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A Phase-Based Approach to the Estimation of the
Optical Flow Field Using Spatial Filtering
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Abstract—In this paper, we introduce a new technique for
estimating the optical flow field, starting from image sequences.
As suggested by Fleet and Jepson, we track contours of constant
phase over time, since these are more robust to variations in
lighting conditions and deviations from pure translation than
contours of constant amplitude. Our phase-based approach
proceeds in three stages. First, the image sequence is spatially
filtered using a bank of quadrature pairs of Gabor filters, and
the temporal phase gradient is computed, yielding estimates
of the velocity component in directions orthogonal to the filter
pairs’ orientations. Second, a component velocity is rejected if the
corresponding filter pair’s phase information is not linear over
a given time span. Third, the remaining component velocities at
a single spatial location are combined and a recurrent neural
network is used to derive the full velocity. We test our approach
on several image sequences, both synthetic and realistic.

Index Terms—Aperture problem, optical flow, phase-based, re-
current neural network.

I. INTRODUCTION

M OTION is a prime source of information for determining
the shape and structure of objects perceived in our envi-

ronment. Therefore, accurate techniques for estimating the ve-
locity field (optical flow field) are indispensable components of
many vision applications. Horn and Schunck [14] were the first
to develop a technique based on computing spatiotemporal dif-
ferences from image sequences, which has spurred the develop-
ment of a wide range of techniques and approaches for optical
flow field estimation. In a review paper, Barronet al. [1], [3]
evaluated nine different techniques, representative for various
approaches, namely the differential, matching, energy-based,
and phase-based ones. They have tested these algorithms on
several standard image sequences, both synthetic, for which the
ground truthmotion fields are known, and realistic ones, for
which the desired motion fields are not known and only qualita-
tive comparisons can be made. One of their conclusions was that
the phase-based technique of Fleet and Jepson [5] and the differ-
ential technique of Lucas and Kanade [18] produced the more
accurate results overall. In another comparative study, Galvinet
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al. [9], [19] used more complex synthetic image sequences, for
which the ground truth motion fields are available. Six out of
the eight techniques that have been examined in this study, have
also been used by Barronet al., but leaving out the energy- and
phase-based methods. Galvinet al.concluded that the technique
developed by Lucas and Kanade [18] yields the best results.

Fleet and Jepson showed that the temporal evolution of con-
tours of constant phase provides a better approximation to the
local velocity than do contours of constant amplitude [5]–[7],
[15]. They demonstrated that phase contours are more robust
with respect to smooth shading and lighting variations, and more
stable with respect to small deviations from image translations.
They suggested tracking the constant phase contours by com-
puting the phase gradient of (spatiotemporally) bandpassed im-
ages. They further showed that phase information can become
unstable in the vicinity of phase singularities and have proposed
a straightforward constraint that should be satisfied in order for
the phase information to be reliable for the subsequent estima-
tion of the two-dimensional (2-D) velocity.

We introduce a new phase-based approach to the estimation
of the optical flow field, which is based on spatially filtering
the images using a bank of quadrature pair filters, and not spa-
tiotemporally as has been done by Fleet and Jepson [5]. This
allows for the measurement of phasenonlinearity, rather than
instability, on the basis of which a confidence measure can be
defined that can be used to reject unreliable estimates. Every
quadrature filter pair yields an estimate of the component of the
velocity in the direction orthogonal to the filter pair’s spatial ori-
entation. Several such component velocities from a single spa-
tial location are combined, and the 2-D velocity is found using
a recurrent neural network. We test our technique on the image
sequences used by Barronet al. [1], [3] and Galvinet al. [9],
[19], such that results can be compared. Finally, we examine
the influence of the free parameters that need to be chosen, and
the technique’s sensitivity to noise.

II. SYSTEM ARCHITECTURE

We estimate the optical flow field of an image sequence in
three stages. First, we process the image sequence by spatially
filtering the image at every time frame with a set of quadrature
filter pairs and compute their phase responses. At every spa-
tial location , the temporal phase gradient for every
filter , is computed, from which thecomponentve-
locity, , is derived. Second, the reliability of these compo-
nent velocities is examined and the unreliable ones are rejected.
Third, at every spatial location, the component velocities from
the different filter pairs are combined to produce an estimate of
the full velocity, , at that position.

1045-9227/02$17.00 © 2002 IEEE
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A. Component Velocity

We represent an image sequence by means of the outputs of
a set of spatial filter pairs at every frame. We use quadrature
Gabor filter pairs, which are characterized by their center fre-
quencies, , and the width of the enveloping (spatial) ra-
dially symmetric Gaussian,. We use filters with constant band-
widths of octaves, measured at one standard deviation in the
frequency domain, which results in a spatial width of

The output of a quadrature Gabor filter pair is complex-valued,
and we denote the phase component of the output by .

