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A direct imaging algorithm for point and extended targets is presented. The algorithm is based on

a physical factorization of the response matrix of a transducer array. The factorization is used to

transform a passive target problem to an active source problem and to extract principal components

�tones� in a phase consistent way. The multitone imaging function can superpose multiple tones

�spatial diversity/aperture of the array� and frequencies �bandwidth of the probing signal� based on

phase coherence. The method is a direct imaging algorithm that is simple and efficient since no

forward solver or iteration is needed. Robustness of the algorithm with respect to noise is

demonstrated via numerical examples.
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I. INTRODUCTION

In reflection seismology, ultrasound imaging in medical

applications, detection of defects in nondestructive testing,

underground mine detection and target detection using radar

or a sonar system, and so on, one seeks to identify the loca-

tion and shape of some scatterers by sending probing waves

and measuring the scattered waves, e.g., using scattering re-

lations. This is in general an ill-posed �nonlinear� inverse

problem. Imaging the whole medium using a general inverse

problem approach may be too complicated and too expensive

to be practical in many applications, for instance, if the im-

aging domain is large compared to the wavelength. If the

background medium is homogeneous and some simple

boundary condition is satisfied at the boundary of the target,

the inverse problem can be turned into a geometric problem,

that is, the problem of determining the shape of the target

from the scattered wave field pattern. Using nonlinear opti-

mization approach in this case is still difficult and computa-

tionally expensive.

Direct imaging methods, which are not based on nonlin-

ear optimization and hence do not require forward solver or

iterations, have attracted a lot of attention recently. If the

targets are small compared to the array resolution, the loca-

tion information can be obtained while the geometry in-

formation is not resolved. Several matched filter type of

algorithms have been developed for imaging or locating

point targets, for example, the multiple signal classification

�MUSIC� algorithm.
1–4

Under the assumption of point tar-

gets the response matrix �defined in Sec. II� has a simple

structure. This structure is used in MUSIC and has also been

exploited to focus a wave field on selected scatterers using

iterated time reversal.
5–10

The iterated time reversal proce-

dure corresponds to the power method for finding the domi-

nant singular vectors for the response matrix. However, with

the point target assumption, physical properties and the ge-

ometry of the target are neglected. More importantly an ex-

tended target is not a superposition of point targets. For ex-

tended targets the response matrix has a more complicated

structure. Recently a few MUSIC type of algorithms
11–14

have been developed to image the location and shape of ex-

tended targets. A crucial step is to use resolution and noise

level based thresholding to determine how many singular

vectors of the response matrix span the signal space.

Although the generalized MUSIC algorithm for a single

frequency is capable of imaging different types of targets

with efficiency, robustness, and accuracy, provided full aper-

ture data are given, for limited aperture the results are typi-

cally not very good. Multiple frequencies should be used to

complement the lack of spatial aperture.

The MUSIC algorithm is based on the singular value

decomposition �SVD� of the response matrix. This decompo-

sition allows for an arbitrary complex phase; therefore, com-

bining different frequencies in a phase coherent way is not

direct. In this paper, we propose a multitone imaging algo-

rithm that makes use of coherent information in both phase

and space. In particular, we take advantage of phase coher-

ence from multiple frequency data to improve both reso-

lution of robustness of the imaging procedure. The crucial

points in our multitone algorithm are �1� physically based

factorization of the response matrix that transforms a passive

target detection problem to an active source detection prob-

lem and �2� a phase coherent imaging function that can su-

perpose multiple tones and multiple frequencies to take ad-

vantage of both spatial diversity �aperture� of the array
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and/or the bandwidth of the probing signal. The proposed

method can be parallelized easily since the evaluation of the

imaging function at different grids is independent.

The outline of this paper is as follows. In Sec. II we

describe how to locate point targets using a method that we

call the multitone algorithm. In Sec. III, we generalize the

method to imaging of extended targets. Numerical experi-

ments are presented in Sec. IV.

