). The response is
governed by the fracture energy of the material. There-
fore, these tests are used to validate whether the simu-

Table 1 Material parameters for mixed mode bending and cross-
ply laminate example (Camanho et al. 2003)

Elasticity Splitting

E1 122.7 GPa F2t 80 MPa

E2 10.1 GPa F12 100 MPa

ν12 0.25 G I c 0.969 N/mm

G12 5.5 GPa G I I c 1.719 N/mm

η 2.284

lated response matches the theoretical response for the
input fracture energy in pure and mixed mode cases.
For an optimal match with theoretical solutions derived
from beam theory, plane stress analysis is considered
to be most appropriate.

The setup for the mixed mode bending (MMB) test
(see Fig. 7) can be used with minor modifications for
the pure mode cases of a double cantilever beam (DCB)
and end notch flexure (ENF). The mode I DCB test is
obtained by setting Fm equal to zero, and the mode
II ENF test is obtained by setting Fe equal to zero or
replacing the end force with a nodal displacement con-
straint. Theoretical solutions exist for all mixed mode
bending tests, derived from theoretical solutions for the
extreme cases. With beam theory and the assumption
that the fracture energy is constant, the force and dis-
placement during crack propagation for each value of
crack length a can be obtained. We have used rela-
tions concatenated by Reeder and Crews (1990) com-
posed from the work of Kanninen (1973); Whitney et al.
(1982) and Carlsson et al. (1986).

2L = 100 mm

2h = 3.12 mm

ac

F, u

Fm, um Fe, ue

Fig. 7 Mixed mode bending test setup (top) and computational
model (bottom)
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The theoretical solutions to the pure mode cases of
the DCB and ENF tests will be presented first, followed
by the theoretical solution for the MMB tests.

For the DCB test, the following relations are used.
These include shear deformation (Whitney et al. 1982)
and the deformation of the uncracked part of the speci-
men derived from analogy with a beam on elastic foun-
dation (Kanninen 1973). The fracture energy is related
to the load with

GT =G I = 12F2
e a2

E1b2h3

(
1 + 2h

γ a
+ h2

γ 2a2 + E1h2

10G12a2

)

(63)

where b is the width of the beam, in this paper the unit
width, and

γ = 4

√
6E2

E1
(64)

The terms in Eq. 63 with γ are related to elastic defor-
mation of the uncracked part and the term with G12 is
related to shear deformation. The first of these terms
is most significant. With Eq. 63, the force correspond-
ing with a certain fracture energy Gc = G I and crack
length a is computed. Subsequently, the corresponding
displacement ue is computed with:

ue = 8Fea3

E1bh3

(
1+ 3h

γ a
+ 3h2

γ 2a2 + 3h3

4γ 3a3 + 3E1h2

8G12a2

)

(65)

For the ENF test, the following relations, including
shear deformation (Carlsson et al. 1986), are used

GT = G I I = 9F2
ma2

16E1b2h3

(
1 + E1h2

5G12a2

)
(66)

and

um = Fm
(
2L3 + 3a3

)
8E1bh3(

1 + (2.4L + 1.8a)E1h2

(2L3 + 3a3)G12

)
(67)

For the MMB tests, the theoretical solutions from
both pure mode cases are combined. With F as the force
acting at a distance c from the middle of the specimen
(see Fig. 7), equilibrium considerations give the middle
and end loads as:

Fm = c + L

L
F (68)

Fe = c

L
F (69)

The pure mode forces are related to these, but not
exactly equal, because when there is a force Fm acting
at the middle, part of the force Fe acting at the end is
acting as reaction force. Therefore, the pure mode load
components are defined as:

FI = Fe − 1

4
Fm = 3c − L

4L
F (70)

FI I = Fm = c + L

L
F (71)

The total fracture energy in mixed mode loading is
obtained using Eqs. 63 and 66:

GT = G I + G I I

= 12F2
I a2

E1b2h3

(
1 + 2h

γ a
+ h2

γ 2a2 + E1h2

10G12a2

)

+ 9F2
I I a2

16E1b2h3

(
1 + E1h2

5G12a2

)
(72)

and

u = L + c

L
um + c

L
ue = L + c

L

FI I
(
2L3 + 3a3

)
8E1bh3

×
(
1+ (2.4L + 1.8a)E1h2

(2L3 + 3a3)G12

)
+ c

L

8FI a3

E1bh3

×
(

1+ 3h

γ a
+ 3h2

γ 2a2 + 3h3

4γ 3a3 + 3E1h2

8G12a2

)
. (73)

