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Abstract

Background: Neo-adjuvant chemoradiotherapy followed by surgery is the standard treatment with curative intent
for oesophageal cancer patients, with 5-year overall survival rates up to 50 %. However, patients’ quality of life is
severely compromised by oesophagectomy, and eventually many patients die due to metastatic disease.
Most solid tumours, including oesophageal cancer, contain hypoxic regions that are more resistant to
chemoradiotherapy. The hypoxia-activated prodrug evofosfamide works as a DNA-alkylating agent under these hypoxic
conditions, which directly kills hypoxic cancer cells and potentially minimizes resistance to conventional therapy. This
drug has shown promising results in several clinical studies when combined with chemotherapy. Therefore, in this phase
I study we investigate the safety of evofosfamide added to the chemoradiotherapy treatment of oesophageal cancer.

Methods/Design: A phase I, non-randomized, single-centre, open-label, 3 + 3 trial with repeated hypoxia PET imaging,
will test the safety of evofosfamide in combination with neo-adjuvant chemoradiotherapy in potentially resectable
oesophageal adenocarcinoma patients. Investigated dose levels range from 120 mg/m2 to 340 mg/m2. Evofosfamide
will be administered one week before the start of chemoradiotherapy (CROSS-regimen) and repeated weekly up to a
total of six doses. PET/CT acquisitions with hypoxia tracer 18F-HX4 will be made before and after the first administration
of evofosfamide, allowing early assessment of changes in hypoxia, accompanied with blood sampling to measure
hypoxia blood biomarkers. Oesophagectomy will be performed according to standard clinical practice.
Higher grade and uncommon non-haematological, haematological, and post-operative toxicities are the primary
endpoints according to the CTCAEv4.0 and Clavien-Dindo classifications. Secondary endpoints are reduction in hypoxic
fraction based on 18F-HX4 imaging, pathological complete response, histopathological negative circumferential resection
margin (R0) rate, local and distant recurrence rate, and progression free and overall survival.
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Discussion: This is the first clinical trial testing evofosfamide in combination with chemoradiotherapy. The
primary objective is to determine the dose limiting toxicity of this combined treatment and herewith to
define the maximum tolerated dose and recommended phase 2 dose for future clinical studies. The addition
of non-invasive repeated hypoxia imaging (‘window-of-opportunity’) enables us to identify the biologically
effective dose. We believe this approach could also be used for other hypoxia targeted drugs.

Trial registration: ClinicalTrials.gov Identifier: NCT02598687.

Keywords: Oesophageal cancer, Neoadjuvant chemoradiotherapy, Evofosfamide, Oesophagectomy, Dose
limiting toxicity, Hypoxia imaging, Window-of-opportunity trial

Abbreviations: 18F-HX4, [18F]-fluortanidazole; AUC, Target area under the concentration-time curve in mg/ml/min;
CAIX, Carbonic anhydrase IX; CRM, Circumferential resection margin; CROSS, ChemoRadiotherapy for Oesophageal
cancer followed by Surgery Study; CT, Computed tomography; CTCAE, Common toxicity criteria for adverse events;
DLT, Dose-limiting toxicity; ECG, Electrocardiogram; EUS, Endoscopic ultrasound; FDG, [18F]-fluordeoxyglucose;
MTD, Maximum tolerated dose; nCRT, Neo-adjuvant chemoradiotherapy; OPN, Osteopontin; OS, Overall survival;
pCR, Pathological complete remission; PET, Positron emission tomography; PICC, Peripherally inserted central catheter;
RP2D, Recommended phase 2 dose; TH-302, Former abbreviation for evofosfamide; WHO, World Health Organisation

Background

The incidence of oesophageal cancer in developed Western

countries has risen in recent decades [1]. Adenocarcinoma

is now more prevalent than squamous cell carcinoma, with

most tumours located in the distal oesophagus. A Western

lifestyle is a risk factor and the disease is associated with

obesity and symptomatic gastro-oesophageal reflux [2].