II. RESPONSE MATRIX AND IMAGING POINT
TARGETS

Our imaging setup uses an array of transmitters that can

send out probing waves into the region of interest and an

array of receivers that can record scattered waves. Our mea-

surement data are the response matrix whose elements are

the inter-responses between array elements. The arrays can

enclose the region of interest �full aperture� or can have par-

tial aperture. For simplicity, we first consider an active array

when the array of transmitters and the array of receivers

coincide, moreover, time harmonic waves. Assume that there

are N transducers, which can function both as a transmitter

and as a receiver, and that are located at �1 , . . . ,�N. The Pij

element of the response matrix P is the received signal at

transducer j for a probing pulse sent out from transducer i.

Assume that there are M point targets located at x1 , . . . ,xM

with reflectivity �1 , . . . ,�M. The response matrix in the Born

approximation has the following simple structure using spa-

tial reciprocity:

Pij = �
m=1

M

�mG0�xm,�i�G
0�� j,xm�

= �
m=1

M

�mG0��i,xm�G0�� j,xm� ,

where G0�x ,y� is free space Greens function and we suppress

the dependence on frequency. In matrix form we have

P = �
m=1

M

�mgmgm
T ,

where

gm = �G0��1,xm�,G0��2,xm�, . . . ,G0��N,xm��T,

m=1,2 , . . . ,M, are called illumination vectors, each of

which corresponds to the received signals at the array for a

point source at xm. For an active array, the response matrix is

square and symmetric with rank M in general. If the targets

are well resolved by the transducer array, i.e., the separation

distance between the targets is larger than the resolution of

the array, we have that the point spread function

��xm,xm�
� = ḡm

T gm�
� 0 if m � m�,

which means the wave field corresponding to the time rever-

sal of a point source at one target is almost zero at all

other targets. Hence ĝm=gm / �gm� and its complex conjugate

ḡ̂m can be regarded as the left and right singular vectors for

the response matrix P. In general this one to one correspon-

dence does not exit. However, one can show that gm, m

=1,2 , . . . ,M still span the signal space of P even if multiple

scattering among point targets is present based on the Foldy–

Lax formulation.
1

Remark. Here we assume the simplest model for point

scatters. In general, a point scatterer may induce both mono-

pole and dipole for the scattered field. For example, the scat-

tered field for an acoustic point scatterer is the sum of mono-

pole �by contrast in compressibility� and dipole �by contrast

in density�.15,16
Our formulation and imaging function only

use the monopole component which works for hard scatter-

ers. We should be able to modify our imaging function to

take into account dipoles which will be discussed in our

future work.

To motivate our imaging algorithm consider first the

case with a point source at the mth scatterer location; the

vector of observations at the transducer array is then

g�xm� = �G0��1,xm�,G0��2,xm�, . . . ,G0��N,xm��T.

Phase conjugation at the mirror and backpropagation to the

imaging domain correspond to forming the imaging function

Im�x�=g�xm�Hg�x�, where x is a search point in the domain

and the superscript H denotes the transpose and complex

conjugate. Note that physical time reversal corresponds to

phase conjugation in frequency domain and then backtrans-

formation to time domain. In the inverse problem setting,

although xm is unknown, an estimate of ĝ�xm� can be ob-

tained �up to a constant phase� via the SVD of the response

matrix. The imaging function will peak at the source location

xm due to phase coherence; Im�xm�= �g�xm��2. In particular, if

we use normalized ĝ�x� and ĝ�xm� in the above imaging

function, it is an optimal matched filter.
17–19

Classic Rayleigh

resolution theory gives that Im�x� will be supported in the

neighborhood of the source-point xm with a lateral resolution

of order �L /a. Here �=c0 /� is the wavelength, L is the

distance from the array to the source, a is the aperture of the

array, and c0 denotes the speed of propagation.

