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ABSTRACT Multi-modality image fusion provides more comprehensive and sophisticated information

in modern medical diagnosis, remote sensing, video surveillance, and so on. This paper presents a novel

multi-modality medical image fusion method based on phase congruency and local Laplacian energy.

In the proposed method, the non-subsampled contourlet transform is performed on medical image pairs to

decompose the source images into high-pass and low-pass subbands. The high-pass subbands are integrated

by a phase congruency-based fusion rule that can enhance the detailed features of the fused image for medical

diagnosis. A local Laplacian energy-based fusion rule is proposed for low-pass subbands. The local Laplacian

energy consists of weighted local energy and the weighted sum of Laplacian coefficients that describe the

structured information and the detailed features of source image pairs, respectively. Thus, the proposed

fusion rule can simultaneously integrate two key components for the fusion of low-pass subbands. The fused

high-pass and low-pass subbands are inversely transformed to obtain the fused image. In the comparative

experiments, three categories ofmulti-modalitymedical image pairs are used to verify the effectiveness of the

proposed method. The experiment results show that the proposed method achieves competitive performance

in both the image quantity and computational costs.

INDEX TERMS Medical image fusion, multi-modality sensor fusion, NSCT, phase congruency, Laplacian

energy.

I. INTRODUCTION

As a powerful and fundamental tool, medical imaging plays

an irreplaceable role in modern medical diagnosis and treat-

ment. A number of medical imaging modalities, that include

positron emission tomography (PET), computed tomog-

raphy (CT), and magnetic resonance imaging (MRI), are

implemented to address different lesions of cells or organs.

Since each medical imaging modality has it own purposes,

The associate editor coordinating the review of this manuscript and
approving it for publication was Yuming Fang.

strengths, and limitations, one modality cannot usually

provide sufficient information for a whole medical

diagnosis.

Medical image fusion encompasses a broad range of gen-

eral image fusion techniques to integrate complementary

information from different modalities of medical images.

It offers a great diversity of image features for medical anal-

ysis, and often leads to the robust medical diagnosis. The

additional information acquired from the integrated images

can be well utilized to precisely discover the position of

lesion.
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Due to the high requirements of multi-modality medi-

cal image fusion, a number of fusion techniques has been

developed in the last few years. Generally, image fusion

techniques can be categorized into two classes, such as spatial

and transform domain methods [34], [41].

According to the characteristics of spatial information,

spatial domain methods select image pixels or patches from

each source image to construct a fused image. For spatial

domain methods, the detailed information of source images

can be perfectly preserved. All the information preserved in

the fused image is same as the original one in source images.

Since spatial domain methods can completely preserve the

spatial information of source images, they have state-of-the-

art performance in multi-focus [15], [17], [48] and multi-

exposure [27], [28] image fusion. However, the shortcoming

of spatial domain methods is also obvious. Spatial domain

fusion methods can hardly integrate the information from

the same position in each source image, other than image

pixel weighted average methods [14], [16]. But the image

pixel weighted average methods often cause the contrast and

sharpness decreasing of detailed information in fused image

that is not acceptable in medical image fusion.

In multi-modality medical image fusion, transform domain

based methods are commonly used [47], [52]. Unlike spa-

tial domain methods, transform domain methods transform

source images into specific coefficients first. Then they fuse

the coefficients, and inversely transform all the fused coef-

ficients into a fused image. Sparse representation and multi-

scale transform (MST) based methods have become the most

popular image fusion solutions in recent years. MST-based

algorithm is a frequency domain method in image processing.

This algorithm decomposes source images into high and low

frequency by transform (such as CVT, NSCT and NSST), and

then designs different fusion rules for high and low frequency

to obtain the fused image. The sparse representation based

algorithm is an image time domain processing method that

obtains the sparse coefficients of source images through dic-

tionary learning. The sparse representation and MST trans-

form decompose source images in time domain and frequency

domain respectively. Both of them are mainstream image

fusion methods in the transform domain.

Sparse representation based methods are mainstreams in

transform domain based multi-modality image fusion meth-

ods. Liu et al. [25] proposed an adaptive sparse representation

based method for both medical and other kinds of multi-

modality image fusion. It classified the trained dictionary

bases into several categories according to the gradient infor-

mation. Based on the joint patch clustering, Kim et al. [13]

designed an efficient dictionary learning method for sparse

representation based image fusion. It achieved great per-

formance as the trained dictionary can perfectly describe

the detailed information of source images. Furthermore, the

dictionary learning method proposed by Kim can obtain a

compact trained dictionary that can effectively reduce the

computation costs. Li et al. [14] proposed a low-rank and

sparse dictionary learning method for noisy medical image

fusion. This method incorporated low rank and sparse reg-

ularization into dictionary learning model to enhance the

detailed information. In sparse representation based image

fusion, source images are sparsely coded as sparse coeffi-

cients by using simple Max − l1 fusion rule, that makes the

fused image keep excellent detailed information. However,

the computation costs of sparse representation based methods

are usually 2 to 3 times higher than other transform domain

methods.

