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A cluster-based method was used by Chen et al.
24 to analyze parametric profiles in Phase I of the profile 

monitoring process. They showed performance advantages in using their cluster-based method of 

analyzing parametric profiles over a non-cluster-based method with respect to more accurate estimates 

of the parameters and improved classification performance criteria. However, it is known that, in many 

cases, profiles can be better represented using a nonparametric method. In this study, we use the cluster-

based method to analyze profiles that cannot be easily represented by a parametric function. The 

similarity matrix used during the clustering phase is based on the fits of the individual profiles with p-

spline regression. The clustering phase will determine an initial main cluster set which contains greater 

than half of the total profiles in the historical data set. The profiles with in-control T
2
 statistics are 

sequentially added to the initial main cluster set and upon completion of the algorithm, the profiles in the 

main cluster set are classified as the in-control profiles and the profiles not in the main cluster set are 

classified as out-of-control profiles. A Monte Carlo study demonstrates that the cluster-based method 

results in superior performance over a non-cluster-based method with respect to better classification and 

higher power in detecting out-of-control profiles. Also, our Monte Carlo study shows that the cluster-

based method has better performance than a non-cluster-based method whether the model is correctly 

specified or not. We illustrate the use of our method with data from the automotive industry. 
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1. Introduction 

Profile monitoring is a well-known approach in statistical process control (SPC) where the quality of a 

product or a process is characterized by a functional relationship between a response variable and one or 

more explanatory variables. This functional relationship here is referred to as a “profile”. Profile 

monitoring, and SPC in general, is conducted over two phases, labeled as Phase I and Phase II. 

Literature reviews and an introduction to profile monitoring can be found in Woodall et al.
1
 , Woodall 

2
 

and Noorossana et al.
3
. In SPC, a single profile is commonly used to characterize the quality of a 

product or process. However, Noorossana et al.
4
 also showed that in some cases,  multiple profiles can 

be used simultaneously to characterize in a better way the quality of a product or process. For ease of 

illustration, a single profile will be used in our study.  

In Phase I profile monitoring, one goal is to separate the in-control process data from the out-of-

control process data in the historical data set (HDS). The performance of the Phase I analysis can be 

measured in terms of how well one can correctly identify the out-of-control process data in the HDS. 

Here, an out-of-control process is one where at some point there is a change in the functional 

relationship between the response and the explanatory variables. We consider a sustained shift in the 

functional relationship in our paper. The profiles from the out-of-control process are usually removed 

from the HDS and the remaining profiles are used to compute the statistics needed for establishing the 

control limits used in Phase II analysis.  

To separate the in-control process data from the out-of-control process data, the first step is to fit each 

profile using some appropriate modeling technique. In some applications, the profile can be represented 

adequately by some parametric function. For example, Croarkin
5
, Stover and Brill

6
, Kang and Albin

7
, 

Kim et al.
8
, Mahmoud and Woodall

9
, Wang and Tsung

10
, Gupta et al.

11
 and Zhang et al.

12
 have all used 

parametric profiles in their work. In many other cases, profiles may not be well-modeled by parametric 

functions. Nonparametric profile applications were studied by Jin and Shi
13

, Lada et al.
14

, Walker and 

Wright
15

, Ding et al.
16

, Gupta et al.
11

, Williams et al.
17

, Williams et al.
18

, Zou et al.
19

 and Abdel-Salam 

et al.
20

. To analyze parametric profiles, the presence of profiles from the out-of-control process can be 

detected by the Hotelling’s 
2

T  statistic based on the estimated regression parameters. Kang and Albin
7
, 

Kim et al.
8
 and Mahmoud and Woodall

9
 used the Hotelling’s 

2
T  statistic based on the estimated 

regression parameters to detect the out-of-control profiles. The Hotelling’s 
2

T  statistic has also been 
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used to detect out-of-control nonparametric profiles. For example, Abdel-Salam et al.
20

 proposed using 

estimated best linear predictors (eblups) to calculate the Hotelling’s 
2

T  statistics. 

In the profile monitoring context, data observed within each profile are generally correlated as a 

result of being obtained as repeated measurements on the same experimental unit. In order to account for 

the correlation structure within each profile, Jensen et al.
21

, Jensen and Birch
22

, Qiu et al.
23

 and Chen et 

al.
24

 proposed the use of mixed models to model the profiles. Based on the linear mixed model, Jensen 

et al.
21 

and Jensen and Birch
22

 proposed detecting profiles from an out-of-control process in Phase I by 

comparing each estimated profile specific (PS) curve to the estimated population average (PA) curve 

using the 
2

T  statistic. However, Chen et al.
24

 found that the ability of this method to distinguish profiles 

from the in-control and out-of-control processes will be distorted if there is a moderate or large shift 

among the profiles. Instead of using the estimated PA parameter vector based on all profiles from the 

entire data set to calculate the 
2

T statistic, Chen et al.
24

 proposed a cluster-based method to cluster the 

profiles before estimating the PA parameter vector, and demonstrated the performance advantages of 

using their cluster-based method over the method provided by Jensen et al.
21

 and other robust methods.  

Chen et al.
24

 however, only considered the cluster-based method applied to the monitoring of 

parametric profiles. In many cases, profiles cannot be well modeled by parametric functions. For 

example, for automobile engine data, used in Chen et al.
24

, the relationship between the torque produced 

by the engine and engine’s speed in revolutions per minute (RPM) is used to characterize the quality of 

the engine. A plot of the raw data for 20 engines contained in Table A-1 is shown in Figure 1.1. 

Parametric profile monitoring methods, using a quadratic curve for each engine, have been applied to 

this data by Amiri et al.
25

 and Abdel-Salam et al.
20

 and all engines were found to conform to the same 

in-control process. Using their cluster-based method applied to the parametric fits to the engine profiles 

(based on fitting quadratic curves to each engine), Chen et al.
24

 detected engine 11 as being from a 

process different from the other engines and thus suggesting potential mechanical issues with engine 11. 