The standard treatment with curative intent for T2 or

higher stage tumours consists of neoadjuvant chemora-

diotherapy (nCRT) followed by surgery, [3] as confirmed

by the Dutch ChemoRadiotherapy for Oesophageal cancer

followed by Surgery Study (CROSS) [4]. In this study,

significantly better 5-year overall survival (OS) rates were

observed for patients treated with nCRT followed by sur-

gery (47 %; 95 % CI 39–54) when compared to surgery

alone (33 %; 95 % CI 26–40), with greater benefits for

squamous cell carcinoma (61 % vs. 30 %) than for adeno-

carcinoma (43 % vs. 33 %) [5]. However, little progress has

been made in long-term survival (median OS ~49 months)

and the patients’ quality of life is still severely compro-

mised by the impact of oesophagectomy. Therefore, there

is an urgent need for new innovative treatment strategies.

The role of the tumour microenvironment in cancer

progression, and especially the difference between this

microenvironment and surrounding normal tissue, is a

subject of increasing investigational interest with a spe-

cific focus on hypoxia. Hypoxic tumour cells promote a

more aggressive phenotype, are associated with increased

metastatic potential, and are known to be more resistant

to standard chemoradiotherapy [6–14]. Recently, even

micro-metastases have been shown to exhibit hypoxia

[15]. Up to 5–10 % of the oesophageal cancer patients

suffer from progressive disease with metastases shortly

after completion of neoadjuvant chemoradiotherapy [16]

and the majority of patients eventually die because of meta-

static disease. Therefore, hypoxia is an attractive target for

newly developed drugs to increase the therapeutic effect of

conventional oesophageal cancer treatment modalities.

Evofosfamide (TH-302) is a hypoxia-activated prodrug

only activated under low levels of oxygen (hypoxia)

[17–23]. Evofosfamide exploits the activation of a nitroi-

midazole prodrug by a process that involves the reduction

of one electron, mediated by ubiquitous cellular reduc-

tases as the NADPH cytochrome P450 reductase to gener-

ate a radical anion prodrug. In the presence of oxygen

(normoxia) the radical anion prodrug reacts rapidly with

oxygen to produce superoxide and re-generate the original

prodrug. Under the low-oxygen conditions of the hypoxic

zones in tumours, however, the radical anion form of the

prodrug has a longer half-life and can either fragment

directly, or undergo further reductions, releasing the

active drug bromo-isophosphoramide mustard that acts

as a DNA cross-linker.

Recently, our group reported the radio-sensitizing effect

of evofosfamide in a preclinical setting using syngeneic

rat R1 rhabdomyosarcoma and human H460 NSCLC

(non-small cell lung cancer) xenograft tumour models.

Evofosfamide treatment significantly reduced the hyp-

oxic fraction, by more than 80 % compared to the control

tumours in both tumour models. This was visualized at

either micro-regional level or on PET images with the

hypoxia tracer 18F-HX4 (Fig. 1). Treatment with evofosfa-

mide alone caused a significant delay in tumour growth

while, when combined with radiotherapy (8 Gy), the

growth delay was further enhanced. In addition, hypoxic

fractions determined by pre-treatment 18F-HX4 scans

were predictive for the response associated with evofosfa-

mide treatment. Therefore, a pre-treatment 18F-HX4 scan
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may be beneficial for selection of patients for evofosfamide

treatment and a post treatment 18F-HX4 scan enables to

monitor treatment efficacy [20].

Evofosfamide has already been clinically investigated

both as monotherapy and in combination with chemo-

therapy or other targeted cancer drugs in over 1,500

patients, and is currently under investigation in more

than fifteen clinical trials registered at clinicaltrials.gov.

Investigated tumours include soft tissue sarcoma, pan-

creatic cancer, non-small cell lung cancer, melanoma,

and haematological malignancies. In general, the drug

is well tolerated with main toxicities being higher-grade

skin and mucosal toxicities, in particular in doses above

240 mg/m2 [24, 25]. In patients with advanced pancre-

atic cancer or soft-tissue sarcoma the combination of

chemotherapy with evofosfamide achieved favourable

outcomes, [26, 27] leading to two phase III clinical trials

(NCT01746979 and NCT01440088). Despite the promis-

ing pre-clinical results demonstrating the potential added

value of evofosfamide in combination with radiotherapy

[20], to date no clinical studies have been performed to

confirm this.