Fleet and Jepson [5] have shown that the temporal evolution
of contours of constant phase provides a good approximation to
the motion field. Points on such a contour satisfy ,
where is a constant, which, after differentiating with respect
to , yields

where is the temporal phase gradient vector andis
the full 2-D velocity. This allows us to write the temporal phase
gradient as

(1)

where denotes the normalized version of vector. Equa-
tion (1) can be interpreted as a formulation of the well-known
aperture problem: the temporal phase gradient only yields infor-
mation about the component of the full velocity in the direction
of the spatial phase gradient . We denote thiscomponentve-
locity by , and compute it as

(2)

Note that we substitute the spatial phase gradientby the fre-
quency vector which, strictly speaking, only holds
if the bandwidths of the filters approach zero.

For every filter pair , the temporal phase gradient,
is computed from the temporal sequence of its phase com-
ponents by performing a least-squares linear regression on
the -pairs. We compensate for the phase wrap-around
by adding or subtracting if
exceeds (“phase-unwrapping”). Note that gradients larger
than cannot be accurately estimated this way and lead to
large regression errors. The slope of the -regression line
corresponds to the phase gradient, . We have opted to
restrict ourselves to this simple method of phase-unwrapping,
and to detect the inaccurate results in a second stage (see
further); for more elaborate phase-unwrapping techniques, we
refer to [10], [11], and [20].

We have tested this strategy on an -case for a one-di-
mensional (1-D) quadrature Gabor filter pair with a wavelength
of 12 pixels and a bandwidth of octaves (the total op-
erator length is set to pixels). The input consists of
translating uniform noise patterns, the speeds of which range
from to 6 pixels/frame, corresponding to phase gradients of

Fig. 1. Phase error, i.e., the absolute value of the error made on the phase gra-
dient (median values with upper and lower quartiles, taken over a batch of 100
simulations per phase gradient) for the case of translating(x; t) uniform noise.

for the given filter pair. For noninteger speeds, we round
off the displacement with respect to the first frame toward the
nearest integer. For each of the 26 speeds, we have run 100 sim-
ulations with different random noise patterns. Fig. 1 shows the
absolute value of the error on the phase gradient (“phase error;”
median values with upper and lower quartiles). A breakdown
in performance is observed for speeds corresponding beyond
the range which is due to the phase wrap-around
(similar breakdowns are observed for quadrature pairs that are
tuned to different frequencies). Indeed, there is a region near

, where the phase gradient does not yield stable
results: small changes in phase can correspond to large spatial
displacements due to the phase wrap-around. Furthermore, our
simple phase-unwrapping technique is not suited for large phase
gradients. In the second stage of our algorithm, these cases will
be detected by examining the quality of the least-squares regres-
sion (see further). Since there is a breakdown in performance for
phase gradients greater than a certain value, the filter frequen-
cies impose an upper bound on the component velocity that can
be reliably detected.

B. Confidence Measure

Barronet al. [1], [3] have found that the use of confidence
measures, i.e., a measure for determining the correctness of the
computed velocities, greatly influences the performances of dif-
ferent optical flow algorithms. In their implementations, they
have used confidence measures as thresholds to retain a subset
of valid estimates, although they note that in many applications
all velocity estimates can be retained along with their respective
confidence values which could, e.g., be used as weights in sub-
sequent computations.

In their phase-based approach, Fleet and Jepson [5] origi-
nally proposed a two-fold constraint on the component velocity
estimates, namely one on the local frequency, to ensure that
the detected local frequency is within the passband of the
spatiotemporal filter pair, and one on the local signal amplitude,
to reject filter pair outputs where no significant power is present
in that frequency region. In subsequent publications [6], [7],
[15], they have extended the first constraint by detecting the
“singularity neighborhoods,” i.e., the regions where phase
information becomes unstable. We have performed a similar
simulation to those described in [6] and [7], [15] to illustrate
this concept and to visualize the singularity neighborhoods
in a Gabor scale-space framework. Consider a 1-D pattern
of uniform noise, which is convolved with quadrature Gabor
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Fig. 2. Contour plot of the phase component of the Gabor scale space
expansion of a uniform noise pattern. The horizontal and vertical axes represent
spatial positionx and log of the scale� (� spans two octaves). The gray areas
denote (a) the phase instability regions detected by Fleet and Jepson and (b)
the regions detected using our nonlinearity criterion.