In the numerical model, the ratio between the two
point loads Fm and Fe was fixed directly, so the loading
arm was not modeled. The relation between load ratio
and theoretical arm length c is:

Fe

Fm
= c

c + L
(74)

The values for the arm length that correspond with
the desired values for the mode ratio were computed
numerically by substituting different values of c in
the relations given above and computing the ratio α

corresponding with these values. Due to the correc-
tion terms for shear deformation and elastic deforma-
tion of the uncracked part, the mode ratio does not
depend purely on the arm length c but also on the
crack length a. However, the influence of a remains
limited. The applied values for c are: 98.5, 42.5, and
27.7 mm for α equals 0.2, 0.5, and 0.8, respectively.
These correspond with a = 30 mm, which is the initial
crack length. The influence of crack propagation on the
mode ratio is such that with these load ratios, when a
increases to 45 mm (beyond which the crack does not
grow in the presented results) the theoretical values for
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Fig. 8 Load displacement relation for DCB, MMB and ENF
tests, compared with theory

the mode ratio increase slightly to 0.206, 0.509 and
0.806.

Figure 8 shows the relations between load and dis-
placement obtained with the presented model for the
two pure mode and three mixed mode cases. Theoret-
ical curves are also shown. For the mixed mode cases,
the load on the arm F is plotted against the deflection
of the loading point u, while for the pure mode cases it
is Fe against ue and Fm against um . It can be observed
that agreement is excellent, at least as far as the initial
stiffness and the descending branch are concerned. The
agreement in peak load value is not that well. This can
be explained by the fact that in the theoretical solution,
there is no cohesive zone, in contrast with the numer-
ical model. In the ascending branch, there is already
some crack propagation in the numerical model. The
peak load corresponds with the moment at which com-
plete local failure is reached for the first time, i.e., when
the cohesive zone has fully developed. At that point,
there has already been some loss in stiffness, which
can be interpreted as an increase of the effective crack
length. For more brittle cases, e.g., with a larger spec-
imen or a lower fracture energy, this difference will
vanish.

Figure 9 visualizes the traction separation relation
as it is obtained for α = 0.5. For a single cohesive
integration point, the evolution of both components of
the traction is presented. Notably, the mode ratio is
not constant in the cohesive zone. Initially, the traction
is predominantly shear traction, and during the crack
opening the normal component becomes more impor-
tant. In the derivation used to incorporate the fracture
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Fig. 9 Evolution of traction and displacement jump components
in a single integration point for α = 0.5
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Fig. 10 Zoom of the load displacement data for the MMB test
with α = 0.5 for different values of T (in N/mm3)

energy law in the cohesive model, it was assumed that
the mode ratio is constant. As a consequence, the frac-
ture energy is initially overpredicted in each integration
point (since G I I c > G I c), and later underpredicted.
This may very well be the cause for the fact that the
agreement between theory and simulation is slightly
less favorable for the mixed mode cases than for the
pure mode cases (see Fig. 8). However, from the gen-
erally good agreement, it can be concluded that the ini-
tial overprediction is balanced well by the subsequent
underprediction.

Furthermore, the sensitivity to changes in the param-
eter T was investigated. Since this is merely a numer-
ical parameter, it should not influence the response.
Figure 10 shows a close-up of the load displacement
relation for the MMB test with α = 0.5, using a range
of values for T . It can be observed that a relatively
low value of T gives rise to a small deviation in the
results, but for sufficiently high T further changes do
not affect the results. Convergence was optimal for
T ∈ [105, 106]. All other results presented in this paper,
were obtained using T = 105N/mm3.
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44 mm

8 mmt 3 mm
10

Split location

Fig. 11 Off-axis tensile test dimensions

Table 2 Material parameters for off-axis tensile test (Van
Paepegem et al. 2006)

Elasticity Splitting

E1 38.9 GPa F2t 36.5 MPa

E2 13.3 GPa F12 52 MPa

ν12 0.26 G I c 3 N/mm

G12 5.13 GPa G I I c 3 N/mm

η 1

5.2 Off-axis tensile test

Next, we consider an off-axis tensile test on a 10◦uni-
directional laminate. This is a standard test for the
determination of the in-plane shear strength (Chamis
and Sinclair 1977; Van Paepegem et al. 2006). Exper-
iments show brittle matrix failure. In a sudden event,
the specimen breaks, with the crack running in fiber
direction, as shown in Fig. 11. In this relatively sim-
ple case, regularized continuum models tend to fail in
capturing the mechanism correctly (van der Meer and
Sluys 2009). Material parameters for glass/epoxy from
Van Paepegem et al. (2006) are used (see Table 2).