The primary objective of this 3 + 3 dose escalation

phase I ‘window-of-opportunity’ trial is to investigate the

safety of evofosfamide in combination with the standard

CROSS regimen in patients with distal oesophageal and

oesophago-gastric junction adenocarcinoma, to determine

the dose-limiting toxicities (DLTs) of the combined regi-

men and consequently to find the maximum tolerated

dose (MTD) and recommended phase II dose (RP2D).

As 18F-HX4 has shown to be a hypoxia PET-tracer

[28–35] with good repeatability in oesophageal cancer

[36], two 18F-HX4 PET-scans will be performed to

characterize tumour hypoxia at baseline and visualize

the potential change in hypoxia after the first admin-

istration of evofosfamide [9, 37].

Methods/Design

Study design

This is a phase I, non-randomized, single-centre, open-

label, 3 + 3, ‘window-of-opportunity’ trial combining

preoperative evofosfamide with the CROSS regimen

(NCT02598687).

In this traditional 3 + 3 dose-escalation design [38, 39],

a cohort of three patients will enter a given dose level,

and if no dose limiting toxicity (DLT) is observed 30 days

after surgery, the trial will proceed to the next dose level.

If a DLT occurs in 1 of 3 patients at a given dose level, 3

additional patients will be added to the same dose level

cohort. If the occurrence of DLT remains limited to 1

out of 6 patients, the trial will proceed to the next dose

level. If a DLT occurs in 2 or more patients at a certain

dose level, dose escalation will be stopped. The previous

dose level is then considered the maximum tolerated

dose (MTD) and, therefore, the recommended dose for a

phase II study. This is also summarized in Fig. 2. In this

study three dose levels will be tested, which means

that a maximum of nine to eighteen patients will be

included.

In- and exclusion criteria

Prior to treatment, patients are discussed at the centralized

multidisciplinary tumour board consisting of, inter alia, a

surgeon, medical oncologist, nuclear medicine physician

and radiation oncologist. Potentially curable patients with

histologically proven stage IB-IIIC T2-4 distal oesophageal

or oesophago-gastric junction adenocarcinoma are eligible

to participate in this study. The minimum age is 18 years

and the patients need to be fit for chemoradiotherapy

with a normal baseline electrocardiogram (ECG) and a

performance status of 0–2 according to the World

Health Organisation (WHO) classification.

The most important exclusion criteria are: a history of

thoracic radiotherapy, recent severe cardiac or pulmonary

disease, pregnancy, and/or viral infection.

Study treatment

All patients will receive nCRT according to the CROSS

regimen (Carboplatin AUC = 2 mg/ml/min, Paclitaxel

50 mg/m2, concurrent radiotherapy 41.4 Gy/23 frac-

tions) [4]. One starting dose of evofosfamide will be ad-

ministered one week prior to the start of the nCRT,

after which five additional administrations will be given

Fig. 1 Evofosfamide decreases the hypoxic fraction in a Rhabdomyosarcoma rat model. PET-scans with hypoxia tracer 18F-HX4 were made before
(day 0) and after (day 4) administering evofosfamide for four consecutive days at a dose of 25 mg/kg
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weekly on the same day as Carboplatin and Paclitaxel,

but 2–4 h prior to the chemotherapeutics (Fig. 3). The

drugs will be administered via a peripherally inserted

central catheter (PICC) and an ECG will be made be-

fore and after administration of the first two fractions

of evofosfamide. Investigated dose levels range from

120 mg/m2 to 340 mg/m2 evofosfamide, with the possibility

to de-escalate to a dose level of 60 mg/m2 (Fig. 2). Due to

the activation of evofosfamide under all hypoxic conditions,

the patients will receive extra skin-care, e.g. by using cold

packs during administration, to reduce hypoxia and prevent

the possible occurrence of any severe skin-toxicities.

Surgical resection will be attempted six to ten weeks

after completion of the nCRT, depending on the patient’s

characteristics and the lack of evidence for metastatic

disease on a re-evaluation FDG-PET/CT-scan made before

the planned surgery. Depending on tumour location and

general comorbidity, either a minimally invasive transhiatal

approach, including a one-field and low mediastinal lymph

node dissection, or a transthoracic approach with a two-

field lymph node dissection will be performed. The patho-

logical tumour response of the resected specimen will

be evaluated using the standardized pathology protocol,

reporting, amongst others, the tumour regression grade

according to the Mandard scoring [40], and the status

of the resected lymph nodes and resection margins.

