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SUMMARY

In this paper a phase-field model for cohesive fracture is developed. After casting the cohesive zone approach
in an energetic framework, which is suitable for incorporation in phase-field approaches, the phase-field
approach to brittle fracture is recapitulated. The approximation to the Dirac function is discussed with
particular emphasis on the Dirichlet boundary conditions that arise in the phase-field approximation. The
accuracy of the discretisation of the phase field, including the sensitivity to the parameter that balances the
field and the boundary contributions, is assessed at the hand of a simple example. The relation to gradient-
enhanced damage models is highlighted and some comments on the similarities and the differences between
phase-field approaches to fracture and gradient-damage models are made. A phase-field representation for
cohesive fracture is elaborated, starting from the above energetic framework. The strong as well as the
weak formats are presented, the latter being the starting point for the ensuing finite element discretisation,
which involves three fields: the displacement field, an auxiliary field which represents the jump in the
displacement across the crack, and the phase field. Compared to phase-field approaches for brittle fracture,
the modelling of the jump of the displacement across the crack is a complication, and the current work
provides evidence that an additional constraint has to be provided in the sense that the auxiliary field must
be constant in the direction orthogonal to the crack. The sensitivity of the results with respect to the numerical
parameter needed to enforce this constraint is investigated, as well as how the results depend on the orders
of the discretisation of the three fields. Finally, examples are given which demonstrate grid insensitivity
for adhesive and for cohesive failure, the latter example being somewhat limited since only straight crack
propagation is considered. Copyright c© 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Two main approaches exist for the finite element modelling of fracture propagation in man-made

and biological materials, namely the discrete crack models [1] and the smeared crack models [2].

In the discrete crack models fracture was originally assumed to occur when the nodal force that

is normal to the element boundaries exceeds the maximum tensile force that can be sustained.

New degrees-of-freedom at that node location are then created and a geometrical discontinuity is

assumed to occur between the ‘old’ node and the newly created node. Two obvious drawbacks

of the method are the continuous change of the topology of the discretisation and the restriction

of the crack propagation to follow the mesh lines. Remeshing techniques [3, 4] and advanced

discretisation techniques such as meshless methods [5] or partition-of-unity based finite element

methods [6, 7, 8, 9, 10] can overcome these limitations. Yet, although sophisticated crack-front
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2 CLEMENS V. VERHOOSEL AND RENÉ DE BORST

tracking methods have been developed, for instance based on level sets [11, 12], the robust and

efficient analysis of three-dimensional problems can still pose problems.

The counterpart of the discrete crack concept is the smeared crack concept, in which a cracked

solid is imagined to be a continuum where the notions of stress and strain apply. Upon cracking, the

isotropic stress-strain relation is replaced by an orthotropic stress-strain relation which incorporates

the effect of local material degradation. However, the topology of the original finite element mesh

is preserved. This is computationally efficient and it is for this reason that the method has come into

widespread use and has replaced discrete crack models in most large-scale computations.

Smeared-crack models can be cast within the framework of (anisotropic) continuum damage

mechanics [13, 14], and thus share the disadvantages of damage models. A particular concern

regarding damage evolution in standard continuum models is the inherent mesh sensitivity that

occurs after reaching a certain damage level. This mesh sensitivity goes beyond the standard

discretisation sensitivity of numerical approximation methods for partial differential equations and

is not related to deficiencies in the discretisation methods. Instead, the underlying reason for this

mesh sensitivity is a local change in character of the governing partial differential equations. This

change of character leads to a loss of well-posedness of the initial/boundary value problem and

results in an infinite number of possible solutions. After discretisation, a finite number of solutions

results. For a finer discretisation, the number of solutions increases, which explains the observed

spurious mesh sensitivity. Well-posedness can be (partially) restored in a variety of ways, including

non-local averaging schemes [15], and implicit gradient damage models [16].

Not unrelated to implicit gradient damage approaches are the phase-field models for fracture.

Pioneering work has been done by Francfort, Bourdin and Marigo [17, 18, 19], who proposed a

phase-field approximation of the variational formulation for brittle fracture based on the Mumfort-

Shah potential [20]. More recently, Miehe and co-workers [21, 22, 23] have derived a phase-field

formulation for brittle fracture based on thermodynamical considerations. This formulation closely

resembles that in [18]. Both models have been applied to dynamic fracture [23, 24, 25]. An extension

of the variational formulation for brittle fracture to cohesive fracture has been considered in [19],

but a phase-field approximation is not yet available. It is the purpose of this paper to develop such

an approximation.

The development of a phase-field model for cohesive fracture is a non-trivial extension of the

model available for brittle fracture. In fact, considering well-established numerical methods for

discrete models of brittle and cohesive fracture, it is observed that they rely on very different

concepts. In this contribution we will explore the fundamental properties of cohesive zone

formulations in the context of phase-field formulations. For achieving this, we will focus on

adhesive interfaces, i.e. interfaces that do not propagate. Our developments work towards a model

for propagating cohesive cracks of arbitrary topological complexity, but such a complete model is

not fully covered in this contribution. Yet, we will present first results for a simple test case with a

propagating interface in the final part of the paper.

The paper is structured as follows. In Section 2 the cohesive phase-field model will be derived,

and we will first consider cohesive fracture in its original, discrete form. Next, we introduce the

phase field approach and apply it to obtain a phase-field model for cohesive fracture. In Section 3

we consider the finite element discretization of the model. A series of one and two-dimensional test

cases is considered in Section 4, while concluding remarks are made in Section 5.