We compute the SVD of the response matrix to extract

dominant singular vectors �tones�. This matrix factorization

corresponds to turning passive targets into imaging sources

for the scattered wave. However, the SVD of a matrix is

unique up to a complex phase, e.g., if the following is a SVD

of P:

P = �
m

�mumvm
H,

where um�vm� are the unit left �right� singular vectors and �m

are the singular values of P, then ei�mum�ei�mvm� are also left

�right� singular vectors for arbitrary �m, m=1,2 , . . .. To over-

come the arbitrary phase in the SVD, we propose the follow-

ing modified imaging function for each pair of left and right

singular vectors um and vm, which we call a tone of the

response matrix:

Im�x� = �ĝH�x�um��ĝH�x�v̄m� .

First, this imaging function removes the phase ambiguity of

the SVD of the response matrix. Second, for well resolved

point targets,
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Im�x� = �ĝH�x�ĝ�xm��2.

Note that by “squaring” in this way, instead of using norm

square, we maintain the phase information, e.g., the phase

information is just linearly doubled. Next, we superpose the

dominant tones for the different frequencies to obtain the

general form of the multitone imaging function:

IM�x� = �
�

�����
m=1

M�

�ĝH�x;��um
���ĝH�x;��v̄m

�� . �1�

We remark that for an active array with the transmitters

and receivers coinciding, the response matrix P is complex

symmetric and can be factorized as P=U�UT. The imaging

function then becomes

IM�x� = �
�

�����
m=1

M�

�ĝH�x;��um
��2. �2�

In the general case when the transmitters and receivers do

not coincide, e.g., there are s transmitters located at �1 , . . . ,�s

and there are r receivers located at �1 , . . . ,�r, the response

matrix is of dimension s	r. The ijth element Pij then

records the response at jth receiver for a signal sent out from

ith transmitter. Define the illumination vector with respect to

the receiver array and transmitter array, respectively, as

gr�x� = �G0��1,x�,G0��2,x�, . . . ,G0��r,x��T

and

gs�x� = �G0��1,x�,G0��2,x�, . . . ,G0��s,x��T.

The response matrix in the Born approximation has the fol-

lowing form in the case of M point targets located at

x1 , . . . ,xM with reflectivity �1 , . . . ,�M:

P = �
m=1

M

�mgs�xm�gr
T�xm� .

Thus, the column and row space of P is spanned by gs�xm�
and gr

T�xm�, respectively. Accordingly the multitone imaging

function is constructed as

IM�x� = �
�

�����
m=1

M�

�ĝs
H�x;��um

���ĝr
H�x;��v̄m

�� . �3�

Here ĝ denotes the normalized illumination vector.

The frequency weight function ���� can in principle be

chosen to reflect the signal to noise ratio �SNR� of different

frequencies. However, here we will not discuss this issue and

use a uniform weighting. Note second that M� is the number

of significant tones which may vary with frequency. If there

are M point targets that are well resolved by all the frequen-

cies used, then M�=M. In general, e.g., for extended targets,

M� may be proportional to the resolution of frequency �.
11,20

In particular, when there is strong noise present, e.g., low

SNR, M� is an important thresholding �regularization�
parameter.

11
An important strength of the multitone algo-

rithm is that it is quite robust with respect to the choice of

M�. In particular, when the noise level is low, we can choose

it to coincide with the smaller dimension of the response

matrix. This is not the case for, for instance, the MUSIC

algorithm, described below, whose imaging result depends

more sensitively on the thresholding.

We summarize by stating that two important features of

the multitone imaging algorithm are as follows:

1. The SVD factorization of the response matrix turns a pas-

sive target detection problem into an active source detec-

tion problem. The principal component �tone� decompo-

sition of the response matrix takes the full array into

account simultaneously and extracts dominant informa-

tion or “tones” via the SVD, giving a robust imaging

scheme.

2. The imaging function exploits coherent phase information

via superposition of complex tones.

Next, we compare our multitone imaging algorithm with

two other popular imaging algorithms. For simplicity we dis-

cuss the active array case.