Further work by  Abdel-Salam et al.
20

 has shown that the relationship between torque and speed in RPM 

can be better represented by a nonparametric function. They used a nonparametric mixed model, based 

on p-splines, to detect engines 11 and 20 to be from the out-of-control process. Further analysis of this 

example data will be illustrated in Section 4.  
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Figure 1.1: The plot of observed data for 20 automobile engines 

 

2. Nonparametric Mixed Model in Profile Monitoring  

The mixed model has been used to monitor correlated data within each profile in the HDS.  Based on the 

mixed model, the  th
i  profile can be represented nonparametrically as 

    1,2,3,..., ,i i i i if i m    y x x ε                                                  (2.1) 

where m is the number of profiles in the HDS, i
y is the 1in 

 
response vector associated with the th

i  

profile and ni is the number of observations within the th
i  profile. Also,  if x  represents the mean 

response or PA function, common to all profiles,  i i x represents the random effects for the th
i  profile 

where it is assumed that    2
~ 0,i i N I x . In addition, iε  is the 1in  vector of random errors for 

the th
i  profile with  , iMN

i
ε 0 R , where i

R  is the i in n  covariance matrix. More details regarding 

the mixed model can be found in Schabenberger and Pierce
26

, Seber and Wild
27

, Ruppert et al.
28

 and 

Demidenko
29

. 

According to the Equation (2.1), the 
th

j  response from the 
th

i  profile from the nonparametric mixed 

model can be written as: 

    1,2,3,..., 1, 2,3,..., .       ij ij i ij ij iy f x x i m j n  
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Abdel-Salam et al.
20 

approximated both  ijf x  and  i ijx  by using p-spline regression with a truncated 

polynomial basis of order p (other basis functions can be utilized as well). Details of using p-spline 

regression can also be found in Ruppert et al.
28

. Using p-spline regression with the truncated polynomial 

basis,  ijf x  and  i ijx can be approximated as 

   1

1

0 1 1

2

1

pp Kl

ij l ij pk ij kl k

K

kk

f x x u x

u c

  
  



   

 

 


                                     (2.2) 

and 

   2

2

0 1 1

2

1

1, 2,3,..., 1, 2,3,...,

,
ik

pp Kl

i ij i il ij ik ij k il k

K

ik

x b b x t x i m j n

t c

 
  



        

 

 


                (2.3) 

respectively, where p is the order of the polynomial and 1 2, ,..., K    are the knots. The values 1K and 2
K  

are the number of knots chosen for  ijf x and  i ijx , respectively. Additionally,  
p

ij kx 


  is defined 

as 0 for       and  
p

ij k
x  otherwise. The values c  and ic  for 1,2,3,..., i m are fixed constants, 

used to control the smoothness of the nonparametric components, and bounded by 0 and ∞. Given the 

relationship between the p-spline regression approximation and the linear mixed model (see Ruppert et 

al.
28 

), the approximation for the th
i profile in Equation (2.1) can be described succinctly in the linear 

mixed model framework as  

, 1, 2,..., ,i i i m     
i i i i i i

y X β Z u X b E t ε                                       (2.4) 

where  

1 1

2 2

1

1

1

p

i i

p

i i

p

in in

x x
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  

i
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   

   

1

1

1 1 1

1
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x x

x x

 

 

 

 
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 
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 

i
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   

   

2

2
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1

.

pp
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 
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The fixed parameter vectors are 0 1,, ...,
T

p     β  and 0 1,, ..., .   bi

T

i i ipb b b  The penalized parameter 

vectors are 
10 1,, ...,

T

K     μ and 
20 1,, ...,i

T

i i iKt t t   t  with 
T

cμ μ  and , 1, , . t ti

T

i ic i m According 

to Equation (2.4), the th
i  estimated profile can be written as  

ˆ ˆ ˆˆ ˆ , 1,2,..., ,i i i m     
i i i i i

y X β Z u X b E t           (2.5) 

and the corresponding estimated PA profile is  

ˆˆ ˆ.PA  y Xβ Zu                  (2.6) 

If we define 
ˆ

ˆ
ˆ

i
i

i

 
  
 

b
φ

t
 for 1,2,... ,i m  then, according to Abdel-Salam et al.

20
,
 
the 

2
T statistic for the th

i  

profile can be obtained based on the eblups ˆ
i

φ  and can be calculated as  

2 1ˆˆ ˆ ,
T

i i D iT


 φ V φ  

     
 

   1 1

1

1ˆ ˆ ˆ ˆ ˆ .
2 1

m
T

D i i i i

im
 



  

V φ φ φ φ   

The successive difference variance-covariance estimator is used here since Sullivan and Woodall
30

 

showed that use of the successive difference estimate ˆ
DV is effective in detecting sustained step changes 

in the process that may occur in Phase I data. Other robust variance-covariance estimators (see Chenouri 

et al.
31

) can be used instead of ˆ
DV if a change in the process is suspected to be due to something other 

than a sustained shift. Unusual profiles can be determined by comparing 
2

i
T with a value from chi-

squared distribution. The th
i estimated PS curve will be declared as outlying if 

2 2

( , )
χi dfT  for

1,2,..., ,i m  where  represents the significance level, typically obtained by using a Bonferroni 

adjustment, and df  represents the degree of freedom which is equal to p+K2, where K2 is the number of 

knots and p is the order of the truncated polynomial basis in the p-spline regression. 

The 
2

T statistic based on the eblups from the mixed model works well in the situation where the size 

of the sustained shift for the out-of-control process is small. However, Chen et al.
24

 showed that this 

method can be distorted if the shift size from the out-of-control process is moderate to large. They 
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proposed to remedy this situation by using a cluster-based method in monitoring parametric profiles. 