filter pairs of different scales,, inversely related to the center
frequencies, with constant bandwidths of octaves. The
phase component of the quadrature pair is plotted in a contour
plot where the horizontal and vertical axes denote the spatial
position and the scale, the latter on a logarithmic axis (150
scales between 0.05 and 0.2). This allows for the visualization
of the phase behavior with respect to scale and spatial position,
corresponding to image expansion (looming) and translation
in the optical flow case. Phase information yields reliable
information for image matching (is “stable”) if the equiphase
contours are near-vertical in the Gabor scale-space expansion
[15]. Fig. 2(a) shows that the phase structure is generally stable,
except at several isolated regions where the equiphase contours
become horizontal “singularities.” Fleet and Jepson have
proposed a straightforward heuristic to detect these “singularity
neighborhoods.” Fig. 2(a) shows the regions that are detected
using this method (shaded gray). By detecting whether or not
the filter pair output is located in a phase singularity neighbor-
hood, the unreliable component velocities can be discarded.

In our approach, we estimate the phasenonlinearity, which
is a major source of erroneous velocity estimates. There is a
relationship between phase nonlinearity and phase instability.
Indeed, one expects that, if the phase information becomes un-
reliable (unstable), it is not likely to have a linear evolution over
time. Since we are considering spatial filter pairs and not spa-
tiotemporal ones, we can easily measure the degree to which the
phase is linear over time in the following way. We compute the
phase for a given filter pair at all framesthat are considered for
the optical flow estimation, and perform a linear least-squares
regression on the -pairs (using the phase-unwrapping tech-
nique explained in Section II-A). The mean-square-error (MSE)
divided by the absolute value of the estimated gradient (in ra-
dians), , yields a measure for the phase nonlinearity over time.
In the Gabor scale space expansion, we compute this nonlin-
earity measure, , as a function of spatial position over a span
of five pixels (note that, in the actual algorithm, it will be com-
puted over time). Spatial positions whereexceeds are
shaded gray in Fig. 2(b). It is clear that these areas roughly cor-
respond to the phase instability regions in Fig. 2(a), although the
exact shapes and sizes differ. In the subsequent simulations, the
nonlinearity threshold value is larger, since subpixel displace-
ments, as well as deviations from pure translational motion, can
occur, leading to larger regression errors. It is important to note

Fig. 3. (a) Phase nonlinearity measure," , as a function of the actual phase
gradient for the case of translating(x; t) uniform noise (same as Fig. 1). The
median values and upper and lower quartiles are plotted. (b) Scatter plot of"

and the phase error.

that this confidence measure also detects cases where the phase
information is in reality linear, but where our phase-unwrapping
technique yields incorrect results.

Fig. 3(a) shows the nonlinearity measureas a function
of the phase gradient (median values and quartiles) for the
same simulations shown in Fig. 1 (the -case described
in Section II-A). The lower -values for phase gradient of

stems from the fact that these phase gradients corre-
spond to nearly integer displacements (4.08 pixels/frame). The
breakdown in performance starts for phase gradients beyond
the range (see Fig. 1). Beyond this range, as is
evident from Fig. 3(a), the linear regression of phase over time
yields a significantly higher (this has also been observed in
simulations with filters tuned to different frequencies). This
is further illustrated in Fig. 3(b), where the phase error is
plotted as a function of . The majority of large phase errors
correspond to values of greater than 0.01. We conclude that

is a good indicator for the accuracy of the phase gradient
estimate. Thus, we will reject component velocities for which
the phase information is not linear over time, i.e., when
exceeds a certain threshold,. The effect of the nonlinearity
threshold, , on the accuracy and the density of the estimated
optical flow field will be examined in Section III.

C. Full Velocity

One component velocity only estimates the velocity com-
ponent in the direction, orthogonal to the corresponding filter
pair’s orientation, i.e., in the direction of its spatial gradient.
The 2-D (full) velocity can be determined if several such es-
timates are available. Thus, we use a bank of spatial quadrature
filter pairs. Each filter pair yields a component velocity. Our fil-
terbank consists of 11 quadrature Gabor filter pairs with band-
widths of octaves and is depicted in Fig. 4 (frequency
domain).

Every component velocity constrains the full velocity
to lie on a “constraint line” in a hypothetical velocity space,
with an orientation orthogonal to [4]. This line is defined as

If several component velocities with different orientations are
present, the intersection of the corresponding constraint lines
will yield the full velocity called intersection-of-constraints
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Fig. 4. Composition of our spatial filterbank in the frequency domain. The
circles correspond to the 1 sigma-borders of the enveloping Gaussians in the
frequency domain.