Imaging

Standard non-invasive diagnostic modalities include

a (whole-body) FDG-PET/CT scan and/or endoscopic

Fig. 3 Study treatment schedule. Prior to the start of the standard CROSS treatment, patients will receive additional 18F-HX4 scans before and
after the first dose of evofosfamide

Fig. 2 Flowcharts summarizing the 3 + 3 dose escalating study design. In the first cohort of patients evofosfamide will be administered at a dose
of 120 mg/m2. Depending on the observed toxicity, we will escalate to dose level 2, or de-escalate to dose level -1. In further dose levels we can
only escalate to the next dose (up to 340 mg/m2) or stop due to dose limiting toxicity
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ultrasound (EUS) with biopsy. Patients that are included

in this study will receive two additional PET/CT-scans

with the hypoxia tracer 18F-HX4: the first scan at baseline

and the second scan three days after the first administra-

tion of evofosfamide (Fig. 3). 18F-HX4 will be administered

via a bolus intravenous injection 444 MBq (12 mCi), and

the PET/CT-scan will be acquired 4 h post injection. The

detailed acquisition protocol was previously described

by Zegers et al. [33]. Based on the available diagnostic

information, only a single bed position centred around

the primary tumour site will be imaged and a slice-

thickness of 3 mm will be used for the CT-reconstruction

[28, 29, 33, 34]. On both days a blood sample (5–7 ml) will

be drawn before administration of 18F-HX4 to analyse the

concentration of hypoxia related blood biomarkers car-

bonic anhydrase IX (CAIX) and osteopontin (OPN) [41].

Study parameters and endpoints

The main study endpoint is to determine the DLT and

define the MTD and RP2D. DLT is defined as:

– Uncommon grade 3 or higher non-haematological

toxicity according to the Common Terminology

Criteria for Adverse Events (CTCAE) version 4.0.

Grade III esophagitis in 50 % of the patients is

accepted.

– Grade 4 or higher haematological toxicity according

to CTCAE version 4.0.

– Grade 4 or higher postoperative toxicity within

30 days post-surgery according to the Clavien-Dindo

classification [42]. For anastomotic leakage and

cardiorespiratory complication we accept a rate of

50 % and 40 % respectively.

– Any grade 2 or higher non-haematological toxicity

that does not resolve to grade 0 or 1 toxicity by the

start of the next cycle, which is considered a DLT

according to the judgement of the investigator or

sponsor.

– Inability to begin the next cycle of treatment within

two weeks of the last dose due to unresolved

toxicity.

Secondary endpoints include investigating the change

in hypoxia based on 18F-HX4 imaging and blood bio-

markers to explore what would be the biologically effective

dose, and anti-tumour activity measured by the rate of

pathological complete response (pCR), histopathological

negative circumferential resection margin (CRM) rate, local

and distance recurrence rate, and progression free and

overall survival.

Post-treatment

End of treatment is defined as the date of the last radio-

therapy fraction in case of treatment completion according

to protocol. When a patient drops-out before the end of

treatment for any reasons other than DLT, he or she will

be replaced by an additional patient.

If there is a complete remission on re-evaluation FDG-

PET/CT-scan after chemoradiotherapy, a patient can dis-

cuss the possibility for a wait-and-see strategy off protocol

[43]. The decision to proceed to the next dose level of

evofosfamide will be made when the minimum post-

surgery or post-chemoradiotherapy (if no further surgery)

follow-up of each patient in a particular dose level is

30 days.

Patients are examined weekly during the treatment.

Follow-up starts directly after the end of treatment and

adverse events will be assessed at 1 and 4 weeks after

nCRT, right before surgery and one month after surgery.

Thereafter, follow-up visits will be planned every three

months in the first year after nCRT, twice in the second

year, and then yearly until a minimum follow-up time of

five years.

Discussion

Known and potential risks and benefits

The primary dose limiting toxicities of evofosfamide from

clinical studies have indicated more haematological tox-

icity than in monotherapeutic chemotherapy. Skin and

mucosal toxicities are common above doses of 240 mg/m2

[24, 25]. The mucosal toxicities increase with dose but are

still treatable with conservative approaches. The percent-

age of grade 3 esophagitis is expected to be higher in our

proposed study design than with the standard CROSS

treatment, but can be managed adequately (feeding tube,

parenteral nutrition).