1. MUSIC. The MUSIC imaging function
4

is based on the

projection to the signal space spanned by dominant sin-

gular vectors, which is equivalent to the following quan-

tity:

�
m=1

M

�ĝH�x�um�2,

where M is the dimension of the signal space that is

determined according to the resolution and/or the SNR

analysis.
11,20

However, phase information is lost after

projection and hence it is difficult to superpose multiple

frequencies based on phase coherence. Thus, travel time

information is not effectively utilized in this implemen-

tation of the MUSIC imaging functional.

2. Kirchhoff migration. The Kirchhoff migration is a time

domain method which exploits travel time information

between pairs of transducers. After Fourier transform it

can be approximated in frequency domain
21

by the fol-

lowing:

g̃H�x�PgS �x� = g̃H�x�	�
m=1

N

�mumvm
H
g̃�x� ,

where g̃�x� is Green’s function without the spatial decay-

ing factor �1 / �x�� and N is the number of transducers.

The above formula is similar to Eq. �1� for each fre-

quency except the following two main differences: �1�
our imaging function does not contain the weighting by

the singular values and �2� our imaging function intro-

duces a thresholding/regularization based on resolution

and/or SNR. These two differences mean that the multi-

tone imaging algorithm only separates signal space from

noise space and treats all dominant signals, i.e., domi-

nant singular vectors, equally. The motivation comes

from the following observations: a point target partially

blocked by other targets will contribute a singular vector

with smaller singular values. So our multitone imaging

function will increase the visibility of partially blocked

targets compared to Kirchhoff migration, as shown in

Figs. 2 and 3 in Sec. IV A. Also an extended target is not
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a superposition of point targets. For example, it is illus-

trated in Ref. 11 that each singular vector does not cor-

respond to a point on the boundary of an extended target.

The geometry of the boundary is embedded in the signal

space spanned by the dominant singular vectors collec-

tively. Hence the multitone imaging function will serve

to give a uniform illumination of the visible parts of the

boundary.

In summary our multitone imaging algorithm takes ad-

vantages of both approaches in a natural way. Like MUSIC,

our algorithm is based on the SVD of the response matrix

and a resolution and/or SNR based thresholding to extract

principal components �tones� from the full array information.

The principal components are used collectively and in a uni-

form weighting situation. This is particularly important for

imaging extended targets. The response matrix for an ex-

tended target can have many principal components.
12,16,22–26

The collection of all these principal components contains

information about the extended target. On the other hand,

instead of using a projection operator as in MUSIC, we use a

propagation operator as in the Kirchhoff method which

maintains coherent phase information and allows linear su-

perposition of different tones �components� and multiple fre-

quencies. Only at locations with strong scattering are phases

of different tones and different frequencies in our imaging

function coherent. Like in the Kirchhoff method travel time

information is thus utilized in our imaging function. Our ap-

proach is based on gaining robustness via using the SVD of

the response matrix to extract coherent information and is

extremely simple to implement. We remark that other recent

approaches like the coherent interferometric �CINT�
method

21
aim at extracting information via carefully

screened cross correlation computations of the observations.

This approach has been shown to work well in a strongly

heterogeneous environment but is less direct in its imple-

mentation.

III. EXTENDED TARGETS

A. Dirichlet boundary condition

We consider the situation with an extended target. First,

let us assume a Dirichlet boundary condition for the target,

i.e., a sound-soft target. Let 
 denote the target and 
c the

exterior of the target. Let G
�x ,y� be associated Green’s

function that solves

�G
�x� + k2G
�x� = ��x − y�, x,y � 
c � Rm,

G
�x,y� = 0, x � �
 ,

and a far field radiation boundary condition. The scattered

field at transducer � j corresponding to a point source at �i

follows from Greens formula and is

Pij = �
�


G0��i,y�
�G
�� j,y�

�
dy ,

where G0 is free space Green’s function. A physical interpre-

tation is that the source of the scattered wave field is a

weighted superposition of monopoles at the boundary. The

response matrix can be written as

P = �
�


g�y�	 �g
�y�

�

T

dy , �4�

where g�y� is the illumination vector for the homogeneous

background, which is known, and g
�y� is the illumination

vector

g
�y� = �G
��1,y�, . . . ,G
��N,y��T,

which is unknown.