(IOC).1 Since every component velocity forces the full velocity
to lie on a constraint line , an overdetermined set of con-

straints is produced by the bank of quadrature pairs. Since the
component velocity estimates are noisy, these lines do not in-
tersect in a single point. Schunck [21] introduced his constraint
line clustering procedure which determined the center of the
1-D cluster formed by the intersections of the constraint line,
at a given point, with those corresponding to the local estimates
around that point. Jepson and Black [16] went on and applied
a statistical expectation–maximazation (EM) approach to a 2-D
cluster detection process, which allowed them to determine the
velocities of multiple objects. We will proceed differently and
regard the constraint lines as soft constraints in an optimization
process that determines. The optimization process is cast into
a goal programming2 format as follows. 1) The two vector com-
ponents of the full velocity , namely and , correspond to the
two variables in the goal programming problem. 2) Each con-
straint line corresponds to a separate goal, namely the minimiza-
tion of the orthogonal distance between the constraint line and

. The solution is found by striving toward all goals simultane-
ously, which can be achieved by minimizing, the sum of all
orthogonal distances.

Goal programming can be performed by the recurrent neural
network suggested by Van Hulle [23], further called the goal
programming network (GPN). It consists of two sets of ampli-
fiers, the - and -amplifiers, the outputs of which represent
the degree to which a goal is satisfied, and the variables of the
goal programming problem, respectively. For our purpose, we
configure the GPN in such a way that it converges to a state

, where the summed orthogonal distance between
and the constraint lines is minimal. Contrary to the original

GPN, we allow the variables and to become negative by re-
placing the transfer functions of the-amplifiers by .
Furthermore, the transfer functions of the-amplifiers are re-
placed by . We update the network state at iteration
step as follows:

1Note that the IOC principle is normally aimed at determining thetrue ve-
locity from local velocities pooled from a spatial neighborhood, whereas we
pool estimates from different filters at a single spatial location.

2Goal programming is similar to linear programming, but with the single ob-
jective replaced by several objectives or goals toward one must simultaneously
strive [13].

Fig. 5. (a) Illustration of the aperture problem. The circle (dashed line) is
translating with a velocityv = [1:5; 0:5] pixels/frame. The observed velocities,
when viewing through a small aperture at different spatial locations, are denoted
by the oriented lines. (b) Evolution of the summed orthogonal distances (F ;
thick line, scaled by a factor of 0.1) and the states of the networku (thin, solid
line) andv (thin, dashed line).

with the time interval between two state updates in the
GPN, and the number of constraint lines. In order to increase
the speed of convergence, we make adaptive using the
following simple heuristic: if decreases, we increase the time
step, , otherwise we undo the last state
update and set .

As a demonstration to the intersection-of-constraints prin-
ciple using a GPN, we describe a solution to the spatial aperture
problem. Consider the circle shown in Fig. 5(a), translating with
a velocity pixels/frame. When viewed through
small apertures at different positions, the partial contours seem-
ingly move orthogonal to their orientations, as indicated by the
vector lines in Fig. 5(a) for 16 points on the circle. Every ve-
locity vector constrains the true velocityand these constraints
are hard-wired into the GPN. We use an initial time step

and set the initial state of the network to [0; 0]. The al-
gorithm ends when the standard deviation of, computed over
the last ten iterations, does not exceed 10. In this simulation,
the GPN finds the correct velocity vector
after 98 iterations. Fig. 5(b) shows the evolution of the summed
orthogonal distances (scaled by a factor of 0.1),(thick line,
starting at 2.0 and decreasing), and the network states, corre-
sponding to the horizontal (thin, solid line) and vertical compo-
nent (thin, dashed line) of the velocity, both starting at zero and
increasing.

We test this strategy for estimating the velocities of trans-
lating 2-D uniform noise patterns, using the filterbank shown
in Fig. 4. The noise patterns translate in 16 different directions
at 20 different speeds (logarithmically spaced between 0.2 and 5
pixels/frame), and we run 50 simulations with different random
noise patterns for every combination. In this simulation, we do
not use a threshold to reject unreliable component velocities.
Performance is measured in terms of the error measure proposed
by Fleet and Jepson [5], namely the angular error between the
space–time direction vectors and

(3)
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Fig. 6. Results (median values and upper and lower quartiles) for the
translating uniform noise patterns as a function of speed.

where is the actual 2-D velocity andis the full velocity es-
timate.3 Fig. 6 summarizes the results. There is a breakdown in
performance for speeds greater than 3.5 pixels/frame and there
is no systematic difference in performance between different
directions (results not shown). The breakdown corresponds to
what we expect: for the second scale of filters, with a wavelength
of 7.92 pixels, this corresponds to a phase gradient of 159
(comparable to the 150of the -example in Section II-A).
Note that a part of the error is introduced by the quantization in
the time domain, due to which the noise pattern makes discrete
jumps over time.