Notably, the geometry is such, that the stress field is
homogeneous until nonlinearities occur, which means
that the failure criterion is exactly satisfied in the entire
specimen when the crack is initiated. Therefore, the
location where the crack initiates is specified in advance.

In Fig. 12, the load displacement relation is plotted
for two different meshes, one with an average element
size 1.1 × 0.5mm and the other with average element
size 0.8 × 0.25mm. It can be observed that with the
discontinuous approach mesh-independent results are
obtained without special precautions, which stands in
contrast to local continuum models for failure.

Figure 13 shows the deformed mesh from the fine
mesh solution for different stages. The normalized
stress quantity that is used for the shading is the failure
criterion in Eq. 17. In Fig. 12, the corresponding points
on the load displacement curve are indicated. In a sud-
den event at the peak load level, a cohesive crack of con-
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Fig. 12 Load displacement data for off-axis test with phantom
node method

Fig. 13 Off-axis tensile test results with phantom node method
(fine mesh, unscaled deformations)

siderable length appears, after which the load drops in a
sharp snapback without much additional crack growth.
Then the cohesive zone, i.e., the part of the crack in
which tractions are present, becomes smaller and the
crack finds its way toward the opposite boundary of
the specimen. The crack grows in the correct direction.
This is in itself not surprising, since the growth direc-
tion is predefined, but it is exactly this, that the direction
of crack propagation can be fixed, which should be con-
sidered an advantage of the discontinuous approach.

5.3 Cross-ply laminate with a hole

Finally, it is demonstrated how the model for splitting
of a single ply can be applied in laminate analysis.
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For that purpose, it is necessary to capture the inter-
action between splitting and delamination. A [±45]s-
laminate with a circular hole loaded in tension is ana-
lyzed (see Fig. 14). Because the loading and the main
failure mechanism for this case are typically in-plane,
a plane-stress approach is adopted (cf. Wisnom and
Chang 2000), i.e., each ply is represented as a 2D plane,
and the plies are connected with plane interface ele-
ments with a shear damage law. Thus, mode I delam-
ination is not considered, but on the other hand, the
number of degrees of freedom is reduced with a factor
3 in comparison with a 3D approach with a single layer
of volume elements or solid-like shell elements per ply.

Two plies are modeled, which should be understood
as half of a symmetric laminate in which case the abs-
ence of torsion is justified. The ply thickness is 0.2 mm.

A simple damage law is assigned to the interface
elements. The model has two independent parameters:
strength tmax and fracture energy Gc, and a third param-
eter, which is derived from the elasticity parameters,
viz. elastic stiffness K (see Fig. 15 and Table 3). The

6.4 mm

38.4 mm

16 mm

Fig. 14 Cross-ply laminate with a circular hole loaded in tension

t

t max

Gc

u 0
eq u f

eq
u eq

(1-d)K

Fig. 15 Constitutive law for interface elements

Table 3 Additional parameters for cross-ply laminate example
(see Table 1 for other material parameters)

Delamination

tmax 45 MPa

Gc 0.5 N/mm

K 27,500 N/mm3

traction is computed with:

�u�eq =
√

�u�2
x + �u�2

y (75)

d = max
t≤τ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, �u�eq ≤ �u�0
eq(

�u�eq−�u�0
eq

)
�u�

f
eq

�u�eq

(
�u�

f
eq−�u�0

eq

) , �u�0
eq<�u�eq<�u�

f
eq

1, �u�eq ≥ �u�
f
eq

(76)

t = (1 − d)K �u� (77)

with

�u�0
eq = tmax

K
(78)

�u� f
eq = 2Gc

tmax (79)

and

K = G12

	z
(80)

where G12 is the in-plane shear stiffness 	z is the ply
thickness. Equation 80 is derived from the idea that the
mid-planes of the ply can move with respect to one
another due to out-of-plane shear. Ideally, the stiffness
would have to be orthotropic and dependent on the fiber
direction in the plies on both sides of the interface, but
since the difference between G31 and G23 is generally
not very big and the value of K is not of key impor-
tance, we stick to this simple dependence on G12, a
parameter that is already required for the ply model.

Cracks are allowed to initiate anywhere along the
boundary or in the interior of the ply, with only one
restriction, that the projected spacing between two
cracks in the same ply is at least 0.7 mm. This distance
is related to the typical element size. The resolution
of the crack pattern that can be captured is related to
the fineness of the discretization. At least one intact
element should be located between two elements that
are cut by two different cracks. When the failure cri-
terion is violated in an element that lies on the path of
an existing crack but yet ahead of its tip, a new crack
is introduced in this element and its location is such
that this new crack will form one straight line with the
existing crack when they meet.