Equation �4� gives a factorization of the response matrix

that separates the known and unknown components. Thus,

the response matrix is superposed from illumination vector

g�y�, where y belongs to the illuminated parts of the bound-

ary, e.g., where �g
�y� /� is not small. Therefore, we apply

SVD to the response matrix to extract the singular vectors

um�vm� and then use the imaging functions �2� for symmetric

active array and �3� if the transmitter array and receiver array

are different. This imaging function will peak at the well

illuminated parts of the boundary. Physically, the peak can be

explained by the fact that the boundary acts as a source for

the scattered field; thus also, iterated time reversal, i.e.,

power method for finding singular vectors, will give focusing

on the boundary. The thresholding strategy for extended tar-

gets introduced in Ref. 11 can be used to determine the

thresholding parameter by an optimal cutoff.

We remark that the unknown weight function �illumina-

tion strength� for the monopoles at the target boundary,

�g
�y� /�, is not uniform in general due to geometry of the

target, such as singularities and concavity of the boundary,

and/or the array configuration, such as illumination angles

and partial aperture. Locations on the boundary with stronger

wave field, i.e. better illuminated by the source, have more

weights. These factors will be reflected by the magnitude of

singular values for different singular vectors. In our multi-

tone algorithm each principal component will be given an

equal weight as long as its corresponding singular value is

above the noise threshold. That is why our imaging function

gives a fairly uniform intensity on the well illuminated

boundary. This is an important aspect of our approach: by

taking out the scaling of the tones by the singular values we

focus on the geometrical aspects of the extended scatterer

and compensate for differences in relative illumination

strength. Thus differential parts of the boundary are imaged

with a similar fidelity.

B. Neumann boundary condition

For a sound-hard target, with a Neumann boundary con-

dition for the extended target the response matrix has the

form

P = − �
�


	 �g�y�

�

g


T �y�dy .

In other words, the source of the scattered wave field is an

�unknown� weighted superposition of dipoles �g�y� /� at the

boundary. Therefore, the normal direction is part of the un-
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known in the imaging function. As is done in Ref. 11 we will

incorporate a direction search in our imaging function, e.g.,

among a fixed collection of discretized directions, � j, j

=1,2 , . . ., we maximize the imaging function among these

directions at a searching point x. Our multitone imaging

function is then in the general case:

IM�x� = max
j
��

�

�����
m=1

M�

	 �ĝs
H�x;��

� j

um
�
	 �ĝr

H�x;��

� j

v̄m
�
� .

C. Limited or synthetic aperture

For single frequency and full aperture the MUSIC algo-

rithm typically works better than multitone. However, for

limited aperture or synthetic aperture with multiple fre-

quency data MUSIC may fail while multitone can work well.

We demonstrate below that the multitone algorithm works

well also in a case with limited or synthetic aperture.

D. Far field data

In Sec. II the response matrix is defined in terms of near

field data, with the sources and receivers in near field. In

some applications, the measurement data are far field data,

that is, the incident field is essentially a plane wave and the

far field pattern of the scattered field is recorded.

We now discuss briefly the case for far field data. For

Dirichlet boundary condition, the element of the response

matrix Pij corresponds to the far field pattern of the scattered

field in the jth direction due to an incident wave coming

from the ith direction:

Pij = u���̂ j;�̂ j� = ��
�


�u

�
�y;�̂i�e

−ik�̂j·ydy ,

where the total field u is due to incident plane wave coming

from the direction �̂i, where �=−1 /4� for three dimensions

and �=−ei�/4
/8��k� for two dimensions.