MST is the most popular algorithm in transform domain

based image fusion. In multi-modality medical image fusion,

MST-based methods, such as wavelet transform (DWT) [29],

curvelet transform (CVT) [1], shearlet transform (ST) [22],

non-subsampled contourlet transform (NSCT) [20], [24], and

nonsubsampled shearlet transform domain (NSST) [35], [45]

are commonly used. NSCT and NSST based multi-modality

medical image fusion methods have obtained state-of-the-art

performance in recent years. Liu et al. [24]proposed a general

framework for multi-modality medical, infrared-visible, and

multi-focus image fusion. In this framework, NSCT-based

method obtained the best performance in multi-modality

medical image fusion. Du et al. [9] proposed a method of

fuse anatomical images and functional images. The method

selected local Laplacian filtering as a multi-scale image

decomposition tool for saving structural information and

enhancing detailed information. Simultaneously, the merged

approximate image and the residual image were respectively

generated using the local energy maximum scheme and the

interest scheme based information. Finally, a fused imagewas

obtained using a reconstruction process similar to the tradi-

tional Laplacian pyramid transform. A multi-modal image

fusion framework in NSCT domain was proposed [39]. In this

framework, sparse representation was applied to merge the

low-frequency coefficients. However, the high-pass subband

fusion rule was based on the larger local energy or variance,

which cannot effectively solve the smoothing issue of image

details caused by SR. The multi-modal image fusion issue

was solved by the variable weight fusion rule based on non-

subsampled contour transform (NSCT) [19]. The algorithm

combined the intensity of components of source images into

a multi-scale space and obtained the fused image under

the generalized intensity-hue-saturation (GIHS) framework.

Source medical images were first decomposed into low- and

high-frequency components in the NSCT domain [3]. The

low-frequency components were then fused using an activity

metric based on normalized Shannon entropy, while the high-

frequency components were fused using directional contrast.

This method preserved more spatial features and functional

information, as well as converted them into the fused image.

In the NSCT-based medical image fusion method proposed

byGanasala andKumar [10], the fusion rule of low-frequency

subband coefficients was designed by using the maximum

entropy of the square of local window coefficients. The max-

imum weighted and modified Laplacian was used to measure

the activity level of high-frequency subband coefficients.

Li et al. [20] proposed an image fusion framework based
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on NSCT and sparse representation to enhance and preserve

more details. This fusion framework fused lowpass compo-

nents by using sparse representation. The rule based on Sum

Modified-Laplacian was applied to the fusion of highpass

components fusion. A medial image fusion method based on

NSCT was proposed in [2] to enhance details and preserve

more energy. In this method, the phase congruency was used

to measure the activity level of low-frequency coefficients,

while the directive contourlet contrast feature as the fusion

rule was applied to the high-frequency coefficients. Based on

NSCT and PCNN, Xia et al. [42] proposed a multi-model

medical image fusion algorithm combined with SR and pulse

coupling neural network(PCNN). Gong et al. [11] proposed

an image fusion method to preserve more image structure

information. NSST-based method proposed by Yin et al. [45]

also performed well in multi-modality medical image fusion.

Yin’s method used NSST to filter source images into high-

and low-frequency coefficients, and also kept the detailed

information in the fusion of coefficients. In addition, it also

enhanced the details of fused image. Comparing with sparse-

representation basedmethods,MST-basedmethods runmuch

faster. However, for MST-based methods, simple fusion

rules cannot always successfully identify the detailed and

structured information from coefficients, and may cause the

degradation of image quality. So it is important to design an

effective fusion rule for MST-based methods.

In order to better extract the details of medical images

and save more image energy, this paper proposes a novel

MST-based method. This novel fusion method enhances the

computational efficiency and fusion performance, as well

as improves the visual perception of images. The proposed

method is designed in NSCT domain that is one of most

effective MST algorithms for medical image fusion [24].

NSCT algorithm can transform source images into highpass

and lowpass subddands that mainly consist of the detailed

and structured information respectively. As only the detailed

information remains in highpass subbands, the enhancement

of detailed features is the key work for highpass subbands.

In most cases, due to the limits of computation costs, not

all the detailed information can be filtered into the highpass

subbands. Thus, the lowpass subbands fusion needs to pro-

cess both detailed and structured information. So a phase-

congruency based fusion rule and a local Laplacian energy

based fusion rule are proposed for the fusion of highpass

and lowpass subbands respectively. These two fusion rules

cannot only enhance the detailed features, but also preserve

the structured information of source multi-modality images.