2. COHESIVE FRACTURE AND PHASE FIELDS

2.1. Cohesive fracture

We consider a volume Ω with an internal discontinuity boundary Γ as shown in Figure 1a. The

position of a material point is determined by the coordinate x in a Cartesian reference frame.

Displacement and traction components are prescribed along disjoint parts of the external boundary

of the domain, ∂Ωgi and ∂Ωhi
, respectively, with g and h the Dirichlet and Neumann data. As the

starting point for the derivation of the phase-field approximation to cohesive fracture models, we

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
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A PHASE-FIELD MODEL FOR COHESIVE FRACTURE 3

(a) Discrete interface (b) Smeared interface

Figure 1. Schematic representation of a solid domain with (a) a discrete internal discontinuity interface and
(b) a smeared interface

first consider the potential energy for the case of a discrete description of brittle fracture (e.g. [17]):

Ψpot =

∫

Ω

ψe(ε) dV +

∫

Γ

Gc dA (1)

In this expression, the elastic energy density ψe is a function of the infinitesimal strain tensor ε, with

components

εij = u(i,j) =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)

, (2)

where u is the displacement field. Under the assumption of small displacement gradients, this

infinitesimal strain tensor is an appropriate measure of the deformation of the body. The elastic

energy density is expressed by Hooke’s law for an isotropic linear elastic material as

ψe(ε) =
1

2
λεiiεjj + µεijεij , (3)

with λ and µ the Lamé constants. In Equation (1) the fracture energy, i.e. the amount of energy

dissipated upon the creation of a unit of fracture surface) is denoted by Gc. The potential energy

Ψpot governs the balance between elastic energy in the bulk material and the fracture energy.

These two energy terms are evidently different in nature as the internal energy is recoverable,

while the fracture energy is dissipative. Variational formulations for brittle fracture incorporate this

fundamental difference by means of an irreversibility condition, which enforces that cracks can only

nucleate and propagate, and not heal (e.g. [19]).

The essential difference between brittle and cohesive fracture models is the dependence of the

fracture energy on the crack opening for the latter type of models. While in the former class of

models the fracture energy Gc is instantly dissipated upon the creation of a unit fracture surface,

in the cohesive case the energy is released gradually, and the energy dissipation is governed by a

fracture energy function:

G = G(JuK, κ) (4)

which depends on the jump of the displacement field JuK across the discontinuity Γ and on a history

parameter κ (or, more generally, a set of history parameters). The history parameter obeys the Kuhn-

Tucker conditions to distinguish between loading and unloading. The cohesive tractions are obtained

through differentiation of the fracture energy with respect to the crack opening:

t =
∂G

∂JuK
→ t = t(JuK, κ) (5)

Both adhesive (initially elastic) and cohesive (initially rigid) traction-opening relations can be

constructed by means of the fracture energy function (4). Examples of both cases are shown in

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
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4 CLEMENS V. VERHOOSEL AND RENÉ DE BORST

Figure 2. Initially rigid (solid line) and initially elastic (dashed line) crack-opening relations

Figure 2. The most important parameters of the crack-opening relations are the fracture energy,

Gc, which corresponds to the value of the fracture energy function G at full crack opening (or,

equivalently, to the total area under the traction-opening curve), and the fracture strength tu. The

latter parameter sets the maximum value of the traction-opening law or, equivalently, the maximum

slope in the fracture energy function. From the fracture energy function for adhesive interfaces,

the dashed line in Figure 2, it is observed that at the fracture strength the fracture energy function

changes from convex to concave, which reflects the change in the character of the underlying set of

differential equations.

Similar to brittle fracture, but now using the fracture energy function (4), the potential energy for

the description of discrete cohesive fracture is written as:

Ψpot =

∫

Ω

ψe(ε) dV +

∫

Γ

G(JuK, κ) dA (6)

A classical result is recovered when the variation of the potential energy is considered:

δΨpot =

∫

Ω

σij(ε)δεij dV +

∫

Γ

ti(JuK, κ)δJuiKdA (7)

From this expression the Cauchy stress is defined as

σ =
∂ψe

∂ε
(8)

which, for isotropic linear elasticity, specializes to:

σij = λεkkδij + 2µεij (9)

Equation (7) is the familiar decomposition of the variation of internal energy into a part related to

the continuum and a part associated with the cohesive interfaces.

Before we proceed with the derivation of the phase-field model for cohesive fracture we stipulate

the fundamentally different dissipation mechanisms for brittle and for cohesive fracture. Whereas

energy dissipation in the brittle case is directly related to the creation of an internal discontinuity

surface, in the cohesive case there is the requirement that a crack surface further opens. This

distinction is very clear for adhesive interfaces. For such interfaces a geometric discontinuity is

present from the onset, but energy is only dissipated upon opening of the interface. In order to

develop a phase-field model for cohesive fracture it is crucial to properly include the dissipative

mechanism in the energy balance equations. Compared to the models for brittle fracture it is required

to model crack opening, since it is the kinematic quantity that drives energy dissipation.