For reasons of efficiency, the filter outputs are computed
using cascaded 1-D convolutions, rather than computationally
expensive 2-D convolutions, as suggested by Heeger [12]. The
length of a 1-D template is is set to 6 standard deviations of the
Gaussian envelope of the corresponding filter pair. The filter
pair outputs at one time frame are computed by zero-padding
the image and performing the 1-D convolutions. This can result
in erroneous velocity estimates at the image borders, due to
the discontinuity introduced by zero-padding. Therefore, we
discard a border region demarcated by the point at which the
spatial Gaussian envelope reaches 10% of its peak level, i.e.,
at pixels.

III. RESULTS

We test our algorithm on the image sequences that have
been used by Barronet al. [1], [3] and Galvinet al. [9], [19]
for comparing performances between different optical flow
algorithms. We include some of these performances in order
to better interpret our results. The performances are given as
the mean and standard deviation of the angular error(3), as
well as the densities of the resulting flow field estimates (the
border region is excluded to compute the density). The image
sequences are divided into two groups: the synthetic image
sequences, for which the 2-D optical flow fields are known,
and the real image sequences. For the first group of sequences,
we use a very tight stability criterion and only
compute 2-D velocities if there are at least valid
component velocities available. For the second group, we relax
these constraints to and a minimum of
valid component velocities. For all simulations, we estimate

3We will assume that the output of the GPN is an estimate of the actual 2-D
velocity. Thus, we neglect the spatial aperture problem. This is a reasonable
assumption, since the spatial extent of our filters is fairly large (see Section V).

TABLE I
RESULTS FOR THETRANSLATING SQUARESEQUENCE

the temporal phase gradients over five frames. Unless stated,
we refer to [1] and [3] for simulation details for the other
algorithms. The optical flow fields, both actual and estimated,
are scaled and subsampled for visualization purposes. Flow
fields for the same image sequence are scaled and subsampled
using the same factors.

A. Synthetic Image Sequences

1) Translating Square Sequence:This sequence consists of
a translating dark square, 40 pixels wide, on a white background

. It is constructed by downsampling a larger
version which moves at an integer velocity. It has been used by
Barronet al. to demonstrate the spatial aperture problem.

Due to the large spatial extent of our filters, our approach
does not suffer from the aperture problem and yields 2-D ve-
locity, rather than normal velocity estimates. However, if the
square were larger, our approach would yield normal veloci-
ties at square’s sides, resulting in large errors. Indeed, the low
performances of some techniques are due to the inability to dis-
criminate between 2-D velocity and normal components. Table I
summarizes our results and those obtained by Barronet al. [1],
[3].

2) Translating and Diverging Tree Sequences:The Trans-
lating Tree sequence simulates a translational camera move-
ment along the-axis, orthogonal to the line of sight, while cap-
turing a textured, planar surface (the picture of a tree), which is
slanted with respect to the fronto-parallel plane. The velocities
are parallel to the image-axis and range from 1.73 to 2.26
pixels/frame. In the Diverging Tree sequence, the same planar
surface is captured by a camera that is translating along the line
of sight, resulting in a looming effect, with the center of ex-
pansion in the middle of the image. The speeds vary from 1.29
pixels/frame on the left side, to 1.86 pixels/frame on the right
side of the image.

The error statistics for the different methods are included in
Table II. The errors for these sequences are rather large, com-
pared to some of the results by Barronet al.[1], [3]. Since these
image sequences have smooth flow fields, this is possibly due to
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TABLE II
RESULTS FOR THETRANSLATING AND DIVERGING TREE SEQUENCE

the spatial integration of local estimates by the other techniques
(either gradients or component velocities at different spatial lo-
cations), which is absent in our approach (we only pool compo-
nent velocities from a single spatial location).

3) Yosemite Fly-Through Sequence:The Yosemite fly-
through sequence is the more complex test case of the synthetic
image sequences. Each frame has been generated by mapping
an aerial photograph onto a digital-terrain map [12]. Speeds in
the lower left corner go up to four pixels/frame and the clouds
translate to the right at one pixel/frame while changing shape,
due to which their true motion is not simply related to image
brightness changes. The middle frame of the image sequence is
shown in Fig. 7(a), and the actual flow field in Fig. 7(b).

The result shown in Fig. 7(d) illustrates the efficacy of our
phase nonlinearity criterio. Since the clouds are changing shape
over time, the phase information is not linear and, as a conse-
quence, results in unreliable estimates. Most of the velocities
above the mountain rim have indeed been rejected by our non-
linearity criterion. Also, the speeds in the lower left are too high
to be captured by our filters: the breakdown in performance for
our filterbank lies around 3.5 pixels/frame (see Section II-C),
beyond which point, the estimated phase is no longer linear
over time (at least not given our simple phase-unwrapping tech-
nique). [For this sequence we relax our nonlinearity criterion
slightly to : otherwise, the density of the resulting
flow is only 17.8%, with an angular error of ; see
Fig. 7(c).] The error statistics are shown in Table III.