Evofosfamide has not been tested in combination with

carboplatin, paclitaxel and radiotherapy before, so no

pharmacological interactions between these drugs are

known. A potential risk is that all three drugs can cause

mild haematological toxicity (reversible leukopenia, neu-

tropenia and/or lymphopenia) in some patients, but it is

not known if this effect will be amplified by combining

the drugs. Therefore we start with low dose levels of

evofosfamide in comparison to the maximum tolerated

doses in previous clinical studies. As an extra safety

measure, patients in the first cohort will only be in-

cluded when the previously included patient has finished

chemoradiotherapy.

We are aware that with our trial design, combining

evofosfamide with trimodality treatment, it will be diffi-

cult to determine the exact cause of potential adverse

events. An alternative design would be to only include

oesophageal cancer patients that receive either chemo-

therapy (carboplatin and/or paclitaxel) or radiotherapy.

However, this strategy currently is only applied in very

rare palliative cases. Moreover, the dose levels of chemo-

therapy and radiotherapy in a palliative setting are different
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than in a curative setting. Potentially curable patients

will always receive trimodality therapy and withholding

one of the treatment modalities to test the safety in

combination with evofosfamide in potentially curable

patients would, obviously, be very unethical, especially

since the effectiveness of evofosfamide in oesophageal

cancer is not proven yet. Hence, we believe that it is

essential to test evofosfamide in the setting as proposed

in this trial.

The benefit of this ‘window-of-opportunity’ trial is

that the clinical activity of evofosfamide in patients

with oesophageal cancer can be studied without being

compromised by previous or interfering treatments

[37]. Another benefit is that the combination therapy

might overcome resistance to conventional treatment

with chemoradiotherapy and creates a supra-additive

effect with increased tumour response. Patients with a

complete pathological response after neo-adjuvant treat-

ment eventually could opt for a wait-and-see strategy to

omit or postpone surgery.

Explorative image analysis

Hypoxia PET-tracer 18F-HX4 has been extensively used

at our institute in both pre-clinical and clinical studies.

It is shown that the tracer is not associated with any

toxicity [31], has a stable uptake pattern [33], provides

complementary information to metabolic FDG imaging

[34], and has a good spatial stability in lung, head and

neck [29], and oesophageal cancer [36]. The design of

this trial enables us to study the hypoxic response based

on imaging biomarker 18F-HX4 and blood biomarkers

CAIX and OPN. This early response assessment will give

us insight into the anti-tumour activity of evofosfamide,

and can be used to define the optimal dose for future clin-

ical research.

Calais et al. showed previously that high FDG-uptake

regions at baseline identify tumour sub-volumes that are

at a greater risk of recurrence [44]. Therefore explorative

image analysis will be performed to visualize the spatial

correlation between the baseline FDG-uptake and 18F-

HX4 uptake first, and later investigate if the high uptake

regions correlate with the patterns of residual disease.

Also the correlation between 18F-HX4-imaging and hyp-

oxia blood biomarkers CAIX and OPN will be evaluated.

Predictive models of outcome (e.g. pathological response,

survival) will be developed based on a so-called Radiomics

analysis. Radiomics is the extraction of a large number of

quantitative intensity, shape and textural features from

both CT and PET images [45]. It was shown that Radio-

mics features have prognostic value in both lung and head

and neck cancer [46–48]. The additional value of Radio-

mics features in response prediction of oesophageal cancer

patients is currently under investigation [49–51].

Another phase II clinical study currently investigates the

effect of tumour hypoxia on the response to standard che-

moradiation, by visualizing hypoxia with 18F-HX4-imaging

before treatment and two weeks after the start of treat-

ment (NCT02584400). Since the HX4-scanning settings

are identical, the imaging data of both studies provide

complementary information about the behaviour and in-

fluence of tumour hypoxia in oesophageal cancer treat-

ment. All of this together may be of additional value to

better stratify patients in the future [52], by identifying

patients who would benefit from hypoxia-selective treat-

ment, such as evofosfamide, already in an early stage.
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