The main contributions of this paper can be concluded in

following three aspects:

1) It proposes an effective image fusion rule for the

high-frequency components in multi-modality medical

image fusion. The fusion rule combines three low-

level features such as local phase consistency, local

abrupt metric, and local energy information, to enhance

the detailed features of high frequency components.

More high-frequency contrast and brightness features

from source images can be preserved in the fused

image.

2) It also proposes a low-frequency components image

fusion rule that takes both the extraction of detailed

features and the preservation of structured informa-

tion into consideration. The proposed local Laplacian

energy based fusion rule uses weighted local energy

and weighted sum of Laplacian coefficients to mea-

sure the structured and detailed information of lowpass

subbands respectively. The proposed fusion rule can

extract more detailed and structured information of

source images, and better preserve the low-frequency

energy. Thereby it can improve the visual perception

ability of fused image.

3) It proposes an effective MST-based multi-modality

image fusion framework with low computation costs.

The proposed fusion framework in NSCT domain is

effective for both highpass and lowpass subbands,

as appropriate fusion rules are proposed for the extrac-

tion of detailed features and the preservation of struc-

tured information respectively. Additionally, as all the

proposed fusion rules and NSCT transform run with

low computation costs, the proposed method not only

obtains high-quality fused results, but also achieves low

computation costs.
The rest sections of this paper are structured as follows:

Section II demonstrates the related work of NSCT; Section III

proposes the framework and explains the proposed method

in detail; Section IV simulates comparative experiments and

analyzes corresponding results; Section V concludes this

paper.

II. RELATED WORK

A. NONSUBSAMPLED CONTOURLET TRANSFORM

Based on contourlet transform, nonsubsampled contourlet

transform (NSCT) can overcome the frequency aliasing phe-

nomenon caused by up- and down-sampling on contourlet

transform [5], [18]. NSCT is a discrete image calcula-

tion framework that achieves shift-invariant, multi-scale, and

multi-directionality by using non-subsampled pyramid fil-

ter banks (NSPFBs) and non-subsampled directional filter

banks (NSDFBs) [18], [30], [51]. NSCT framework is shown

in Fig. 1.

1) NON-SUBSAMPLED PYRAMID FILTER BANK

NSPFB used in NSCT is a two-channel nonsubsampled fil-

ter bank with no up- and down- sampling operation, which

ensures NSCT has multi-scale and shift-invariant charac-

teristics. The source images are decomposed by NSPFB to

obtain low- and high- pass images on each decomposition

level. Next, NSPFB iterative decomposition is performed on

low-frequency image to achieve multi-scale decomposition.

After NSPFB decomposition, k+1 sub-images, that have the

same size as source images, are obtained. There are k high-

frequency images and 1 low-frequency image. k is the num-

ber of NSPFB decomposition levels. Fig. 2 shows a schematic

VOLUME 7, 2019 20813



Z. Zhu et al.: Phase Congruency and Local Laplacian Energy-Based Multi-Modality Medical Image Fusion Method

FIGURE 1. Nonsubsampled contourlet transform.

FIGURE 2. Non-subsampled pyramid filter bank.

diagram of NSPFB with three decomposition levels. The

ideal frequency support area for the kth stage lowpass filter

is:

[

−
(

π/2k
) (

π/2k
) ]2

.

Eq. 1 gives the equivalent filter for K -level cascaded

NSPDF.

H eq
n (z) =

{

H1(z
2n−1I )5n−2

k=0H0(z
2k I ), 1 ≤ n ≤ K

5n−2
k−0H0(z

2k I ), n = K + 1
(1)

whereH0(z) andH1(z) denote the lowpass and corresponding

highpass filter respectively.

2) NON-SUBSAMPLED DIRECTIONAL FILTER BANK

NSDFB is a two-channel tree-structured filter bank that

is built by eliminating the downsampling and upsampling

of directional filter bank. NSDFB performs l-level direc-

tional decomposition on the high-frequency image from

NSPFB to obtain 2l directional sub-images as same size as

source images. This allows NSCT to obtain multi-directional

characteristics and more accurate directional information.

FIGURE 3. Non-subsampled directional filter bank.

Fig. 3 shows the four-channel NSDFB. When the output of

filter Uj(z
D)(j = 0, 1) is combined with the output of first-

stage fan filter Ui(z)(j = 0, 1), four directional frequency

decomposition can be obtained. The equivalent filter for each

direction is given by Eq. 2. The synthesis filter bank is

obtained similarly. All filter banks in NSDFB tree structure

are obtained from a single nonsubsampled filter bank fan

filters. In order to achieve multi-directional decomposition,

NSDFB iterations can be applied to the highpass image

obtained by NSPFB.