In matrix form

P = ��
�


�u�

�
ĝH�y�dy , �5�

where

ĝ�y� = �eik�̂1·y, . . . ,eik�̂n·y�T,

and u� is the vector of total fields corresponding to the inci-

dent plane waves from �̂1 , . . . , �̂n. Equation �5� gives a

physical factorization of the scattered field into known and

unknown parts. The far field pattern is a superposition of the

far field patterns of point sources located on the boundary of

the target; however, we do not know the weight function

which depends on the total field. In other words, the scatter-

ing at the target boundary acts as “sources” for the scattered

field. In this far field setup, it is natural to use ĝ�y� as the

illumination vector as discussed in Ref. 12. The signal space

of the response matrix should be well approximated by the

span of the illumination vectors ĝ�y� with y on the well-

illuminated part of the boundary of the targets. Hence, we

only need to change the form of illumination vectors in the

multitone imaging function. Neumann type of boundary con-

ditions can also be dealt in a similar fashion as in the case

with near field data. See Ref. 12 for more details.

IV. NUMERICAL EXPERIMENTS

A. Point targets

First we show a few examples for point targets, targets

that are small compared to the resolution of the array. The

examples are two dimensional �2D� experiments and simula-

tions.

In the first numerical test, there are three targets with a

range of 30–40� �central wavelength�. The linear active ar-

ray is located at the left side and is composed of 21 trans-

ducers that are half wavelength apart, i.e., the aperture is

10�. The three targets are of size 0.5� each. We tested this

setup in both homogeneous and random media. The weakly

heterogeneous medium has a 5% standard deviation and the

correlation length is O���. Finite difference method is used

to solve the Helmholtz equation with perfectly matched layer

�PML� technique
27

for 21 frequencies that are equally dis-

tributed between 0.9� and 1.1� with equal weight. The size

of grid in numerical scheme is � /10 in the 2D rectangle

domain. The star shows the true location of targets.

Figure 1 shows the SVD pattern for a fixed frequency

�0.9�� for these two cases. In the homogeneous medium,

there are only three dominant singular values. However, the

three singular vectors may not have a one to one correspon-

dence to the illumination vector of the three targets due to

0 5 10 15 20 25
0

1

2

x 10
−4

(a)

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5
x 10

−3

(b)

FIG. 1. �Color online� SVD pattern of the response matrix.
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multiple scattering among the targets. In particular, the re-

flected wave from the rear scatterer will be mixed with the

reflection of the two front ones.

The numerical data used for imaging targets in hetero-

geneous medium are the scattered wavefield by the target

and the background heterogeneous medium, i.e., the differ-

ence of the two wavefields corresponding to the medium

with targets and the homogeneous medium, respectively. The

goal is to image dominant scatterers/targets without imaging

or knowing the details of the background medium, which is

very desirable in many practical applications. The situation is

also more difficult than using the difference data, i.e., mea-

suring the difference of the two wavefields corresponding to

the medium with targets and the same medium without tar-

gets, respectively. Figures 2 and 3 show the imaging results

using multitone imaging algorithm using different number of

frequencies and different number of leading singular vectors.

It shows clearly that

• superposition of coherent phases from multiple frequencies

improves range resolution;

• using the leading three singular vectors �the best SNR

thresholding� produces the best results; however, the imag-

ing result is not very sensitive to thresholding; and

• the partially blocked target has a better visibility compared

to the Kirchhoff migration for the reason discussed in Sec.

II.

As shown in Fig. 1, the SVD pattern is more compli-

cated in random medium due to multipathing. Figure 4

shows the imaging results using the multitone imaging algo-

rithm, which demonstrates the following:

• The location information of three point targets is not in-

cluded in the first three singular vectors.

• Involving more singular vectors, even without threshold-

ing, works well since only strong scattering at targets is

superposed coherently �in phase� across different frequen-

cies.

• Again the partially blocked target has a better visibility

compared to the Kirchhoff migration.

Finally we test our algorithms on real experimental data.