Other algorithms have been described with much lower er-
rors and higher densities than those in Table III, such as the
“Skin and Bones” algorithm by Juet al. [17] and the “Total
Least-Squares-Based Optic Flow” technique developed by Bab-
Hadiashar and Suter [2]. The first yields an angular error of
2.16 2.0 with a density of 100%, while the second yields
an error of 1.97 1.96 with a density of 72.0%. However, in
both cases, the clouds have been masked, and the performances
for the original image sequence, i.e., with the cloud region, have
not been reported. If the clouds are masked, our algorithm yields
and error of 3.46 2.15 (this is not significantly better than
for the original image sequence, since our nonlinearity criterion
rejects most velocity estimates in the cloud region).

Fig. 7. (a) Middle frame of the Yosemite fly-through sequence. (b) Actual flow
field. (c) and (d) Estimated flow fields with� = 0:005 and� = 0:01.

TABLE III
RESULTS FOR THEYOSEMITE SEQUENCE

4) Complex Synthetic Image Sequences:We test our tech-
nique further on two complex, synthetic image sequences de-
veloped by Galvin [9], [19], namely the Street sequence and the
Office sequence, for which they provide a ground truth flow
field. For every sequence, 20 frames are available via public
ftp4 (we have used frames 98–102). We have also estimated
the flow fields using Fleet and Jepson’s technique (using frames
90–110) with a spatiotemporal Gaussian smoothing kernel with

pixels (frames), and set to 1.25 and 2.5, and Lucas and
Kanade’s (using frames 93–107), which is the best performing
technique in the studies by Galvinet al.The results are shown
in Table IV. The Street sequence has also been used for testing
Weickert and Schnörr’s algorithm (2001), which is a differential
technique that imposes a spatiotemporal smoothness constraint

4http://www.cs.otago.ac.nz/research/vision/Downloads/.



GAUTAMA AND VAN HULLE: PHASE-BASED APPROACH TO THE ESTIMATION OF THE OPTICAL FLOW FIELD 1133

TABLE IV
RESULTS FOR THESTREET AND OFFICE SEQUENCES

Fig. 8. (a) Middle frame and (b) estimated flow field for the SRI sequence.
The estimated flow field has a density of 71.3%.

on the flow field. They report an average angular error of 4.85,
with a density of 100%.

B. Real Image Sequences

Since there are no actual flow fields available for these image
sequences, it is impossible to quantitatively evaluate our results.
For every sequence, we will show the middle frame, give the
short description given by Barronet al.[1], [3], and compare this
to our estimated flow field. The first two sequences are examples
of global motion (resulting from camera motion), whereas the
other two result from moving objects. For a detailed description
of the results with other techniques, see [1] and [3].

1) SRI Sequence:The camera translates parallel to the
ground plane, perpendicular to the line of sight, in front of
clusters of trees. It is a challenging sequence because of the
relatively poor resolution, the amount of occlusion, and the low
contrast. Velocities are as large as two pixels/frame. See Fig 8.

The estimated velocities in the slanted ground plane corre-
spond to what is expected, i.e., a linear gradient. The velocities
in the background are a lot smaller than those of the foremost
tree cluster. The latter velocities are orthogonal to the branches’
orientations, due to the spatial aperture problem (which is also
the case in other techniques described by Barronet al.)

2) NASA Sequence:This sequence is primarily dilational.
The camera moves along its line of sight toward the Coca Cola
can near the center of the image. Image velocities are typically
less than one pixel/frame.

The resulting flow field is indeed dilational [Fig. 9(b)]. Com-
pared to other techniques, such as those by Lucaset al., our tech-
nique yields a very dense flow field, namely one of 87.9%, com-
pared to 35.3% and 13.3%, respectively. The speeds are below
one pixel/frame.

Fig. 9. (a) Middle frame and (b) estimated flow field for the NASA sequence.
The estimated flow field has a density of 87.9%.

Fig. 10. (a) Middle frame and (b) estimated flow field for the Rotating Rubik’s
Cube sequence. The estimated flow field has a density of 70.0%.

3) Rotating Rubik’s Cube Sequence:This sequence shows a
Rubik’s cube which is rotating counter-clockwise on a turntable.
The motion field induced by the rotation of the cube includes
velocities less than two pixels/frame. Velocities on the turntable
range from 1.2 to 1.4 pixels/frame, and those on the cube are
between 0.2 and 0.5 pixels/frame.