Uk (z) = Ui(z)Uj(z
D) (2)

As shown in Fig. 1, NSCT is obtained by combining

NSPFB and NSDFB. NSCT has multi-scale, multi-

directional, and shift-invariant characteristics. The pseudo-

Gibbs phenomenon can be avoided by introducing NSCT as

an MST into image fusion. The subband maps decomposed

by NSCT are as same size as source medical images, which

is conducive to the design of high- and low-frequency fusion

rules [6], [49].
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FIGURE 4. The proposed framework.

III. PROPOSED FRAMEWORK

In this paper, a novelMST-basedmulti-modality image fusion

framework is proposed. The proposed method mainly con-

sists of three steps that are NSCT decomposition, high-

and low-pass subbands fusion, and inverse transformation

as shown in Fig. 4. The first step of proposed method is

image decomposition. The proposed method uses NSCT to

decompose source images into high- and low-pass subbands

that mainly describe the detailed and structured information

respectively. In the second step, a phase congruency (PC) and

local Laplacian energy based fusion rule are applied to the

fusion of high- and low-pass subbands. The final step is to

combine and inversely transform the fused high- and low-

pass subbands. The details of proposed method are presented

as follows.

A. FUSION RULE OF HIGHPASS SUBBAND

When the multi-modality medical image pairs are decom-

posed by NSCT, a proper fusion rule is needed to obtain an

integrated image with better performance. The highpass sub-

bands of NSCT filtered images mainly describe the detailed

information that corresponds to the texture and edge infor-

mation of source images. In medical imaging, organ and cell

lesions are often identified by detailed information. Thus,

the key of highpass subband fusion is to enhance the detailed

features of each source image.

In this paper, to make the highpass subband image more

informative, PC is implemented to enhance image fea-

tures. PC is a dimensionless measurement that can measure

the significance of image features. In highpass subbands,

PC value corresponds to the sharpness of image object. Thus,

PC is used as the phase of coefficient with maximal local

sharpness. Since image can be regarded as a 2-D signal [18],

PC of image at location (x, y) can be calculated by Eq. 3.

PC(x, y) =
∑

k Eθk (x, y)

ε +
∑

n

∑

k An,θk (x, y)
(3)

where θk is the orientation angle at k [18], An,θk denotes the

amplitude of the n-th Fourier component and angle θk , and

ε is a positive constant to remove the DC components of

image signals. In this fusion framework, parameter ε is set

to 0.001 [18], [21]. Eθk (x, y) can be calculated by Eq. 4.

Eθk (x, y) =
√

F2
θk (x, y) + H2

θk (x, y) (4)

where Fθk (x, y) and Hθk (x, y) can be calculated by

Eq. 5 and 6 respectively.

Fθk (x, y) =
∑

n
en,θk (x, y) (5)

Hθk (x, y) =
∑

n
on,θk (x, y) (6)

In Eq. 5 and 6, en,θk (x, y) and on,θk (x, y) are convolution

results of input image at location (x, y), that can be evaluated

by Eq. 7.

[en,θk (x, y), on,θk (x, y)] = [I (x, y) ∗M e
n , I (x, y) ∗Mo

n ] (7)

where I (x, y) is the pixel value of image at location (x, y).

M e
n and Mo

n are the even- and odd-symmetric filters of 2-D

log-Gabor at scale n.

As a contrast invariant, PC does not reflect local contrast

changes [21]. To compensate for the lack of PC, a measure of

sharpness change (SCM) in Eq. 8 is developed.

SCM (x, y) =
∑

(x0,y0)∈�0

(I (x, y) − I (x0, y0))
2 (8)
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where �0 represents a local area with a size of 3 × 3 entered

at (x, y). (x0, y0) represents a pixel point in the local area

of �0. Meanwhile, to calculate the (x, y) neighborhood con-

trast, the local SCM (LSCM) is introduced and expressed

as Eq. 9.

LSCM (x, y) =
M

∑

a=−M

N
∑

b=−N
SCM (x + a, y+ b) (9)

where (2M + 1) × (2N + 1) denotes the size of neighbor-

hood.

As LSCM and PC cannot fully reflect the local luminance

information, local energy (LE) is introduced [18], and can be

calculated by Eq. 10.

LE (x, y) =
M

∑

a=−M

N
∑

b=−N
(I (x + a, y+ b))2 (10)

Design a new activity measure (NAM) that uses PC, LSCM,

and LE complement to measure different aspects of image

information.

NAM (x, y) = (PC(x, y))α1 · (LSCM (x, y))β1 · (LE(x, y))γ1

(11)

where α1, β1, and γ1 are parameters used to adjustPC, LSCM,

and LE in NAM. In this paper, the parameter α1, β1, and γ1
are set to 1, 2, and 2 respectively [18], [38].