The data were kindly provided by Daniel D. Stancil and his

group at Carnegie Mellon University. In their experimental

setup, transmit array A and receive array B are used, as

shown in Fig. 5. The locations of transmitters and receivers

are different. The measurements were taken at 201 frequency

points ranging from 4 to 6 GHz. An absorbing wall is lo-

cated behind the test scenario.

Figure 6 shows imaging using data with different num-

bers of targets. The stars in each figure are the true locations

of targets.

B. Extended targets

In this section we test our multitone imaging algorithm

on extended targets with full aperture, limited aperture, and

synthetic aperture using near and far field data. All near field

data are simulated by solving the Helmholtz equation using

finite difference method with PML �Ref. 27� boundary con-

dition. For inverse problems, the forward solver is not re-

quired to be very accurate, we did not use any special treat-

ment at the target boundary, i.e., the standard five point
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FIG. 2. �Color online� Imaging point targets in homogeneous medium. Mul-

titone algorithm using 3 leading singular vectors and �a� 1 frequency, �b� 5

frequencies, and �c� 21 frequencies.
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stencil for centered difference is used at every grid node.

Far field data are generated using a boundary integral

method.
12,28

The simulations are in 2D.

We give two examples with full or limited aperture near

field data, two examples with synthetic aperture near field

data, one example with full aperture far field data, one ex-

ample where sources and receivers do not coincide, and fi-

nally, one example with limited aperture far field data. For all

near field experiments, the transducers are about 200h �200

grid cells� away from the target and the forward data are

again generated using a finite difference method with the

PML technique.
27

The multiplicative noise is modeled by

Pnoisy�i , j�=Re�P�i , j��a+Im�P�i , j��b, where a and b are

uniformly distributed in �1−c ,1+c�, where c is 10%. The

random medium or clutter is modeled as follows: The index

of refraction n�x� is a Gaussian with mean one and standard

deviation 10% and the correlation length is 10h, which is

comparable but less than the wavelength.

Figure 7 shows imaging of a single extended target in a

homogeneous medium. The full circular active array has 80

transducers surrounding the target. When a single frequency

is used the corresponding wavelength is �=16h. When three

frequencies are used, they correspond to wavelengths, �

=16h ,24h ,32h. The target is about 200h away from the ar-

ray and its size is about 80–100h. In this test, no threshold-

ing is used in the multitone imaging function. It is clear that

phases across different frequencies are superposed coher-

ently at the boundary only, where strong scattering happens.

Figure 8 shows imaging of the same target with limited ap-

erture data. Only half of the circular array from the bottom is

used.

Figure 9 shows the imaging of a sound-hard �Neumann

boundary condition� target with full aperture circular array

�80 transducers�. The array is about 200h from the center of

the target. Six equally spaced frequencies are used, with low-

est frequency �=32h and highest frequency �=16h.

We next test with synthetic aperture. We use the follow-

ing implementation of synthetic aperture. Let P be an 80-

by-80 response matrix corresponding to an active circular

array with full aperture �as above�, and Pn=Q�n :n

+19,n :n+19�, where n=1,11,21, . . . ,61, then the Pn’s are

the 20-by-20 response matrices with limited aperture and a

partial overlap. We use Pn at the same six frequencies as

above.

Figure 10 shows the multitone imaging function with

synthetic aperture data for a sound-soft �Dirichlet boundary

condition� object. The top one is the result for homogeneous

medium with clean simulated data. For the middle one, 10%

multiplicative noise is added to the data. The bottom one

shows imaging in a random medium with 10% standard de-

viation. The correlation length is about a wavelength.

In contrast, the MUSIC algorithm does not provide a

good imaging function for limited/synthetic aperture data.

Figure 11 shows the result using the MUSIC algorithm with

synthetic aperture data. The kite shape is not clear.