Fig. 10(b) shows that almost all of the valid velocity estimates
are located on the side of the turntable (due to the rotation), on
the turntable itself and on the cube. Indeed, besides these ob-
jects, there are no moving objects. The velocity estimates on the
cube roughly range from 0.1 to 0.5 pixels/frame. The velocities
go up to 1.5 pixels/frame.

4) Hamburg Taxi Sequence:In this street scene, there are
four moving objects: 1) the taxi turning the corner; 2) a car in
the lower left, driving from left to right; 3) a van in the lower
right driving right to left; and 4) a pedestrian in the upper left.
Image speeds of the four moving objects are approximately 1.0,
3.0, 3.0, and 0.3 pixels/frame, respectively.

Fig. 11 shows that all four objects are successfully detected by
our technique. We have manually segmented the velocity esti-
mates to the corresponding objects on the basis of their direction
, speed and spatial location [see grayscale coding of arrows in

Fig. 11(b)]. The mean and standard deviations of their speeds
and directions are the following: 1) pixels/frame
with for the taxi turning the corner
(3929 pixels); 2) pixels/frame with

for the car in the lower left (1726 pixels); 3)
pixels/frame with for the van in the
lower right (642 pixels); and 4) pixels/frame with

for the pedestrian (373 pixels).
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Fig. 11. (a) Middle frame and (b) estimated flow field for the Hamburg Taxi
sequence. The estimated flow field has a density of 24.5%. The arrow colors
in (b) correspond to the manual label each velocity has received (there are four
objects in total), based on position, direction, and speed.

Fig. 12. Sensitivity analysis on the Diverging Tree sequence. (a) Evaluation
of the performance (mean angular error and standard deviation) as a function
of the nonlinearity measure" . (b) Evaluation of the performance (density)
as a function of the nonlinearity measure" . (c) and (d) Evaluation of the
performance as a function of the minimal number of valid component estimates
N .

IV. SENSITIVITY ANALYSIS

In order to examine the influence of the parameters on the
performance of our technique, we plot the error performance
and density of the estimated flow field for the Diverging Tree
sequence as a function of the phase nonlinearity threshold,
[Fig. 12(a) and (b)], and as a function of the minimal number of
valid component velocities, [Fig. 12(c) and (d)]. Fig. 12(a)
and (b) show the mean angular errors and standard deviations
for different values of the phase nonlinearity threshold,,
with . As the nonlinearity criterion is relaxed, both
the mean error and standard deviation increase slightly (from

to ), whereas the density increases
considerably. Similarly, as is shown in Fig. 12(c) and (d), when
the minimal number of valid component velocities is increased
(keeping ), the mean and standard deviation of
the angular error decrease slightly (from to

) and the density is greatly influenced. Both sim-

Fig. 13. (a) Error performance (mean angular error and standard deviation)
and (b) density of the estimated flow field for the Diverging Tree sequence, as a
function of the noise level,� (expressed as a fraction of the maximum gray
level in the image sequence. In both figures, two levels of� have been used:
� = 0:05 (solid line) and� = 0:1 (dashed line).

ulations illustrate the tradeoff between accuracy and density,
the preference for which is application-specific. In addition,
the parameter values that achieve a certain accuracy/density are
image sequence specific as well.

We have further evaluated the performance of our technique
in the presence of additive Gaussian noise, with zero mean and
standard deviation , expressed as a fraction of the max-
imum amplitude of the stimulus. We have evaluated the angular
error using and . The error performance re-
mains fairly constant with increasing levels of noise [Fig. 13(a),
solid line and error bars] and, again, the density is greatly in-
fluenced by the presence of noise [a density of 50% is reached
for ; Fig. 13(b), solid line]. If the nonlinearity
threshold is relaxed to , the error performance deterio-
rates slightly [Fig. 13(a), dashed line, the error bars are not in-
cluded for clarity’s sake], but the density increases significantly.
This indicates that, although the separate phase estimates at a
given time frame are subject to noise, the slope of the regression
line remains accurate. Thus, the problem is that the increase of

can be due to the presence of noise or due to the nonlinearity
of the phase information at that spatial location.