When NAM is obtained, the fused highpass subband image

can be calculated by the rule proposed in Eq. 12.

HF (x, y) =
{

HA (x, y) if LmapA (x, y) = 1

HB (x, y) otherwise
(12)

where HF (x, y), HA(x, y), and HB(x, y) are highpass subband

images of fused image and source image IA and IB respec-

tively. Lmapi (x, y) denotes a decision map for the fusion of

highpass subband, and can be calculated by Eq. 13.

Lmapi (x, y) =







1 if ⌈Si (x, y)⌉ >
M̃ × Ñ

2
0 otherwise

(13)

In Eq. 13, �1 represents a sliding window with a size of

M̃×Ñ , and is centered at (x, y) andK is the number of source

images.

B. FUSION RULE OF LOWPASS SUBBANDS

Lowpass subbands contain most energy of source images that

has a significant impact on the fusion performance. Although

NSCTfiltersmost detailed information as highpass subbands,

the limited decomposition level of NSCT cannot filter all the

detailed information of source images as highpass subbands.

To fully preserve the structured and detailed information of

lowpass subbands, a measure, that considers both structured

information preservation and detailed information extraction,

is constructed for the fusion of lowpass subband components

in NSCT domain [24].

In the proposed method, two activity level measures are

implemented to measure the structured information, which

is weighted local energy (WLE) and weighted sum of

eight-neighborhood based modified Laplacian (WSEML)

respectively.

WLE is defined as Eq.15.

WLE(x, y) =
r

∑

m=−r

r
∑

n=−r
W × (m+ r + 1, n+ r + 1)

×L(x + m, y+ n)2 (15)

where L(x, y) represents the lowpass subband of source image

at location (x, y), WLE(x, y) represents the WLE of image at

location (x, y), W is a (2r + 1) × (2r + 1) matrix, elements

in W are set to 22r−d , r is the radius of matrix W , and

d of each element represents its four-neighborhood distance

to the center of matrix W. For example, when r is set to 1,

the normalized matrixW is shown by Eq. 16.

1

16





1 2 1

2 4 2

1 2 1



 (16)

WLE is used as the structure measure to preserve the struc-

tured information.

WSEML is a measure of detail extraction, that can be

defined as Eq. 17.

WSEML(x, y) =
r

∑

m=−r

r
∑

n=−r
W (m+ r + 1, n+ r + 1)

×EML(x + m, y+ n) (17)

W is the weighted matrix that has the same definition

as Eq. 15, and EML is defined as Eq. 19. EML can make

the full use of neighboring information. Thus the detailed

information can be better measured by EML.

When EML and WSEML are obtained, the fused lowpass

subband image can be calculated by the rule proposed in

Eq. 19, where LF (x, y), LA(x, y), and LB(x, y) are lowpass

subband images of fused image and source image IA and

IB respectively. WLENA and WSEMLNB are the normalized

WSEML of IA and IB respectively.

EML(x, y)

= |2L(x, y) − L(x − 1, y) − L(x + 1, y)|
+ |2L(x, y) − L(x − 1, y) − L(x + 1, y)|

+
1

√
2

|2L(x, y)−L(x−1, y− 1)−L(x+1, y+1)|

+
1

√
2

|2L(x, y)−L(x−1, y+ 1)−L(x+1, y−1)| (18)

LF (x, y)

=



















LA(x, y) if 0.5 ·WLENA(x, y) + 0.5

·WSEMLNA(x, y) ≥ 0.5 ·WLENB(x, y)
+ 0.5 ·WSEMLNB(x, y)

LB(x, y) otherwise.

(19)
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FIGURE 5. Source images of comparative experiments. (a), (b), and (c) are CT-MRI, MRI-PET, and SPECT-MRI
source image pairs respectively.

When the fused coefficients of highpass subband HF
and lowpass subband LF are calculated, the fused image

IF can be obtained by inverting NSCT [5], [7], [8] over

{HF ,LF }. The inverse transform of NSCT is realized by the

optimal linear reconstruction [7] of highpass subband HF
and lowpass subband LF using the dual coordinate system

operator [7], [8].