Finally we test the multitone imaging algorithm using

far field data. The only change made is in the form of the

illumination vector, i.e., using the far field pattern of Green’s

function. Figure 12 shows the multitone imaging function for

far field data with clean simulated data �left� and with 100%

multiplicative noise added to the simulated data �right�.
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FIG. 3. �Color online� Imaging point targets in homogeneous medium. Mul-

titone algorithm using 21 frequencies and �a� 5 leading singular vectors, �b�
21 singular vectors, and �c� Kirchhoff algorithm using 21 frequencies.
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Three wave numbers are used, k=5,6 ,7, so that the target

sizes are on the scale of the wavelength. The forward data

are here generated using the boundary integral method. In

this case 32 plane incident waves are used and the far field

data are collected at the same 32 directions.

We remark that the thresholding strategy discussed in

Ref. 11 is used for all the above examples of extended targets

except the first one. In principle, with thresholding only the

first few dominant singular vectors are used in the multitone

imaging function. This is known to be robust as long as the

leading singular values are well separated from the remain-

der. However, in our tests the results are not very sensitive to

the thresholding, which means that the multitone imaging

function is already quite robust and is easier to use in prac-

FIG. 4. �Color online� Imaging point targets in random medium. Multitone algorithm using 21 frequencies and �a� 3, �b� 5, �c� 10, �d� 15, and �e� 21 singular

vectors, and �f� Kirchhoff algorithm using 21 frequencies.
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tice. Thus we also expect that our imaging results are robust

with respect to numerical errors and artifacts by our numeri-

cal scheme that generates the data.

In the last set of tests, we show imaging with arrays that

have transmitters different from receivers, or plane wave in-

cident angles different from far field data angles. Figure 13

shows the multitone imaging function using wave numbers

k=5,6 ,7 for far field data with plane wave incident from the

right �16 directions� and far field pattern recorded on the left

�16 directions�. Dirichlet boundary condition is used.

Again, for limited aperture only part of the boundary

that is well illuminated is seen in the imaging function. Fig-

ure 14 shows the multitone imaging function using wave

numbers k=5,6 ,7 for far field data with limited aperture,

that is, only plane waves in a 180 deg angle are used �16

directions� and the far field data within the same angle are

recorded. Only the part of the kite boundary that is well

illuminated by the array can be observed in the imaging

function.

V. CONCLUSIONS

We propose a direct imaging algorithm, the multitone

method. The algorithm is simple and efficient because no

forward solver or iteration is needed. This method provides a

framework for balancing spatial diversity via the SVD with

FIG. 5. �Color online� CMU experiment setup.
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FIG. 6. �Color online� CMU experiment data imaging: �a� one target, �b� two targets, �c� four targets, and �d� eight targets.
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frequency diversity via superposition of coherent phases. By

taking advantage of phase coherence of multiple frequencies,

the imaging is enhanced and is robust with respect to noise.

The algorithm can deal with limited or synthetic aperture

data naturally as well as with different material properties

and different types of illuminations and measurements.
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FIG. 7. �Color online� Multitone algorithm using full aperture data with one

frequency �left� and three frequencies �right�.
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FIG. 8. �Color online� Multitone algorithm using limited aperture data �half

of the circular array from the bottom� with one frequency �left� and three

frequencies �right�.
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FIG. 9. �Color online� Imaging of extended target with Neumann boundary

condition and full aperture using the multitone algorithm with six frequen-

cies.
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FIG. 10. �Color online� Synthetic aperture multitone imaging for a kite

shape with clean data on the top, 10% multiplicative noise in the middle,

and 10% random medium fluctuations on the bottom.
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FIG. 11. �Color online� MUSIC imaging function for a kite shape with clean

synthetic aperture data. The result is poor.
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FIG. 12. �Color online� Multitone imaging for a kite shape and a circular

shape using far field data with 100% multiplicative noise.
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FIG. 13. �Color online� Multitone imaging for a kite shape with incident

plane wave directions different from recorded far field data directions.
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FIG. 14. �Color online� Multitone imaging with limited aperture far-field

data.
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