Also, they demonstrated the performance advantages of using their cluster-based method to detect the 

out-of-control profiles over the non-cluster-based method. In addition, Chen et al.
24

 demonstrated that 

the probability of signal (POS), a commonly used statistic for evaluating the performance of a method in 

detecting a change in the process during Phase I analysis, can be very misleading. They proposed 

supplementing the POS in Phase I analysis with the metrics formed from the classification table (Table 

2.1) after completing the Phase I analysis  

 Table 2.1: Classification table for Phase I analysis  

Classified set 

Actual set 

Out-of-control process In-control process 

Out-of-control process A B 

In-control process C D 

 

The performance metrics based on this table are the fraction correctly classified (FCC), sensitivity, 

specificity, false positive rate (FPR) and false negative rate (FNR). Using Table 2.1, the FCC can be 

defined as ( ) ( )A D A B C D    ; the sensitivity and the specificity can be calculated as ( )A A B and 

( )D C D  respectively; while the FPR and the FNR are computed, respectively, as ( )C A C  and 

( )B B D . All these metrics are bounded by 0 and 1. A method will perform well in Phase I analysis by 

achieving large values for FCC, sensitivity and specificity and small values for FPR and FNR. Fraker et 

al.
32

 pointed out that similar metrics are used in biosurveillance for applications in which outbreak time 

periods are to be distinguished from non-outbreak time periods. 

In our study, the cluster-based method will be used in analyzing nonparametric profiles. We assume 

there is a correlation structure within each profile and use a mixed model. Details of the proposed 

method will be given in Section 3 and the performance of the proposed method will be compared to the 

method of Abdel-Salam et al.
20

, which is referred to herein as the non-cluster-based method.  

 

3. Cluster-Based Method in Monitoring Nonparametric Profiles 

Recall that in Equation (2.1), the 
th

j  response from the 
th

i  nonparametric profile can be written as 
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    1,2,3,..., , 1, 2,3,..., ,       ij ij i ij ij iy f x x i m j n  

where  ijf x  and  i ijx  are nonparametric functions and can be estimated by using a nonparametric 

mixed model, as for example, model (2.4). With the proposed cluster-based method one will first fit a 

curve individually to each profile using the p-spline regression method (using, for example, the 

truncated polynomial basis). Each estimated profile curve will then be represented by a vector of 

estimated parameters. The corresponding variance-covariance matrix of these m vectors, ,V  can be 

estimated by some appropriate method. The second step is to obtain the similarity matrix, S , based on 

the estimated parameter vectors and variance-covariance matrix. An appropriate clustering method is 

then used to cluster the profiles based on .S  

To obtain a set of similar profiles, hierarchical clustering with a proper linkage is performed until a 

main cluster set containing at least half the profiles is formed. The profiles in the main cluster set 

are used to obtain  f̂ x , via the mixed model, an estimate of the PA function  f x . Then  f̂ x  is used 

with the previously estimated variance-covariance matrix, ˆ ,V to calculate the 
2

T  statistics for the 

profiles not contained in the initial main cluster set. The profiles which have in-control 
2

T  statistics 

(that is, 
2

T  is less than the control limit of the 
2

T  chart) are then added to the main cluster set to form a 

new main cluster set. One repeats the above procedure of updating the main cluster set by adding the 

profiles not contained in the main cluster set. The iteration stops with either the smallest 
2

T  statistic for 

the remaining profiles outside of the main cluster set is beyond the control limit or all the profiles in the 

HDS have been moved to the main cluster set. Upon completion of the algorithm, those profiles 

contained in the main cluster set are labeled as profiles from the “in-control process” and those not 

included in the main cluster set are labeled as profiles from an “out-of-control process”. A similar 

iterative procedure was also used in a multivariate control chart setting by Shiau and Sun
33

. The 

proposed algorithm is now outlined in detail. 

Step 1.  Fit the 
th

i  profile by using the p-spline regression method. Note that the p-spline with the first 

order truncated polynomial basis is used as an example in our paper.  We have 
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   0 1

1

2

1

, 1, 2,3,...., , 1, 2,3,..., 1, 2,3,..., ,

.

     








           

      







 ki

K

ij i ij ij i i ki ij i

k

K

i i

ij k

k

xy f x i m j n

c c

 

The th
i estimated profile can be represented by a vector of estimated parameter ˆ ,

i
φ where 

 0 1 1
ˆ ˆˆ ˆ ˆ...   

i i i i Ki
φ . An appropriate estimated variance-covariance matrix, ˆ ,V  then can be 

estimated based on the ˆ
i

φ  vectors. For example, the successive difference estimator is used here since it 

is assumed that the out-of-control profiles are due to a sustained shift. Consequently, ,V  is estimated by  

 
   

1

1 1

1

1ˆ ˆ ˆ ˆ ˆ
2 1

m

D i i i

T

i

im



 



 

V φ φ φ φ

 

Step 2. Using ˆ ,V  obtained in step 1, compute a m m   similarity matrix S , where the ,i j entry is 

defined as 

   1ˆˆ ˆ ˆ .ˆ
i ji i

T

jj
s


  Vφ φ φ φ  

Step 3. Perform a hierarchical cluster analysis using an appropriate linkage function on the given 

similarity matrix to obtain the main cluster set of profiles. The initial main cluster set is defined as the 

first cluster set that contains greater than half of the profiles. We denote the set of indices for the profiles 

in the main cluster set by C .
 
Stop the clustering process as soon as at least greater than half of the

 
profiles are contained in the initial main cluster set C .  

Step 4.  Use the p-spline mixed model approach to estimate the parameters for the PA profile based on 

the profiles in C  , The estimated PA profile can be represented as 

 , 0 1

1

2

1

ˆ ˆ ˆ ˆ( ) , 1, 2,..., ,
j k

K

PA j j k

k

K

k

k

y f x j n

c c

x   








    

  



   





 

We define  0 1 1 2
ˆ ˆ ˆ ˆ ˆ...    