IV. EXPERIMENTS AND ANALYSES

A. EXPERIMENT PREPARATION

In comparative experiments, nine pairs of computed

tomography (CT) and magnetic resonance imaging (MRI)

medical images, eight pairs of MRI and positron emis-

sion computed tomography (PET), and thirteen pairs of

single-photon emission computed tomography (SPECT)

and MRI medical images are used in the fusion perfor-

mance testing respectively. The resolution of each test

image is set to 256 × 256. Parts of representative images

are shown in Fig. 5. In Fig. 5, image pairs (a), (b),

and (c) show CT-MRI, MRI-PET, and SPECT-MRI image

pairs respectively. Medical image pairs are obtained

from http://www.med.harvard.edu/aanlib/home.html. All the

experiments are programmed by Matlab 2014a and run on

an Intel(R) Core(TM)i7-4790CPU@ 3.60GHz Desktop with

8.00 GB RAM.

Six mainstream medical image fusion methods published

in recent four years, such as ASR [25], [36], KIM [13],

MST [24], NSST [45], NSCT [10], and NSCT-PC [2] are

compared with the proposed solution in comparative experi-

ments. ASR is an adaptive sparse representation (ASR)model

proposed by Liu et al. [25] for image fusion and denoising.

KIM is a multi-modal image fusion method based on sparse

representation proposed by Kim et al. [13]. MST is a general

duty multi-modal image fusion algorithm based on MST and

SR, proposed by Liu et al. [24]. NSST is a medical image

fusion algorithm that combines PCNN and NSST proposed

by Yin et al. [45]. Both NSCT andNSCT-PC are NSCT-based

multi-modal medical image fusion algorithms, which are

proposed by [10] and [2] respectively. NSCT-PC is a fusion

framework that combines phase consistency and directive

contrast in the NSCT domain. The fusions method selected

in the comparative experiments contain three types of multi-

modal image fusion framework: SR-based, NSCT-based, and

MST- and SR-based fusion framework.

For quantitative evaluation, a single evaluation metric can-

not fully reflect the quality of fused image. Therefore, several

metrics are applied to making a comprehensive evaluation

as necessary. In this paper, eight popular metrics are used

to quantitatively evaluate the performance of different fusion

methods, which areQTE [26], [32],QIE [26], [43],QAB/F [33],

[50], QP [26], [46], MI [37], QY [26], [43], QCB [4], [26],

and VIF [40].

QTE [26], [32] and QIE [26], [43] evaluate the Tsallis

entropy and nonlinear correlation information entropy of

fused images respectively. QAB/F [33], [50] and QP [26], [46]

are used to measure the edge information. QAB/F [33] is

a gradient-based quality index, and QP [26], [46] is an

image fusion metric based on phase congruency.MI [26] and

QY [26], [43] measure the similarity between the fused

image and source images. MI [26] as a quantitative measure

Si (x, y) =
{

(x0, y0) ∈ �1|NAMi (x0, y0) ≥ max(NAM1 (x0, y0) ,

. . . ,NAMi−1 (x0, y0) ,NAMi+1 (x0, y0) , . . . ,NAMK (x0, y0))

}

(14)
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FIGURE 6. CT-MRI image fusion experiments, (a) and (c) are CT and MRI source images respectively.
(b) and (d) are local detailed images of (a) and (c) respectively. (e), (f), (g), (h), (i), (j) and (k) are the
fused images of ASR, JCPD, MST, NSST, NSCT, NSCT-PC and proposed methods respectively.
(l), (m), (n), (o), (p), (q), and (r), are local detailed information of (e), (f), (g), (h), (i), (j) and (k) respectively.

FIGURE 7. CT-MRI image fusion experiments, (a) and (c) are CT and MRI source images respectively.
(b) and (d) are local detailed images of (a) and (c) respectively. (e), (f), (g), (h), (i), (j) and (k) are the
fused images of ASR, JCPD, MST, NSST, NSCT, NSCT-PC and proposed methods respectively.
(l), (m), (n), (o), (p), (q), and (r), are local detailed information of (e), (f), (g), (h), (i), (j) and (k) respectively.

evaluates the mutual dependence of two variables, and

QY [26], [43] is a structural similarity based metric for

fusion assessment. QCB [4], [26] and VIF [40] evaluate the

human visualization performance of fused images in different

aspects. QCB [4], [26] is a fusion metric inspired by human

perception. VIF [40] is the ratio between distorted testing

image information and referenced image information.

For functional images such as PET and SPECT in med-

ical images, it is feasible to use YUV color space to solve

the fusion problem of grayscale and color images in the

fusion process [23], [44]. The YUV space encodes the color

image into one luminance component and two chrominance

components, which fully takes into account human visual

perception [23], [44], [45]. In the proposed fusion algorithm,

the RGB color image is first converted into a YUV color

space, and then three channel components of Y, U, and

V are obtained. After that, the gray image and the Y channel

component are applied to the fusion algorithm proposed in

the third section to achieve image fusion. Finally, the fused

Y-channel component, the source U-channel component, and

the V-channel component are inversely transformed by YUV

to obtain the fused color image.