2.2. Phase field formulation

The idea of phase-field models is to represent a discrete interface by means of a continuous, or

smeared, field. In the case of the cohesive zone formulation discussed in the previous section, a

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
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A PHASE-FIELD MODEL FOR COHESIVE FRACTURE 5

Figure 3. Zoom of the discontinuity surface Γ with definitions of the infinitesimal area dA and infinitesimal
volume dV

phase field can be used to create a smeared approximation, Γǫ, of the discrete interface Γ. It is

noted that the subscript ǫ is used to refer to a smeared approximation. Considering the potential

energy functional, equation (6), the first step towards a phase-field description is the representation

of the infinitesimal surface area dA by a smeared approximation dAǫ. Since this approximation is

smeared out over the volume the surface area must be reformulated as a volume integral. Using a

Dirac function, the infinitesimal surface area dA at every point xc of the fracture surface, can be

written as:

dA(xc) =

∫ ∞

xn=−∞

δ (xn) dxn

︸ ︷︷ ︸

=1

dA =

∫ ∞

xn=−∞

δ (xn) dV, (10)

with xn = (x− xc) · n(xc) and n(x) the unit vector normal to the fracture surface (see Figure 3).

Equation (10) directly allows for smeared descriptions of the fracture surface by employing a

smeared approximation of the Dirac function. As in [21, 22] we consider the approximated Dirac

function

δǫ(xn) =
1

2ǫ
exp

(

−
|xn|

ǫ

)

(11)

with ǫ > 0 a length scale parameter. Evidently, for arbitrary ǫ, it holds that:
∫ ∞

−∞

δǫ(xn)dxn = 1 (12)

From equation (11) it is observed that for higher values of ǫ the fracture surface is distributed over a

larger volume. Indeed, ǫ is directly related to the ‘width’ of the smeared interface. Upon substitution

of equation (11) into equation (10) the smeared infinitesimal fracture surface area follows as:

dAǫ(xc) =

∫ ∞

xn=−∞

δǫ (xn) dV (13)

A fundamental problem with the smeared Dirac function approximation, equation (11), is that

it is not straightforward to generalize it to more dimensions. Therefore, rather than using this

approximate function directly, it is obtained implicitly through the solution of the boundary value

problem






d− 4ǫ2 d2d
dx2

n

= 0 xn ∈ R\0

d = 1 xn = 0

d = 0 xn = ±∞

(14)

with d(xn) ∈ [0, 1] a scalar field, which equals 1 at the centre of the discontinuity, i.e. for xn = 0,

and vanishes for xn = ±∞. The approximate Dirac function, equation (11), then follows as

δǫ =
d2

4ǫ
+ ǫ

(
dd

dxn

)2

(15)

It is noted that the approximate Dirac function would also follow from the simpler expression:

δǫ =
d2

2ǫ

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
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6 CLEMENS V. VERHOOSEL AND RENÉ DE BORST

Using the expression of equation (15), however, has the advantage that upon substitution into

equation (12) and multiplication by a fracture energy we obtain an energy functional, and

minimisation of this energy functional then yields the differential equation of equation (14).

In [21] it has been demonstrated how equation (14) allows for the description of fracture surfaces

in a two-dimensional setting. In the brittle fracture description, however, the Dirichlet constraints

are rendered unnecessary due to the appearance of thermodynamic driving force terms. A similar

concept has been used in [25] for the representation of fracture surfaces that are a priori present

in the mesh, thereby avoiding the necessity of introducing (mesh-dependent) Dirichlet constraints.

Here, we follow this line and weakly impose the Dirichlet constraints by adding the constraint term

d(0) = 1 (16)

in a weighted sense to the weak form of the boundary value problem (14). Using the test function v
the weak form is obtained as

∫ ∞

−∞

v

(

d− 4ǫ2
d2d

dx2n

)

dxn + C
4ǫ2

h

∫ ∞

−∞

v(d− 1)δ(xn)dxn = 0, (17)

with C a positive constant that balances the weight of the differential equation vs that of the

boundary condition, and h a parameter proportional to the mesh size. Note that the multiplication of

the second integral by a factor 4 is arbitrary, and influences the choice of the constant C. We rewrite

equation (17) as
∫ ∞

−∞

v

(

d− 4ǫ2
d2d

dx2n
+ C

4ǫ2

h
(d− 1)δ(xn)

)

dxn = 0, (18)

and obtain after a slight rewriting:

(1 + F) d− 4ǫ2
d2d

dx2n
= F , (19)

with the “driving force” term given by

F = C
4ǫ2

h
δ(xn) (20)

From equation (19) we directly observe the dependence of the phase-field on the driving force F . If

F ≪ 1, the phase-field parameter d approaches zero, whereas if F ≫ 1, d goes to one. In order to

allow for numerical integration of the constraint term, we approximate the Dirac function as:

δ(xn) ≈

{
1
h

(

1− |xn|
h

)

−h ≤ xn ≤ h

0 otherwise
, (21)

This Dirac approximation is not directly related to the earlier approximation for the smeared

interface, δǫ, equation (11).

In Figure 4 we show the convergence of the linear finite element approximation of the differential

equation (19) on a domain [−L/2, L/2]⊂ R with L = 1 and with ǫ = L
20 . The approximate solution

is obtained using the weak form of equation (19)

∫ L

−L

[

v (1 + F) d+ 4ǫ2
dv

dxn

dd

dxn

]

dxn =

∫ L

−L

vF dxn, (22)

where use has been made of integration by parts. Note that, formally, an additional term should

be present that accommodates the non-smooth parameters in the differential equation at xn = 0.

However, removal of this term results in a more smooth solution at the centre of the crack, and in

practice, this term appears to be of minor influence.