K
φ . Then for all profiles not in the main cluster set ,C compute 
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   2 1ˆˆ ˆ ,
T

i i i
T


  Vφ φ φ φ  

where “ i ” denotes the 
th

i  profile not contained in C  and add the profiles which have 
 

2 2

1 ,i m df
T





  to 

C . Here,
  

2

1 ,m df



 is the [1- α/m] quantile of a chi-squared distribution. Here α is the level of the test 

and [α/m] is the Bonferroni adjustment for multiple comparisons. The degrees of freedom used for the 

chi-square distribution is K+p, where K is the number of knots and p is the order of the truncated 

polynomial basis in the p-spline regression.  

Step 5. Repeat step 4 until no profile can be added to the main cluster set C or all profiles have been 

added to the main cluster set C. All these profiles in the main cluster set C will be classified as profiles 

from the in-control process and will be used to estimate the PA profile with the nonparametric mixed 

model for Phase II analysis. The estimated PA profile can then be obtain using Equation (2.6) based on 

all the profiles in C. Individual profiles in C can be estimated using Equation (2.5). The estimated PA 

profile may then be used to set control limits for the process in Phase II. 

Nearly identical results were obtained in all examples and simulations using either “ward” or 

“complete” linkage. Other linkage functions may work equally as well. Complete linkage was used in all 

results presented in subsequent sections. Also, in this algorithm, the successive difference variance-

covariance estimator is recommended if there is concern about a sustained shift. Other robust variance-

covariance estimators such as minimum volume ellipsoid (MVE), minimum covariance determinant 

(MCD), reweighted MVE or the reweighted MCD can be used as well. The user needs to decide which 

variance-covariance matrix estimator is best suited for his/her situation.  

 

4. The Automobile Engine Application  

In the automotive application from Amiri et al.
26

  the goal is to study the relationship between the torque 

produced by an engine and the engine speed in revolutions per minture (RPM). The application 

considered here is for the engine type TU3, which are assembled for a French automobile, the Peugeot. 

In this example, there are 20 engines in the HDS and for each egnine, the speed values were set equal to 

1500, 2000, 2500, 2660, 2800, 2940, 3500, 4000, 4500, 5000, 5225, 5500, 5775, and 6000 RPM and the 

engine’s corresponding torque values were measured. An engine with mechanical or other issues will 
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yield a relationship that is different from other engines. The raw data set (see Table A-1 in the 

Appendix), where individual data points for each engine are connected by straight-line segments, is 

shown in Figure 1.1. This data set has been analyzed using profile analysis methods by Abdel-Salam et 

al.
20

 and Chen et al.
24

. In our study, the cluster-based method with a nonparametric mixed model, using 

the p-spline method with the first-order truncated basis, will be used to fit the relationship and to detect 

any unusual engines.  

Step 1. Using p-spline regression, we fit to the data for each engine with the model  

   0 1

1

2

1

, 1, 2,3,...., 20, 1, 2,3,...,14,

.

   








         

      



 ki

K

i i i ki ij

k

K

i

ij

k

j k

i

i
f x x i j

c c

 

We define  0 1 1
...i i i i Ki   φ and the corresponding ˆ

i
φ  for the th

i engine can be represented 

as  0 1 1
ˆ ˆˆ ˆ ˆ...   

i i i i Ki
φ . In this case, since there are 14 observations for each engine, choosing 

K=4 equally spaced knots seems reasonable. Table 4.1 lists ˆ
i

φ  for each engine.  

Step 2.  Using ˆ
i

φ  computed in step 1, we obtained the similarity matrix .S   

Step 3. Perform the cluster analysis on the similarity matrix S using complete-linkage. The cluster 

process is represented by the dendrogram in Figure 4.1. Since there are 20 engines in total, the initial 

main cluster must consist of at least 11 engines. The cluster history is listed in Table 4.4. One can see 

that the initial main cluster set contains 9 profiles at  step 17 and  that 6 more profiles are added to this 

initial main cluster set in cluster step 18, resulting in 15 profiles in the main cluster. Since this is the first 

step that the main cluster set contains greater than half of the profiles, the cluster step of the algorithm 

stops at this point. The cluster history (Table 4.4) shows that the proposed algorithm ended up with 15 

engines in the initial main cluster set, consisting of engines 1-10 and 13-17.  

Step 4.  The corresponding estimated PA profile is then obtained by fitting the p-spline mixed model to 

the data for the 15 engines in the main cluster. The estimated PA profile is  

 
4

, 0 1

1

ˆ ˆ ˆ ˆ( ) , 1,2,..., .j

K

PA j j

k

kky f x x j n   





      
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If we define  0 1 1 2 3 4
ˆ ˆ ˆ ˆ ˆ ˆ     φ , then φ  based on 15 engines is  

 71.831 0.0160 0.0176 0.0040 0.0071 0.0151    φ . 

Using φ  and ˆ
i

φ in Equation (3.1), the 
2

T  statistics for the engines not included in the initial main cluster 

set are calculated and listed below. The cutoff value for the 
2

T  statistic here is
2

1 ,
18.38

m
df
χ , where

0.05  and 5df K p   . According to the observed 
2

T  statistics and the cutoff value, all engines in 

the minor sets are added to the initial main cluster set except the 11
th

 engine and 20
th

 engine. 

Table 4.1: Estimated  ˆ , 1, 2..20.
i

i φ  for each engine  

Index of 

Engines i 0
ˆ

i  
1

ˆ
i
 

1
ˆ

i


 2
ˆ

i


 3
ˆ

i


 4
ˆ

i


 