V. DISCUSSION

From a computational point of view, our approach is compa-
rable to Fleet and Jepson’s [5], albeit that we perform a spatial
convolution at every time frame, rather than a single spatiotem-
poral convolution. For the sake of comparison, we give the com-
putation times for the Hamburg Taxi and the NASA sequences
for both techniques. One should, however, take into account
that our technique has been implemented in Matlab, whereas
we have used Fleet and Jepson’s-implementation, which is
publicly available. Furthermore, we only use five time-frames
for the computation, whereas Fleet and Jepson use 21 frames.
It is also important to note that the computation times for both
implementations are highly dependent on the densities of the
resulting flow fields, since only for those points, the full ve-
locity is determined. Our technique estimates the flow field for
the Hamburg Taxi sequence in 68 s (density of 21.1%) and the
NASA sequence in 205 s (density of 60.7%), while Fleet and
Jepson’s technique needs 104 (density of 27.0%) and 202 s (den-
sity of 13.3%). As mentioned in their paper, the computational
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load can be significantly reduced (also for our technique) by
computing the component velocities on a discrete spatial grid,
e.g., by computing a complex filter output everypixels, and,
furthermore, a number of 1-D convolution results can be used
multiple times. Our approach offers the advantage that the com-
putations are purely local (including the stability criterion) and
that it can, therefore, be implemented very efficiently if only a
subsampled version of the optical flow field is required.

Another advantage of our technique is that it allows for arbi-
trary temporal spans over which the flow field is computed. In
the simulations that have been performed, we use a span of five
time frames. To examine the effect it has on the performance, we
increase this number for the Diverging Tree sequence (adjusting

such the density remains around 75%). Initially, there is a
slight decrease in average angular error of 0.3, after which the
performance remains constant. A longer temporal span might
even cause problems due to our nonlinearity measure: if the
translating object (or texture) moves beyond a filter pair’s spatial
extent within the temporal span, the phase information of that
filter pair becomes nonlinear and will be rejected. Indeed, for the
Diverging Tree sequence, we need to relax the nonlinearity cri-
terion in order to obtain the same density for longer time spans.
In our opinion, this is true for other techniques as well: the lower
densities for Fleet and Jepson’s and Lucas and Kanade’s tech-
niques could be due to the long time spans over which the flow
field is estimated (21 and 15 frames, respectively).

Since our technique uses an approach which is related to Fleet
and Jepson’s, namely a phase-based one, we highlight some of
the differences. Fleet and Jepson use spatiotemporal filter pairs
to estimate the phase gradient and use a stability criterion that,
among others, ensures that the instantaneous frequency [8] lies
within the passband of the filter pairs. This means that they have
to tile the spatiotemporal frequency space with their filters, and
that their filter pairs arevelocity-tuned. Our approach spatially
filters the images, due to which only the spatial frequency do-
main needs to be considered, and due to which our spatial filter
pairs are able to estimate the phase gradients irrespective of the
velocity at that spatial location. Since Fleet and Jepson use a spa-
tiotemporal radially symmetric Gabor filter, the temporal span
over which the optical flow field is estimated, is a function of
the choice of their filterbank, which is not the case with our al-
gorithm. Furthermore, in order to derive the full velocity, Fleet
and Jepson’s technique pools different component velocity es-
timates from a small spatial neighborhood, whereas our tech-
nique limits itself to estimates at a single location. As mentioned
in the Results section, our approach is outperformed by far for
the Translating and Diverging Tree sequences, possibly due to
this spatial pooling. The latter strategy could easily be incorpo-
rated in our technique. However, in that case we would forfeit
the purely local aspect of the computations, which are an asset
for an efficient parallel implementation and the fast computation
of subsampled optical flow fields. Also, our stability criterion
examines the linearity of the phase over time (local computa-
tion), whereas Fleet and Jepson detect neighborhoods around
phase singularities, requiring spatial derivatives, which cannot
be computed purely locally.

Finally, our technique assumes the optical flow field to be
uniform within the spatial extent of our filter pairs (translational

model; for an overview, see [22]). A more sophisticated scheme,
such as theaffinemodel of motion, could be used, which would
result in a quadratic, rather than a linear regression of the phase
over time. The constraints corresponding to the resulting com-
ponentmotion fieldswould, however, become more compli-
cated. All these are topics for further research.

VI. CONCLUSION

We have introduced a novel phase-based technique for esti-
mating the optical flow field. It allows for a direct measurement
of the phase nonlinearity, which is a good indicator for the re-
liability of the velocity estimate. At a single spatial location,
several component velocities are estimated using quadrature
Gabor filter pairs, each imposing a constraint on the full ve-
locity at that point. A recurrent neural network determines
the full velocity that is consistent with these constraints. Our
approach has been tested on various image sequences, both
synthetic and realistic, and the results have been compared
to those of other techniques. However, it is difficult to rank
different techniques, since their performances depend on dif-
ferent factors (the average and standard deviation of the error
and the density of the estimated flow field), and since they can
vary substantially for different image sequences. Overall, our
technique ranks among the best ones we have tested, however,
there is room for further improvement.
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