In Figure 4 (left) the discretisation accuracy of the phase field is measured in the L2-error with

respect to the exact solution of the set of equations (14). As a consequence of the discrete domain

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
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Figure 4. Mesh convergence of the field d in the L
2-error (left) and the Γ-error (right) for various intensities

of the forcing term C
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Figure 5. Mesh convergence of the field d in the L
2-error (left) and the Γ-error (right) for various settings of

the length scale parameter ǫ with C = 10

being finite, the phase-field solution d(x) does not converge to the exact solution of the problem,

equation (14). This is confirmed by the convergence behaviour of the same problem, but with half

the value of the length scale ǫ, which is given in Figure 5. From Figure 4 it is observed that the

dimensionless coefficient C is of minor importance for the rate of convergence of the interface

error. However, the magnitude of the error for a fixed mesh size is dependent on this coefficient. In

the remainder we will employ C = 10. In Figure 4 and in Figure 5 we also give the convergence

behaviour measured in the Γ-error, defined as:

EΓ =

∣
∣
∣
∣
∣

∫ L/2

−L/2

δǫ dx− 1

∣
∣
∣
∣
∣

(23)

Asymptotic convergence of this measure for the error is observed for both ǫ = L/20 and ǫ = L/40.

The implicit definition of the smeared interface Γǫ as derived for a one-dimensional setting can

be extended straightforwardly to more dimensions. The phase-field parameter d then follows from

the solution of the weak form problem:

∫

Ω

[

v (1 + F) d+ 4ǫ2
∂v

∂xi

∂d

∂xi

]

dV =

∫

Ω

vF dV ∀v (24)

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
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8 CLEMENS V. VERHOOSEL AND RENÉ DE BORST

In this expression, the thermodynamic driving force that sets the crack is still given by (20),

with xn = (x− xc) · n(xc) and xc(x) = argmin
y∈Γ

(‖y − x‖). Once the phase-field over a multi-

dimensional domain is determined, the approximate Dirac function (equation (15) in the one-

dimensional setting), is found as

δǫ =
d2

4ǫ
+ ǫ

∂d

∂xi

∂d

∂xi
, (25)

which, in conjunction with equation (13) yields an approximation of an infinitesimal surface area

over the crack surface.

Remark

– Relation to the implicit gradient damage formulation Equation (24), rewritten in its strong form

reads:

(1 + F) d− 4ǫ2
∂2d

∂x2i
= F . (26)

This equation serves the same purpose as the differential equation for the equivalent strain in implicit

gradient damage models [16], which also smoothens the solution. The relation to gradient damage

formulations in which the local damage variable d̃ is smoothened through

d− 4ǫ2
∂2d

∂x2i
= d̃ (27)

to give a non-local, or averaged damage value d, is even more clear [26, 27]. Comparing

equation (27) with equation (26) reveals a crucial difference. When d→ 1, F becomes much

larger than 1. As a consequence, (1 + F)d, the first term in equation (26), becomes dominant,

and the smearing, or distributing term gradually vanishes. A similar effect can be achieved in

implicit gradient damage models by letting the internal length scale parameter go to zero upon

the accumulation of damage [28].

2.3. Phase-field representation for cohesive fracture

With the cohesive zone formulation introduced in Section 2.1 and the phase-field approximation of

the interface discussed in Section 2.2, the main ingredients for the formulation of the phase-field

cohesive zone formulation are now present. The main result from the previous section is that the

infinitesimal unit surface area, dA, can be approximated by the smeared measure dAǫ, such that an

integral of some function g(x) over the surface Γ can be expressed as

∫

Γ

g(x) dA ≈

∫

Ω

g(x)δǫ dV =

∫

Ω

g

(
d2

4ǫ
+ ǫ

∂d

∂xi

∂d

∂xi

)

dV, (28)

where it is noted that the unit of δǫ is [1/m]. We use this approximation to rewrite the surface integral

in equation (6) to obtain an expression for the potential energy with the contribution of the fracture

interface smeared over the domain by the phase field:

Ψpot,ǫ =

∫

Ω

(ψe(εe) + G(v, κ)δǫ) dV (29)

Compared to equation (6), we have replaced the infinitesimal strain tensor ε by the ‘elastic’

infinitesimal strain tensor εe, and the jump in the displacement field JuK(xc) with an auxiliary field

v(x). These adjustments are necessary since in the phase-field formulation the crack only exists in

a smeared sense. Consequently, the clear distinction between the bulk and interface kinematics, i.e.

between the infinitesimal strain tensor, equation (2), and the crack opening JuK is lost in the vicinity

of the crack. The remainder of this section will focus on the derivation of proper expressions for

these kinematic quantities.

In the phase-field formulation for cohesive fracture it is crucial to derive kinematic relations that

are consistent with the discrete problem, in the sense that as the length scale parameter ǫ approaches

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
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A PHASE-FIELD MODEL FOR COHESIVE FRACTURE 9

zero, the kinematics of the discrete problem are recovered. In order to arrive at such relations, we

first introduce the distributed internal discontinuity

Γǫ = {x ∈ Ω|d(x) > tol} (30)

with tol ≪ 1 a small tolerance that truncates the support of the smeared crack. The smeared internal

discontinuity Γǫ provides the support for the auxiliary field v(x). Hence, the auxiliary field is only

present at the smeared crack, and the kinematics away from the smeared crack are fully governed

by the displacement field u. Next, we define the normal to the smeared crack based on the point

closest to the discrete boundary Γ, denoted by xc, as

n(x) = n(xc) with xc(x) = argmin
y∈Γ

(‖y − x‖) (31)

In the discrete formulation, the displacement jump is strictly defined at the internal discontinuity

Γ. In the phase-field approach the crack exists in smeared sense, and so does the crack opening.