B. EXPERIMENT RESULTS AND ANALYSES

1) COMPARISONS OF FUSION RESULTS

In cranial pathology, the fused image of CT-MRI images

can provide both great visualization of bony anatomy and

clear delineation of soft tissues. The typical CT-MRI fusion

results of six popular image fusion methods are shown

in Fig. 6 and 7. From (e), (f) and (g) of Fig. 6 and 7,

it can easily figure out that the fused results of ASR, JCPD,

MST, and NSCT lose a lot of energy in CT modality.

The loss of energy causes the contrast decreasing of fused

image. The contrast decreasing of fused image can seriously
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FIGURE 8. MRI-PET image fusion experiments, (a) and (c) are MRI and PET source images respectively.
(b) and (d) are the local detailed images of (a) and (c) respectively. (e), (f), (g), (h), (i), (j) and (k) are the
fused images of ASR, JCPD, MST, NSST, NSCT, NSCT-PC and proposed methods respectively.
(l), (m), (n), (o), (p), (q), and (r), are local detailed information of (e), (f), (g), (h), (i), (j) and (k) respectively.

FIGURE 9. MRI-PET image fusion experiments, (a) and (c) are MRI and PET source images respectively.
(b) and (d) are the local detailed images of (a) and (c) respectively. (e), (f), (g), (h), (i), (j) and (k) are the
fused images of ASR, JCPD, MST, NSST, NSCT, NSCT-PC and proposed methods respectively.
(l), (m), (n), (o), (p), (q), and (r), are local detailed information of (e), (f), (g), (h), (i), (j) and (k) respectively.

affect the accuracy of medical diagnosis, that is not accept-

able in medical imaging fields. The intermediate regions of

Fig.6 (e), (f), (g) and (i) show varying degrees of detail

loss due to the decreasing of image contrast. The fused

results of NSST, NSCT-PC and proposed method shown

in Fig. 6 and 7 have great information preservation of both

MRI and CT modality. However after furtherly exploring the

detailed information shown in Fig. 7 (o), (q) and (r), it can

find that NSST, and NSCT-PC lose parts of detailed infor-

mation in CT modality, and the proposed method shows the

great performance in preserving both CT and MRI modality

information. Specifically, the structure and edge details of

the right region of Fig.6 (o) and (q) are missing, while the

overall structure and details of Fig.6 (r) are well preserved.

The proposed method performs well on both the preservation

of structured information and detailed information in fused

CT-MRI image.

The fusion of MRI-PET image pair can provide clear soft

tissues andmetabolism of specific tissues, that are extensively

used in medical diagnosis [12]. Fig. 8 and 9 show the fused

results of four MRI-PET image pairs. The structured infor-

mation of PET modality is missing in the fused results of

ASR, JCPD, MST and NSCT shown in (e), (f), (g) and (i)

of Fig. 8 and 9. The loss of PET modality can cause the

medical misdiagnosis. Both the upper left brain in (e), (f), (g)

and (i) of Fig. 8 and the center of brain in (e), (f), (g)

and (i) of Fig. 9, the partial structure and edge details are lost.

Especially in Fig. 9, the energy preservation results of ASR,

MST, and NSCT fusion results are poor. All three methods

NSST, NSCT-PC and the proposed method show great per-

formance in multi-modality energy preservation. Comparing

the detailed information of proposed method, NSST, and

NSCT-PC shown in (r), (o) and (q) of Fig. 8 and 9, the pro-

posed method has a little bit higher contrast than NSST,
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FIGURE 10. SPECT-MRI image fusion experiments, (a) and (c) are MRI and SPECT source images
respectively. (b) and (d) are the local detailed images of (a) and (c) respectively. (e), (f), (g), (h), (i), (j) and
(k) are the fused images of ASR, JCPD, MST, NSST, NSCT, NSCT-PC and proposed methods respectively.
(l), (m), (n), (o), (p), (q), and (r), are local detailed information of (e), (f), (g), (h), (i), (j) and (k) respectively.

FIGURE 11. SPECT-MRI image fusion experiments, (a) and (c) are MRI and SPECT source images
respectively. (b) and (d) are the local detailed images of (a) and (c) respectively. (e), (f), (g), (h), (i), (j) and
(k) are the fused images of ASR, JCPD, MST, NSST, NSCT, NSCT-PC and proposed methods respectively.
(l), (m), (n), (o), (p), (q), and (r), are local detailed information of (e), (f), (g), (h), (i), (j) and (k) respectively.

and has higher sharpness than NSCT-PC. For PET-MRI

image fusion, the proposed method achieves excellent per-

formance in both structured information preservation and

detailed information extraction.