1 73.3139 0.016 -0.0141 -0.0085 -0.0065 -0.0157 

2 71.7374 0.0157 -0.0119 -0.0107 -0.0056 -0.0139 

3 73.6999 0.0146 -0.0173 -0.0019 -0.0074 -0.0139 

4 75.8218 0.0134 -0.0153 -0.0037 -0.0063 -0.0152 

5 74.4416 0.0149 -0.0127 -0.009 -0.0078 -0.0143 

6 79.9753 0.0128 -0.0133 -0.0044 -0.0084 -0.0147 

7 66.3589 0.0187 -0.0193 -0.0057 -0.0074 -0.0147 

8 71.8467 0.0157 -0.0119 -0.0107 -0.0056 -0.0139 

9 70.2356 0.0174 -0.0169 -0.0069 -0.0075 -0.0136 

10 80.1105 0.0128 -0.0126 -0.0057 -0.0079 -0.0125 

11 71.6214 0.0172 -0.0207 -0.0031 -0.008 -0.0154 

12 68.9162 0.0188 -0.0214 -0.0034 -0.0075 -0.0150 

13 66.0206 0.0179 -0.0211 -0.002 -0.0068 -0.0143 

14 65.7138 0.0185 -0.0203 -0.0042 -0.0063 -0.0166 

15 70.4448 0.0162 -0.0184 -0.0031 -0.0083 -0.0132 

16 75.8862 0.0141 -0.0166 -0.0023 -0.0081 -0.0151 

17 71.938 0.0163 -0.0227 0.0024 -0.0084 -0.0143 

18 70.6005 0.0172 -0.018 -0.0043 -0.0085 -0.0143 

19 62.7847 0.0191 -0.0243 -0.0001 -0.0062 -0.0181 

20 74.8780 0.0149 -0.0154 -0.004 -0.0088 -0.015 

 

Table 4.2: 
2

T  statistic for engines in the minor set 

Index of Engines 11 12 18 19 20 

2

i
T  Statistic 18.450 14.564 8.762 17.544 20.387 
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Step 5. Repeat step 4 and use the mixed model to update the estimated PA profile by using the engines 

1-10 and 12-19. The updated φ  and the 
2

T  statistics are obtained as 

 70.999 0.0165 0.0185 0.0035 0.0072 0.0153    φ  

Table 4.3: 
2

T  statistic for engines in the minor set 

Index of Engines 11 20 

2

i
T  Statistic 19.644 18.559 

 

Since the 
2

T  statistics above show that no profile can be added, the algorithm stops with the in-control 

engines identified to be 1-10 and 12-19.  

Table 4.4: Cluster history based on eblups for 20 engines 

Step  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

2 1 2 3 4 5 6 7 2 8 9 10 11 12 13 14 15 16 17 18 19 

3 1 2 3 4 5 6 7 2 8 9 10 11 12 13 14 6 15 16 17 18 

4 1 2 3 4 5 6 7 2 7 8 9 10 11 12 13 6 14 15 16 17 

5 1 2 3 4 5 6 7 2 7 8 9 10 11 12 3 6 13 14 15 16 

6 1 2 3 4 5 6 7 2 7 8 9 10 11 11 3 6 12 13 14 15 

7 1 2 3 4 5 6 7 2 7 8 9 10 11 11 3 6 12 13 14 13 

8 1 1 2 3 4 5 6 1 6 7 8 9 10 10 2 5 11 12 13 12 

9 1 1 2 3 4 5 6 1 6 3 7 8 9 9 2 5 10 11 12 11 

10 1 1 2 3 4 4 5 1 5 3 6 7 8 8 2 4 9 10 11 10 

11 1 1 2 3 4 4 1 1 1 3 5 6 7 7 2 4 8 9 10 9 

12 1 1 2 3 4 4 1 1 1 3 5 6 7 7 2 4 2 8 9 8 

13 1 1 2 3 4 4 1 1 1 3 5 5 6 6 2 4 2 7 8 7 

14 1 1 2 3 4 4 1 1 1 3 5 5 6 6 2 4 2 7 7 7 

15 1 1 2 3 4 4 1 1 1 3 5 5 2 2 2 4 2 6 6 6 

16 1 1 2 1 3 3 1 1 1 1 4 4 2 2 2 3 2 5 5 5 

17 1 1 2 1 1 1 1 1 1 1 3 3 2 2 2 1 2 4 4 4 

18 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 3 3 3 

19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 

20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

 

The cluster dendrogram in Figure 4.1 shows that clustering phase ends up with a main cluster set of 

engines and two minor sets, one minor set contains engines 11-12 and the other minor set contains the 

engines 18-20. After the sequential addition of the remaining engines to the initial main cluster set, the 
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cluster-based method identified engines 11 and 20 as from the out-of-control process and engines 12, 

18-19 as from the in-control process. The result from the cluster-based method is consistent with the 

result from Abdel-Salam et al
20

. 

  

 

Figure 4.1: Cluster dendrogram for clustering of 20 engines by nonparametric approach  

 

5. A Monte Carlo Study 

If the researcher choses a parametric model that is adequate and estimates the parameters for this model 

appropriately, then the researcher’s model is correctly specified and maximum information regarding the 

curves can be extracted from the data. On the other hand, if the researcher’s model is not adequate then 

this model misspecification inhibits maximum information extraction from the data and incorrect 

decisions from such an analysis are likely to result. Use of a nonparametric model and a nonparametric 

method, such as a spline regression technique, are warranted when no adequate parametric model can be 

determined. In this case, improved fits to the data can often be obtained over use of an inadequate 

parametric model and better fits often lead to fewer errors in the decision making process. Our Monte 

Carlo study demonstrates how model misspecification affects the performance of the cluster-based 

method and the non-cluster-based method. 

Our Monte Carlo study is used to evaluate the average performance of the cluster-based method and 

the non-cluster-based method when analyzing profiles estimated with a nonparametric method such as 

p-splines. The performance will be measured by the following metrics: FCC, sensitivity, specificity, 
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FPR, FNR and the POS. In this Monte Carlo study, the in-control PA profile is generated by using a 

combination of two functions: a second order polynomial in one variable, x, and a nonlinear function of 

x of the form 
( 1)

10
2.25

    
    

   

jx
Sin




( 1)
10

2.25

jx
Sin



    
    

   

. The nonlinear component represents the 

departure of the PA curve from the second order polynomial, the assumed model. The value of  , 

ranging from 0 to 4, represents the amount of departure of the actual model from the user’s model.  