Therefore, we approximate the discrete displacement jump at xc in terms of the auxiliary jump field

v as

JuK(xc) ≈

∫ ∞

−∞

v(x)δǫ dxn (32)

Under the condition that the auxiliary field is constant in the direction normal to the fracture, i.e.

∂v

∂xn
= 0 (33)

we have

v(x) = v(xc + xnn) = v(xc) (34)

with xn the coordinate along n. Back-substitution into equation (32) yields

JuK(xc) ≈

∫ ∞

−∞

v(xc)δǫ dxn = v(xc)

∫ ∞

−∞

δǫ dxn = v(xc), (35)

which shows that v(x) reflects the crack opening at the closest point xc on the discrete internal

boundary. Consequently, in equation (29) the crack opening JuK that appears as an argument of the

fracture energy can be directly replaced by the auxiliary field v. In the limiting case that the length

scale parameter ǫ goes to zero, the smeared crack Γǫ coincides with the discrete crack Γ and the

auxiliary displacement field coincides with the discrete displacement jump. The requirement that

the auxiliary jump field is constant in the direction normal to the crack is enforced weakly through

the addition of a penalty term in the internal energy functional:

Ψpot,ǫ =

∫

Ω

(

ψe(εe) + G(v, κ)δǫ +
1

2
α

∣
∣
∣
∣

∂v

∂xn

∣
∣
∣
∣

2
)

dV (36)

with α a positive constant. In Section 2.4 we will further comment on the influence of this parameter

when considering the strong form problem.

With the discontinuity kinematics determined through the auxiliary field v, the elastic strain

tensor εe can be derived by requiring the auxiliary field not to exert external power on the problem,

such that the balance of power is given by:
∫

Ω

(
σij ε̇

e
ij + ti(v, κ)δǫv̇i

)
dV =

∫

∂Ω

hiu̇idA (37)

with h representing the traction along the Neumann boundary ∂Ωhi
. Applying Gauss’ theorem to

the right-hand side of this equation, and requiring the traction to be in equilibrium with the Cauchy

stress, σijnj = hi, yields

∫

Ω

σij
(
ε̇eij + δǫ sym (v̇inj)

)
dV =

∫

Ω

σij u̇(i,j)dV (38)
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10 CLEMENS V. VERHOOSEL AND RENÉ DE BORST

From this power balance it is directly observed that the elastic infinitesimal strain tensor, εe, is

related to the displacement field u and auxiliary field v as

εeij = u(i,j) − sym (vinj) δǫ. (39)

In this expression the first part is the symmetric part of the gradient of the displacement field. The

second part can be interpreted as the strain caused by the displacement jump. Hence, the elastic

strain is defined as the symmetric gradient of the displacement field, minus the strain caused by the

crack opening. We immediately note from equation (39) that away from the crack, i.e. for x /∈ Γǫ,

the continuum expression of equation (2) is recovered. In the limiting case that ǫ goes to zero, the

elastic equivalent strain is equal to the symmetric gradient of the displacement field at every point

in the interior of the domain. The unbounded strain term at the discontinuity is caused by the jump

of the displacement field over this internal boundary.

With the kinematics for the displacement jump and elastic strain defined, the weak form of the

cohesive phase-field problem is obtained by taking an arbitrary variation in the displacement field

u and displacement jump field v, while keeping the phase-field constant

δΨpot,ǫ =

∫

Ω

(

σijδε
e
ij + δǫti(v, κ)δvi + α

∂vi
∂xn

∂δvi
∂xn

)

dV = δΨext (40)

where δΨext is the variation in external work, which, in the absence of body forces can be written

as

δΨext =

∫

∂Ω

hiδui dS (41)

The variation in the elastic strain is derived from equation (39) as

δεeij = δu(i,j) − sym (δvinj) δǫ. (42)

2.4. Strong form of the boundary value problem

In order to gain more insight into the phase-field formulation for cohesive fracture, we rewrite

the weak formulation of equation (40) into a strong format. In order to derive the strong form we

substitute equation (42) into equation (40) to obtain:
∫

Ω

(

σijδu(i,j) − δǫσij sym(δvinj) + δǫti(v, κ)δvi + α
∂vi
∂xn

∂δvi
∂xn

)

dV =

∫

∂Ω

hiδui dS (43)

After some manipulations this equation can be rewritten as
∫

Ω

(

−
∂σij
∂xj

δui −

[

δǫ (σijnj − ti(v, κ)) + α
∂2vi
∂x2n

]

δvi

)

dV

=

∫

∂Ω

(hi − σijnj)δui dS −

∫

∂Γǫ

α
∂vi
∂xn

δvi dS,

(44)

where it is assumed that the curvature of the crack is small. Considering a variation in the

displacement field then yields the strong form boundary value problem:
{

∂σij

∂xj
= 0 x ∈ Ω

σijnj = hi x ∈ ∂Ω
(45)

As can be seen, from the perspective of the displacement field, the phase-field cohesive zone

formulation is a regular continuum mechanics problem, supplemented with the standard constitutive

relation, equation (9), and the phase-field dependent strain measure εe, equation (39).