SPECT-MRI image fusion is often used to reflect the soft

tissues and organism’s metabolism [31]. The fused results

of ASR, JCPD, MST, NSST, NSCT, NSCT-PC and pro-

posed methods are demonstrated in Fig. 10 and 11. The

performances of ASR, JCPD and NSCT on preserving the

structured information of MRI modality are poor. MRI

information is missing in the fused images of ASR, JCPD

and NSCT. The gradation contrast of results fused by ASR

and NSCT is poor, and some MRI texture and structure

details are not sharpness. MST preserves most MRI and PET

structured information well. However, a number of dark areas

that appear in the fused image of MST affect the performance

of fused image. NSST, NSCT-PC, and proposed method have

excellent performance in the structured information preserva-

tion. However, a dark area appears at the edge of Fig.10 (q),

which reduces the local image contrast. The soft tissue of

Fig.10 (o) has a smoother edge and a brighter contrast, which

may cause the loss of some important details. Comparing the

detailed information shown in (o) and (r) of Fig. 10 and 11,

the proposed method shows better contrast and sharpness

than both NSST and NSCT-PC. So the proposed method

achieves the best performance in both structured infor-

mation preservation and detailed information extraction in

SPECT-MRI image fusion.

2) OBJECTIVE EVALUATION ANALYSES

In this paper, eight objective metrics are applied to the

evaluation of fusion performance. The average scores of

ASR, JCPD, MST, NSST, NSCT, NSCT-PC, and pro-

posed method for CT-MRI, MRI-PET, and SPECT-MRI
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TABLE 1. Objective metrics of multi-modality medical image fusion experiment.

FIGURE 12. Objective evaluations of CT-MRI, MRI-PET, and SPECT-MRI mdical image fusion experiment.

image fusion are reported in Tab. 1. The highest value

of each metrics is marked in bold. Tab. 1 is visualized

in Fig. 12.

Comparing with other six methods, the proposed method

gets the top rank in 6 of 8 objectivemetrics for CT-MRI image

fusion. For MRI-PET and SPECT-MRI image fusion, the
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TABLE 2. Computation cost comparison for both gray-level and color image fusion.

proposed method achieves the top in 5 of 8 objective metrics.

Overall, the proposed method has the best performance in

most cases of eight objectivemetrics among all three different

types of multi-modality medical image fusion. In Fig. 12,

the proposed method also obtains the top two scores in most

comparisons.

The proposed method only ranks at the third place for QP

of both SPECT-MRI and MRI-PET images fusion. NSST

and ASR obtain higher score than the proposed method

in SPECT-MRI and MRI-PET images fusion respectively.

QP is used for phase congruency evaluation. The fused results

of NSST lose the brightness information that the bright area in

MRI image. The results fused byASR have poor performance

in the preservation of structured information in dark areas.

Since the contrast of ASR and NSST relatively increases,

the corresponding QP increases. In the objective score of

human visual system, although the proposed method does

not obtain the top three result in QCB of SPECT-MRI and

MRI-PET images fusion, it still gets a good performance

in VIF . According to the comparisons, the proposed method

has a good robustness.

3) COMPUTATION COSTS ANALYSES

In comparative experiments, CT-MRI fusion uses gray-level

image pairs. MRI-PET and SPECT-MRI image fusion use

color image pairs. For each method, average computation

costs of both gray-level and color image fusion are demon-

strated in Tab. 2. Although the computation cost of proposed

method is higher than NSST, it is still comparable. Although

the complexity of the proposed method in color image fusion

is higher than NSCT, the proposed method consumes sig-

nificantly less time in grayscale image fusion than NSCT.

In addition, the other methods are less efficient than the

proposed method. The processing time of ASR and JCPD

are 4 times greater than the proposed method. Meanwhile,

the processing time of MST and NSCT-PC is 2 and 9 times

greater than the proposed method respectively. The compu-

tation efficiency of proposed method can satisfy different

usages in practice.

V. CONCLUSION AND DISCUSSION

In this paper, it proposes a phase congruency and local

Laplacian energy based multi-modality medical image fusion

method in NSCT domain. The presented method consists of

three steps. First, it decomposes the source medical image

pairs into highpass and lowpass subbands by NSCT. Then

the highpass and lowpass subbands are fused by the proposed

phase congruency and local Laplacian energy based fusion

rule respectively. Finally, the integrated highpass and lowpass

subbands are inversely transformed into the fused image. The

experiment results demonstrate that the proposed method not

only outperforms visual and objective quality in fused image,

but also has competitive computation costs.

According to experiment results, the proposed method

does not achieve great fusion performance in human visual-

ization based objective metrics like PET-MRI image fusion.

Additionally, although the proposed method obtains better

fusion results than NSST, the computation costs of proposed

method is higher than NSST. In future, the lowpass subbands

fusion rule will be optimized to furtherly improve the per-

formance of human visualization. It will also improve the

computation efficiency for phase congruency based fusion

rule.
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