Each profile specific curve is generated as a random curve about the PA profile using the linear 

mixed model. Consequently, the
th

j response in the th
i in-control profile is from the model 

2

0 1 2 1

( 1)
10 , 1,2,..., , 1, 2,..., ,

2.25

ij

ij i i ij i ij ij i

x
y x x Sin i m j n


    

    
          

   

 (5.1)  

where ij
y is the 

th
j observation for the th

i profile, 1m is the number of profiles from the in-control 

process, and i
n is the number of observations within th

i  each profile and for ease of illustration,

20in n  for all profiles. In addition, 
 

2

0 2 0i i
x b  

,
 

1 1 2 12i ix b    
,
 

2

2 2 2i i
x b    

1, 1, 2,..., .ijx j i m   , 

where the random effects satisfy 

 

2

0 0

2

1 1

2

22

0 0

~ , 0 0 ,

0 0

i

i

i

b

b MN

b







   
   
   
       

0  

and 

 
2

~ , .N I   0
 

The out-of-control profiles are also generated from Equation (5.1) but with a sustained shift contained in 

profiles m1 through m as 
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  2

0 2 0i ishift x b   
, 

 1 1 2 1
2i ishift x b     

, 

  2

2 2 2
.i ishift x b   
 

1 1, 1,..., .i m m m   

One can show that the PA profile for the in-control process and out-of-control process are  

 
2

, 1 2

( 1)
+ 10 1,2,..., ,

2.25

j

PA j j j

x
y x x x Sin j n


  

    
        

   

     

and 

  
2

, 1 2

( 1)
10 , 1,2,..., ,

2.25

j

PA j j j

x
y x shift x x Sin j n


  

    
          

   

 

respectively. Here, 2 2 2

0 1 2
0.5,    

2
4   and 1 23, 2   . It is assumed that we have 1 20m   in-

control profiles, and 30m   profiles in the HDS. Thus, 10 of the 30 profiles are from the out-of-control 

process. In our Monte Carlo study, the shift values are set at 0.05, 0.1, 0.15, 0.2, 0.25, and 0.3. For each 

value of the shift factor, the performance measures FCC, sensitivity, specificity, FNR, FPR and the POS 

were averaged over 5,000 replications.  

The parameter   in above equations is called the misspecification parameter and varies from 0 to 4. 

When   is 0, the PA curve is exactly the quadratic function, the specified model, and when   is 4, the 

PA curve departs considerably from the quadratic model and represents severe model misspecification. 

Values of    between 0 and 4 represent a continuous departure from the quadratic model. A plot of the 

PA profiles for 0,1, 2, 3, and 4 is given in Figure 5.1.   
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Figure 5.1: Plot of PA profile with different  values. 

Figure 5.2 to Figure 5.4 display the plots of the FCC, FPR and the POS  based on the nonparametric 

fit to  profiles with the cluster-based method and the non-cluster-based method when no, moderate, and 

high ( 0  , 2   and 4  ) model misspecification respectively.   

Recall that the FCC measures the method’s ability to correctly identify the in-control and the out-of-

control profiles; a better method will have the larger values of the FCC. Figure 5.2 shows that for 

different   values, the FCC values from two methods are very close when the shift value is small. 

However, when the shift value is moderate or large, the cluster-based-method works uniformly better 

than the non-cluster-based method. Also, Figure 5.2 shows that the FCC values for the two methods are 

increasing as the shift value increases, as expected. The FPR measures the proportion of falsely 

classified in-control profiles and the smaller values represent the better performance. In Figure 5.3, the 

average FPR for the cluster-based method is uniformly smaller than the ones from the non-cluster-based 

method when the shift is moderate or large regardless of   values, and while shift is small, the FPR 

values for the two methods are very close.  

The POS is another performance metric commonly used in SPC. Figure 5.4 displays the POS of the 

two methods with different shift values. The conclusion is consistent with the conclusions from the plots 

of the FCC and the FPR, i.e., the cluster-based method works better than the non-cluster-based method.  
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Figure 5.2: Comparing FCC (fractional correctly classified) for different   values  

 

Figure 5.3: Comparing FPR (false positive rates) for different   values  
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Figure 5.4: Comparing POS (probability of signal) for different   values  

In our Monte Carlo study, a nonparametric model was used to fit each profile. However, in 

applications, users may use an incorrect parametric model. Figure 5.5 compares the FCC of using the 

parametric and nonparametric model to fit the profiles when 0   and 4  .  

 

Figure 5.5: Comparing the FCC (fractional correctly classified) for different scenarios    
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Figure 5.5 shows that when 0  , the parametric model works better than the nonparametric model. 

Also, according to the results in Appendix Table A-2, one can see that when 0  , the parametric 

model with the cluster-based method works uniformly better than other three methods when the shift is 

moderate or large. Further, when 4  , the nonparametric method works better than the parametric 

method and the cluster-based method works uniformly better than the non-cluster-based method, 

whether the parametric or nonparametric methods are used. All simulation results can be found in the 

tables in the Appendix. 

In addition, one can see that the nonparametric method is more robust compared to the parametric 

method. For example, when 0  , the specificity from the parametric method is 30% larger than the 

corresponding specificity from the nonparametric method, while the specificity from the nonparametric 

method is 90% larger than the specificity from the parametric method when 4  .  

 

6. Conclusions and Outlook of Future Work 

The goal of this research is to use a cluster-based method in monitoring nonparametric profiles and to 

demonstrate an improvement over other methods. The Monte Carlo study demonstrates that, in the 

presence of a sustained shift,  the proposed cluster-based method results in superior performance over a 

non-cluster-based method regardless of whether the model is correctly specified or not. Further, if the 

model cannot be correctly specified, the researcher should incorporate a nonparametric model and a 

corresponding appropriate nonparametric procedure, such as p-splines, in conjunction with the cluster-

based method to improve the profile monitoring results over using a non-cluster-based method. 

Specifically, our Monte Carlo study indicates that the cluster-based method performs uniformly better 

than the non-cluster-based method when there is a moderate or large sustained shift. The cluster-based 

method not only has larger POS values, but also has better performance in classifying the in-control and 

out-of-control profiles.  