Considering a variation in the displacement jump field in equation (44) yields the additional

boundary value problem:
{

δǫ [ti(v, κ)− σijnj ] = α∂2vi
∂x2

n
x ∈ Γǫ

∂vi
∂xn

= 0 x ∈ ∂Γǫ

(46)
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The interpretation of this differential equation is that it enforces the equilibrium of forces over

the smeared interface. In fact, in the limiting case of ǫ going to zero, the well known result

ti(JuK, κ) = σijnj is recovered. The penalty term which enforces a constant crack opening field

in the direction perpendicular to the crack can perturb this equilibrium. The magnitude of this

perturbation depends on the parameter α. The influence of this parameter on the results, will be

addressed in Section 4.

3. DISCRETISATION

Since in this contribution we focus on the simulation of pre-defined interfaces, we employ a two

stage solution algorithm. In the first step the phase field corresponding to the pre-defined crack

pattern is computed. In the second step, the fracture behaviour of these interfaces upon mechanical

loading of the specimen is solved using a standard incremental iterative solution procedure. In

Section 4.4 we present a first numerical result that extends this two stage procedure for pre-defined

cracks to a staggered scheme suitable for the simulation of propagating interfaces.

3.1. Phase field discretisation

The cohesive phase-field formulation is discretised using finite elements. For the discretisation of

the weak form of equation (22) we consider the interpolation of the phase field as

d(x) = Nd(x)ad, (47)

where ad is an array containing the nodal coefficients of the phase field and Nd contains the finite

element basis functions. By differentiation we obtain

∂d

∂x
(x) = Bd(x)ad, (48)

where the array Bd contains the gradients of the finite element basis functions. When we interpolate

the test functions in the same space as the trial functions the following system of equations is

obtained from equation (24)

[∫

Ω

[
(1 + F)NT

dNd + 4ǫ2BT
dBd

]
dV

]

ad =

(∫

Ω

FNT
d dV

)

(49)

The mesh dependent parameter h in the definition of the driving force F , equation (20), is related

directly to the finite element mesh size. When the system (49) is solved for the coefficients ad, the

approximate Dirac function of equation (25) can be expressed as

δǫ = aT
d

[
1

4ǫ
NT

dNd + ǫBT
d Bd

]

ad (50)

3.2. Discretisation of the displacement fields

For the discretisation of the displacement field and displacement jump field we use:

u = Nuau → sym

(
∂u

∂x

)

= Buau

v = Nvav → sym(v ⊗ n) = Bvav ,
∂v

∂xn
= Gvav

(51)

It is noted that the tensorial quantities considered here are written in Voigt notation. Using this

discretisation the following non-linear system of equations results

f int,u(au,av) = f ext,u

f int,v(au,av) = 0
(52)
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12 CLEMENS V. VERHOOSEL AND RENÉ DE BORST

Figure 6. Schematic representation of a uniaxial rod with an elastic interface, G =
1
2kJuK2, or cohesive

interface with parameters Gc and tu

with the internal force vectors:

f int,u =

∫

Ω

BT
uσdV (53)

f int,v =

∫

Ω

(
−δǫB

T
v σ + δǫN

T
v t(v) + αGT

v Gvav

)
dV (54)

Note that the non-linearity of equation (52) is a consequence of the non-linearity of the cohesive law,

t(v), equation (5). The system of equations (52) is solved using a standard incremental Newton-

Raphson procedure with the tangent stiffness matrix

K =

[
Kuu Kuv

Kvu Kvv

]

(55)

with

Kuu =

∫

Ω

BT
uDBudV (56)

Kuv = KT
vu =

∫

Ω

−δǫB
T
uDBvdV (57)

Kvv =

∫

Ω

(

δ2ǫB
T
v DBv + δǫN

T
v

∂t

∂v
Nv + αGT

v Gv

)

dV (58)

and D the Hookean tensor in Voigt notation.

4. NUMERICAL SIMULATIONS

In this section we study the performance of the cohesive phase-field formulation for a set of one

and two-dimensional benchmark problems. First, we will consider the stability and approximation

properties of the finite element discretisation for a one-dimensional test problem. Then, a

delamination peel test is taken to demonstrate the applicability of the method in two dimensions.

Finally, a first test case with a propagating interface is considered.

4.1. Discretisation stability

Since we consider a mixed finite element discretisation, equation (51), the stability of the

discretisation can depend on the polynomial orders of the basis functions used for the discretisation

of the various fields [29]. To study the discretisation stability we consider a one-dimensional domain

of unit length with a modulus of elasticity E = 1 and a centred elastic interface, see Figure 6. The

energy in the interface, with stiffness k = 1, is taken as:

G =
1

2
kJuK2 =

1

2
kv2 (59)

so that t = kv. The length scale parameter ǫ is taken equal to L/20.
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Figure 7. Displacement field and stress field obtained using a discretisation based on piecewise linear
polynomials for all fields

Figure 7 shows the solution for the displacement field and corresponding stress field for the case

that all fields are discretised using piecewise linear basis functions. The solution of the stress field

clearly reveals an oscillatory behaviour. This behaviour is explained by consideration of the elastic

strain, which, in this one-dimensional case, is given by

εe =
du

dx
− δǫv =

du

dx
−

[

d2

4ǫ
+ ǫ

(
dd

dx

)2
]

v. (60)

Since u is approximated by piecewise linear functions the strain distribution that derives from it is

piecewise constant, see Figure 8 (left). When we consider the contribution to the elastic strain of

the jump field, we observe that δǫ is approximated by piecewise quadratic polynomials and v by

piecewise linear functions. The jump is forced to be constant in the direction perpendicular to the

discontinuity, which effectively makes the contribution of the jump field to the strain piecewise

quadratic. The stress oscillations observed in Figure 7 (right) are a direct consequence of the

mismatch in the approximation orders of the two strain contributions, see Figure 8 (left).