Figure 16 shows the peculiar relation between load
and displacement that is obtained. Many sharp snap-
backs are visible. The nature of these snapbacks can be
explained with Figs. 17 and 18, the former showing the
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Fig. 16 Load displacement diagram for cross-ply laminated
with splitting and delamination. The dots indicate the time steps
for which results are shown in Fig. 18

deformed mesh at a late stage and the latter visualizing
the evolution of interface damage and splitting cracks.
Figure 17 is taken from the same time step as Fig. 18d.
At this stage, there is a fiber bundle on both sides of the
hole that connects the two halves of the top ply. The
snapback occurs when the boundary is reached by one
of the splits in these fiber bundles. Then the material
on one side of this crack suddenly unloads. During the
snapback, the whole specimen is unloaded, and when
it is reloaded, the crack that has just reached the bound-
ary is opening, leaving its neighbor that was previously
opening, closed. The corresponding additional delam-
ination is visible at the middle of the base of Fig. 18e:
the area right of the crack that has reached the boundary
has completely delaminated.

Furthermore, when looking at the load displacement
response and the damage evolution, several observa-
tions can be made. Firstly, that already before the peak
significant splitting occurs, as well as initial delami-
nation near the hole (Fig. 18a). The peak is reached
when delamination starts along the complete length of
one of the four main splits (Fig. 18b). Then delami-
nation propagates first only on one side of the hole,

accompanied by distributed cracking in one of the plies
(Fig. 18c). Then delamination on the other side of the
hole follows, until final failure is obtained (Fig. 18f).

Theoretically, the response for this problem should
be symmetric. However, clear asymmetry can be obs-
erved in the solution. This asymmetry is initially trig-
gered by asymmetry in the mesh. Furthermore, the
algorithm in which cracks propagate one by one,
promotes minor asymmetry in the response. And minor
asymmetry suffices for the extremely brittle failure
events to occur sequentially on both sides of the hole
instead of concurrently.

It can be observed that distributed matrix cracking is
predicted in part of the specimen and that the obtained
crack spacing is governed by the minimum spacing
that was given as a numerical parameter. The question
how to represent the very fine distributed cracking that
may occur remains open, notwithstanding this exam-
ple shows the capability of the proposed method to
simulate failure in laminates when it is driven by ply
splitting.

6 Conclusions

The phantom node method has been implemented to
model progressive splitting in laminates. The phenom-
enon that a split grows by definition in fiber direction is
enforced by setting the direction of crack propagation
equal to the fiber direction. Cracks do not have to be
meshed. And multiple cracks can be captured, without
having to predefine their location.

For robust implicit analysis of mixed mode cohesive
cracking, a new cohesive law is applied. The traction
acting on the cohesive surface is not computed directly
from the displacement jump, but constrained with the
bulk stress in the continuum next to it. A linear soften-
ing relation between traction and separation is weakly

Fig. 17 Deformed mesh
just before a snapback
occurs (deformations are
magnified with a factor 10),
cf. Fig. 18d
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Fig. 18 Delamination
damage and cracks for
different time steps (see
Fig. 16)

imposed with strength and fracture energy as essential
parameters.

The validity of the cohesive law is assessed with a
series of simulations of the mixed mode bending test.
For this test, which has a response that is typically gov-
erned by the fracture energy, results are in agreement
with those from theory. It has been shown that the input
fracture energy, though only weakly imposed, is indeed
obtained accurately for pure mode cases as well as for
a range of mixed mode cases.

The 10◦off-axis tensile test was simulated to illus-
trate the capability of this approach in capturing the
typical splitting crack pattern. Regularized continuum
models tend to fail in predicting the correct failure
pattern for this basic case, while with the phantom node
method with fixed crack propagation direction, the cor-
rect outcome is obtained.

The intended use of the presented model lies in
the analysis of failure in complete laminates, in which
case splitting is not the only failure process. To dem-
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onstrate the performance of the presented method in
full laminate analysis, splitting and delamination in a
notched cross-ply laminate was analyzed in a plane
stress framework. A simple cohesive law was applied to
interface elements for delamination. Promising results
were obtained in which numerous splitting cracks were
predicted, some of which eventually interacted with
delamination to form the final failure mechanism.

It is envisioned that the model can be combined with
a separate description for fiber failure to allow for com-
plete mesoscopic analysis of progressive failure in lam-
inates.
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