In our study, the cluster-based method is illustrated for the case where the response variable is 

continuous and normally distributed. However, these assumptions will not always be reasonable. For 

example, the response variable could be counts, a binary variable or a continuous variable from a 

distribution other than the normal distribution. In these cases, the profile or relationship between the 
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response variable and explanatory variables can be represented by using the generalized linear mixed 

model. For future work, the cluster-based methods could be applied in those situations where the 

response variable comes from the exponential family and the relationship between the response variable 

and explanatory variables can be represented by using the generalized linear model.  

Our algorithm was programmed using R and the program is available from the authors upon request. 

The algorithm is surprisingly fast. For example, the case study analysis required only a second using a 

moderately equipped PC. 
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 Appendix 

 

Table A-1: The Automotive Industry Data 20 Automobile Engines, Torque (T) vs. RPM 

RPM T_E1 T_E2 T_E3 T_E4 T_E5 T_E6 T_E7 T_E8 T_E9 T_E10 

1500 98.53 96.35 96.7 96.75 97.61 100.06 94.55 96.48 96.83 100.07 

2000 102.65 100.74 100.05 100.87 102.46 103.6 103.22 100.87 103.78 103.91 

2500 113.82 110.67 111.17 110.14 112.18 112.74 112.99 110.81 114.3 112.52 

2660 115.26 113.06 111.51 110.48 112.99 113.56 114.18 113.2 114.62 113.25 

2800 116.24 114.58 112.01 110.94 114.54 112.85 116.48 114.73 117.19 114.1 

2940 117.06 114.98 111.23 111.17 115 114.49 115.33 115.13 116.61 114.1 

3500 109.89 108.55 105.64 105.78 108.99 108.95 109.59 108.69 110.43 109.21 

4000 109.65 107.41 106.02 103.37 107.95 108.24 108.47 107.55 109.61 108.34 

4500 105.72 103.9 103.11 102.23 103.65 105.56 105.27 104.03 106.32 104.87 

5000 99.74 97.99 97.4 96.06 96.94 98.92 97.9 98.12 99.44 98.35 

5225 95.97 94.27 93.88 92.39 92.78 95.41 94.67 94.39 95.62 94.76 

5500 89.47 88.45 88.17 86.54 86.41 89.19 88.23 88.56 89.46 88.93 

5775 81.96 81.44 81.18 79.31 78.6 81.85 80.86 81.54 82 82.19 

6000 74.9 75 75.03 73.13 71.97 75.09 73.93 75.09 75.83 100.07 

RPM T_E11 T_E12 T_E13 T_E14 T_E15 T_E16 T_E17 T_E18 T_E19 T_E20 

1500 97.98 97.29 93.13 93.11 95.38 98.28 96.79 96.45 91.53 98.37 

2000 104.98 105.86 101.02 103.43 101.25 101.29 103.64 104.52 100.72 102.4 

2500 114.9 115.25 111.25 112.02 111.53 112.2 112.73 113.78 110.71 112.67 

2660 116.06 117.83 111.83 113.2 112.11 112.57 113.92 114.59 111.72 113.76 

2800 116.65 117.97 113.27 113.77 112.6 113.06 113.35 115.4 112.29 115.41 

2940 116.18 117.77 113.04 113.77 111.76 112.37 112.78 115.86 111.61 113.01 

3500 109.65 111.31 105.6 109.15 108.12 107.03 108.2 110.78 105.21 110.08 

4000 109.06 110.97 106.15 108.05 106.62 106.37 107.06 110.21 106.22 109.51 

4500 105.01 107.37 104.12 103.46 102.92 104.1 105.27 106.75 101.73 106.09 

5000 97.43 100.53 97.45 98.26 96.35 98.01 98.47 99.94 96.59 99.84 

5225 94.04 97.17 94.68 94.26 93.14 94.21 95.67 96.94 93.78 96.46 

5500 87.51 90.47 88.59 89.09 86.75 87.53 89.41 90.24 87.29 90.16 

5775 79.36 83.51 81.08 81.06 80.27 80.08 82.57 82.65 78.97 82.74 

6000 72.34 76.34 75.77 74.14 73.47 73.9 76.31 76.76 72.8 75.82 
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Table A-2: Average performance metrics based on different methods with 0    

Parametric model with cluster-based method 

Shift  FCC FPR FNR Sensitivity  Specificity POS 

0.05 0.6674 0.3324 0.3922 0.9981 0.0059 0.0864 

0.1 0.6782 0.325 0.1016 0.9978 0.0391 0.2876 

0.15 0.7268 0.2903 0.0154 0.9986 0.1832 0.6396 

0.2 0.8234 0.2091 0.003 0.9993 0.4716 0.8790 

0.25 0.9219 0.1044 0.0016 0.9994 0.7670 0.9750 

0.3 0.9749 0.0359 0.0011 0.9995 0.9256 0.9956 

Parametric model with non-cluster-based method 

Shift  FCC FPR FNR Sensitivity  Specificity POS 

0.05 0.6670 0.3326 0.4429 0.9978 0.0055 0.0904 

0.1 0.6731 0.328 0.2409 0.9955 0.0282 0.2812 

0.15 0.6913 0.3145 0.1518 0.992 0.0899 0.5854 

0.2 0.7227 0.2899 0.1176 0.9871 0.1940 0.8230 

0.25 0.7627 0.256 0.0996 0.9821 0.3241 0.9336 

0.3 0.8052 0.2163 0.089 0.9775 0.4604 0.9806 

 Nonparametric model with cluster-based method 
Shift  FCC FPR FNR Sensitivity  Specificity POS 