From equation (60) it is observed that when the polynomial order of the displacement field is

taken equal to three, the orders of the strain contributions do match, see Figure 8 (right). In Figure 9

we observe that using the discretisation with piecewise linear basis functions for the phase field and

displacement jump field and piecewise cubic polynomials for the displacement field indeed makes

the stress oscillations vanish. The development of stable finite element schemes (including rigorous

derivations) for the proposed formulation is a subject of further study.

4.2. Cohesive fracture of a rod

We again consider the one-dimensional rod of Figure 6, but now with a cohesive interface. The

length of the rod is L = 1 and the modulus of elasticityE = 1. The interface energy is taken as [30]

G = Gc

[

1−

(

1 +
JuK

vn

)

exp

(

−
JuK

vn

)]

. (61)

with vn = Gc/(tue), e = exp(1), from which the traction follows as

t = Gc
JuK

v2n
exp

(

−
JuK

vn

)

. (62)

The fracture energy and fracture strength are taken as Gc = 1 and tu = 0.75, respectively. The length

scale parameter ǫ is taken as L
20 and the stabilization parameter α = 0.1.

We discretise the problem using third-order interpolation functions for the displacement field and

first-order interpolation functions for the auxiliary field and for the phase field. The equilibrium
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Figure 8. Strain contributions for a discretisation based on piecewise linear polynomials for all fields (left)
and a discretisation in which the polynomial order of the displacement field is equal to three (right)
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Figure 9. Displacement field and stress field obtained using a discretisation based on piecewise linear
polynomials for the phase field and displacement jump field, and piecewise cubic polynomials for the

displacement field
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Figure 10. Force-displacement curve for the one-dimensional cohesive zone problem

path is traced using a displacement-controlled incremental iterative Newton-Raphson solver. The
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α tu · 10−5 tu · 10−4 tu · 10−3 tu · 10−2 tu · 10−1 tu tu · 10
Stability × × X X X X X

Table I. Influence of the numerical parameter α on the stability of the results. Unphysical oscillations in the
force-displacement curve are observed if α is chosen too small (×), whereas this curve is stable (X) for

sufficiently large α

Figure 11. Schematic representation of the problem setup for the delamination peel test

displacement steps are taken equal to 0.05. Figure 10 shows the computed response for various

mesh refinments of the phase-field and compare it with the exact solution to the discrete problem.

We observe that upon mesh refinement the phase-field model converges to the discrete solution.

As indicated in previous sections, the numerical parameter α is used to enforce the auxiliary

displacement field to be constant perpendicular to the crack trajectory. In the case of the one-

dimensional problem considered here, this displacement jump field must be constant over the entire

domain. As observed from equation (46) the parameter α can affect the local force balance and

should therefore be selected appropriately. Based on equation (46) it appears to be natural to relate α
to the fracture strength of a cohesive model. In Table I we list the results of a numerical investigation

of the influence of α. If α is chosen too small, i.e. less than 10−3 times the fracture strength,

unphysical oscillations are observed in the force-displacement diagram, which can be traced back

to local fluctuations in the displacement jump field. Taking α = 0 results in ill-conditioned tangent

matrices which makes the results not trustworthy. If α is taken equal to 10−3 times the fracture

strength or larger, stable results are obtained. Increasing the parameter α up to 10 times the fracture

strength does not result in a visual effect on the force-displacement curve. Selecting the parameter

α to be of the same order of magnitude as the fracture strength appears to be a good first estimate.

The appropriateness of this choice can then be verified by numerically studying its influence.

4.3. Delamination peel test

To demonstrate the applicability of the phase-field formulation to cohesive fracture in a two-

dimensional case, we consider the delamination peel test shown in Figure 11. The test consists

of two cantilever beams that are 10 mm long and 0.5 mm high, and are connected over 90% of

their length by means of an adhesive layer. Upon increasing the externally applied loads, F , this

adhesive layer will debond progressively. The bulk material is modelled as a linear isotropic material

with a modulus of elasticity E = 100MPa and Poisson’s ratio ν = 0.3. Plane-strain conditions are

assumed. The behaviour of the adhesive layer is modelled using the Xu-Needleman decohesion

relation [30], which, for mode-I crack opening resembles equation (61). The fracture strength

and fracture energy are taken as, tu = 1MPa and Gc = 0.1 N
mm , respectively. For the length scale

parameter we take ǫ = 0.05, which corresponds to 5% of the total height of the specimen. The

parameter α is taken equal to 1 MPa.

Following the conclusions regarding discretisation stability in the one-dimensional case, we use

a mixed interpolation scheme consisting of third-order interpolation functions for the displacement

field and first-order functions for the auxiliary field and for the phase field. To verify the correctness

of this choice, we compare the stress field in the vertical direction around the traction free pre-crack

with results obtained using first-order interpolation functions for all fields, see Figure 12. The stress

field that is shown has been obtained after one small displacement step, so that non-linear effects
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(a) Equal interpolation orders (b) Mixed interpolation orders

Figure 12. Stress field (σyy) in the vicinity of the traction free interface after the first load step with (a) equal
interpolation orders for all field variables, and (b) mixed interpolation orders

Figure 13. Force-displacement diagram for the delamination peel test computed for various meshes

related to the interface opening are negligible. As in the one-dimensional case, the proper selection

of the interpolation orders is crucial.