0.05 0.6673 0.3326 0.3731 0.9985 0.0049 0.0722 

0.1 0.6749 0.3274 0.1168 0.9981 0.0284 0.1876 

0.15 0.7061 0.3056 0.0258 0.9984 0.1214 0.4258 

0.2 0.7712 0.2548 0.0115 0.9982 0.3173 0.6506 

0.25 0.8440 0.1891 0.004 0.9989 0.5342 0.8202 

0.3 0.9048 0.1242 0.0036 0.9987 0.7169 0.9164 

Nonparametric model with non-cluster-based method 

Shift FCC FPR FNR Sensitivity Specificity POS 

0.05 0.6673 0.3327 0.3787 0.9988 0.0043 0.0693 

0.1 0.6719 0.3292 0.2087 0.9972 0.0212 0.192 

0.15 0.6848 0.3199 0.1306 0.9952 0.0644 0.4052 

0.2 0.7066 0.3039 0.0885 0.9936 0.1326 0.6368 

0.25 0.7327 0.2834 0.0759 0.9911 0.2159 0.7846 

0.3 0.7589 0.2619 0.0672 0.9893 0.2981 0.8856 
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Table A-3: Average performance metrics based on different methods with 2    

Parametric model with cluster-based method 

Shift  FCC FPR FNR Sensitivity  Specificity POS 

0.05 0.6668 0.333 0.4743 0.9987 0.0029 0.0712 

0.1 0.6703 0.3305 0.1933 0.9983 0.0144 0.1622 

0.15 0.6861 0.3198 0.0439 0.9986 0.061 0.3460 

0.2 0.7275 0.2899 0.008 0.9993 0.1841 0.6180 

0.25 0.801 0.2298 0.0017 0.9997 0.4036 0.8296 

0.3 0.8795 0.0796 0.0015 0.9995 0.6396 0.9348 

Parametric model with non-cluster-based method 

Shift  FCC FPR FNR Sensitivity  Specificity POS 

0.05 0.6667 0.3328 0.5383 0.998 0.0035 0.0765 

0.1 0.6697 0.3307 0.2642 0.9975 0.0142 0.1469 

0.15 0.6782 0.3244 0.1792 0.9952 0.0442 0.3360 

0.2 0.6925 0.3136 0.1466 0.992 0.0935 0.5522 

0.25 0.7092 0.3004 0.1303 0.9889 0.1482 0.7071 

0.3 0.7357 0.2792 0.1123 0.985 0.2371 0.8213 

Nonparametric model with  cluster-based method 
Shift  FCC FPR FNR Sensitivity  Specificity POS 

0.05 0.6675 0.3324 0.3531 0.9985 0.0057 0.0653 

0.1 0.6759 0.3268 0.0733 0.9988 0.0303 0.1745 

0.15 0.7077 0.3045 0.0188 0.9988 0.1256 0.4030 

0.2 0.7743 0.2525 0.0072 0.9988 0.3252 0.6571 

0.25 0.8612 0.1527 0.0038 0.9989 0.5859 0.8375 

0.3 0.9418 0.0034 0.0024 0.999 0.8273 0.9454 

Nonparametric model with non-cluster-based method 

Shift  FCC FPR FNR Sensitivity  Specificity POS 

0.05 0.6671 0.3327 0.3939 0.9987 0.0040 0.0774 

0.1 0.6714 0.3296 0.1853 0.9979 0.0186 0.1672 

0.15 0.6818 0.3221 0.1318 0.9959 0.0536 0.3882 

0.2 0.7017 0.3075 0.0957 0.9938 0.1175 0.5840 

0.25 0.7259 0.2889 0.0784 0.9917 0.1943 0.7446 

0.3 0.7503 0.2691 0.0685 0.9900 0.2710 0.835 
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Table A-4: Average performance metrics based on different methods with 4    

Parametric model with cluster-based method 

Shift  FCC FPR FNR Sensitivity  Specificity POS 

0.05 0.6666 0.3332 0.5195 0.9988 0.0022 0.0642 

0.1 0.6680 0.332 0.3150 0.9985 0.0067 0.1076 

0.15 0.6730 0.3287 0.1269 0.9984 0.0223 0.2266 

0.2 0.6875 0.3189 0.0388 0.9987 0.065 0.3916 

0.25 0.7166 0.298 0.0135 0.999 0.1519 0.6008 

0.3 0.7661 0.2595 0.0043 0.9994 0.2996 0.7560 

Parametric model with non-cluster-based method 

Shift  FCC FPR FNR Sensitivity  Specificity POS 

0.05 0.6666 0.3331 0.5517 0.9987 0.0021 0.0678 

0.1 0.6675 0.3321 0.4194 0.9975 0.0071 0.1161 

0.15 0.6716 0.3294 0.2096 0.9973 0.0201 0.1858 

0.2 0.6789 0.324 0.1579 0.9958 0.0453 0.3603 

0.25 0.6895 0.3162 0.1349 0.9937 0.0812 0.5343 

0.3 0.7031 0.3057 0.1214 0.9912 0.127 0.6255 

Nonparametric model with cluster-based method 
Shift  FCC FPR FNR Sensitivity  Specificity POS 

0.05 0.6673 0.3326 0.3668 0.9987 0.0044 0.0628 

0.1 0.6723 0.3291 0.1625 0.998 0.0209 0.1571 

0.15 0.6864 0.3194 0.0614 0.9979 0.0633 0.3538 

0.2 0.725 0.2915 0.0181 0.9984 0.1784 0.5692 

0.25 0.7855 0.243 0.0061 0.9989 0.3586 0.7441 

0.3 0.8566 0.1763 0.0044 0.9987 0.5724 0.9156 

Nonparametric model with non-cluster-based method 

Shift  FCC FPR FNR Sensitivity  Specificity POS 

0.05 0.6671 0.3329 0.4187 0.9988 0.0034 0.0828 

0.1 0.6686 0.3314 0.2938 0.998 0.0098 0.1424 

0.15 0.6751 0.3269 0.1736 0.9967 0.0319 0.3442 

0.2 0.6874 0.3181 0.1137 0.9954 0.0713 0.5324 

0.25 0.7061 0.3041 0.0938 0.9932 0.1318 0.7212 

0.3 0.7242 0.2902 0.0786 0.9919 0.1889 0.7888 

 

 