Figure 13 gives the force-displacement curves obtained for different discretisations. All curves

have been obtained using a displacement-controlled incremental-iterative solution procedure with

displacement steps equal to 0.04mm. The results are objective with respect to the mesh size. Mesh

refinement along the interface gives a similar picture. The results are also in good agreement with

results reported in literature [31]. The roman numbers in Figure 13 refer to the three stages in the

simulation shown in Figure 14. Evidently, the phase field does not change during the simulation,

since there is an interface along the entire specimen right from the start. The stress field, given

in the right part of Figure 14, shows how the delamination front progresses. Note that in this

figure the interface is represented by a white line running through the specimen for the purpose

of visualization.

4.4. Peel test with propagating interface

We now present a first result for a propagating crack. We again consider the peel test discussed in

the preceding section, but now with only a traction-free pre-crack, see Figure 15. Upon increasing

the load the crack is allowed to propagate into the bulk material. The material properties are taken

the same as in the previous section. An exponentially decaying cohesive relation is used with the

fracture energy identical to that in the previous section. The orders of the discretisation and the other

numerical parameters are also taken identical to those in the previous section.

Since this contribution has focused on adhesive interfaces, the issue of crack nucleation and

propagation was not addressed in Section 2. From the perspective of the development of a cohesive

phase-field model it is necessary to develop a compatible nucleation/propagation model. This is not

addressed here rigorously, but we demonstrate that with an ad-hoc model, meaningful results can

be obtained. Our ad-hoc crack evolution model starts with the definition of a pre-crack, Γ0, which
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Figure 14. Phase field and σyy stress field at three progressive stages in the delamination peel test

Figure 15. Schematic representation of the problem setup for the peel test with propagating discontinuity

is numerically represented by a set of positions and normal vectors sampled along the interface:

S0 ⊂ {(x,n(x)) ∈ Γ0} (63)

If no pre-crack is available, the set S0 is empty. Using the point set S0, the driving force,

equation (20) can however be evaluated at all integration points in the bulk. This allows for solving

the phase-field problem, equation (49). Using the smeared crack represented by this field the

displacements and displacement jumps can then be computed for the next time step through the

solution of the non-linear set of equations (52). Upon convergence, say at time t+∆t, we evaluate

the nucleation criterion in all integration points and extend the point set St of the previous time step

with the points for which the nucleation criterion is now satisfied:

St+∆t = St ∪ {(xi,ni) | Σnuc(σi) > tu, i ∈ Iint} (64)

In this expression Σnuc(σi) > tu is the nucleation criterion evaluated for the stresses σi in all

integration points of the set Iint. The nucleation/propagation model should also yield a normal

vector, ni, in all points where the criterion is met. An obvious choice to render this normal vector

would be to use a maximum principal stress criterion as is commonly done in discrete descriptions of

the cohesive zone model. In the present example we force the crack to remain straight by fixing the

normal vectors in the required (i.c. upward) direction. Once a new set of points has been computed,

the phase-field is recomputed by solving equation (49), and the displacements are updated by

solving equation (52). The external loading is increased when no new nucleation/propagation points

are found. For small load steps this usually happens after a single cycle of this staggered scheme.

In Figure 16 the force-displacement curves are shown for various discretisations. Clearly, the

results are objective with respect to the discretisation. Also, the results are in excellent agreement

with results reported in literature [31]. As in the previous section, the roman numbers refer to the

three stages of the simulation shown in Figure 17. Note that the phase field now progresses during

the simulation. As expected, the stress field evolves in a manner comparable to that of the adhesive

interface discussed above.
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Figure 16. Force-displacement diagram for the peel test with propagating crack computed for various meshes

Figure 17. Phase field and σyy stress field at three progressive stages in the peel test with propagating crack

5. CONCLUDING REMARKS

The derived phase-field model for cohesive fracture differs significantly from models available for

brittle fracture. This is a direct consequence of the fact that the dissipative mechanism for cohesive

fracture is different from that in brittle fracture. More specifically, in the cohesive case the crack

opening must be available as a properly defined kinematic quantity, whereas in the brittle case the

energy balance only requires a smeared description of internal discontinuity boundaries. For this

reason, an auxiliary field is introduced to enable the incorporation of cohesive tractions during crack

opening. Moreover, an elastic strain tensor is defined in the vicinity of the crack. Together with a

standard linear isotropic constitutive relation this elastic strain tensor provides the contribution of

the bulk material to the potential energy of the system. This elastic energy is balanced by a crack

opening-dependent fracture energy term.

The model yields numerical results which are objective with respect to mesh refinement, and the

results are in good agreement with results obtained using established discrete models. With respect

to the simulation of adhesive fracture, an inconvenience of the model is the penalty term which

enforces the auxiliary crack opening field to be constant in the direction orthogonal to the crack.

Enforcing this constraint through a Lagrange multiplier field would eliminate the parameter α, and

can result in a simplification of the model.

The model discussed herein does not address the existence of weak discontinuities in the

displacement field. The numerical simulations considered did not show problems with respect to the
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existence of jumps in the strain field, but these may, for example, occur when considering interfaces

between materials with significantly different stiffnesses.

The model decouples the phase field evolution from the displacement field. In the case of adhesive

interfaces this is a valid assumption, since the discontinuity boundaries are then constant throughout

the simulation. As demonstrated, the decoupled model can be used in a staggered scheme to simulate

crack propagation. The nucleation and propagation of cracks with an arbitrary topology should

follow from the energy balance of a fully coupled model. The staggered scheme considered in this

work is anticipated to be a special case of a fully coupled model.
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