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The projective nature of the representations of canonical commutation relations on the space of 
states is probed via cohomological considerations. Some interesting geometrical pictures arise, 
which associate themselves with the phase descriptions of quantum systems. 
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The distinction between faithful and unfaithful representations of groups, acting 
on quantum spaces, is as old as Wigner's foundational work on symmetries.1

> A 
prime example of a group which attains only projective realizations on the space of 
states is the Weyl-Heisenberg group.2

>.3> Recall that the Lie algebra of this group 
furnishes the canonical commutation relations (l denotes the unit operator, h=l): 

(1) 

For related reasons the Galilei group also attains projective representations on the 
space of states.2>-4> 

The subject of projective representations was revisited in more recent years by 
Faddeev5

> who employed cohomological methods of analysis in his study. This new 
language was subsequently employed6

> for the purpose of reassessing the situation 
with the Weyl-Heisenberg group. It was determined,6

> within a discrete setting, that 
the two-cocycle entering the projective unitary representations of this group provides 
the symplectic structure necessary to define a (discrete) "quantum phase space". 

In this paper we intend to gain further insight on the aforementioned phase-space 
construction drawing, in part, from the work in Refs. 7)~9). The latter, being much 
closer in spirit to Faddeev's original viewpoint, will prove to be a valuable guide in 
our effort. At a subsequent stage we shall extend our considerations to the Galilei 
group. 

Consider the following situation.7l-9
> A charged, non-relativistic quantum 

mechanical particle is coupled to an external electromagnetic field. Let A;(x) denote 
the components of the (static) vector potential. Working in the coordinate represen­
tation we proceed to effect a gauge-invariant action of translations in the wave 
function 1J!(r). The need to employ the covariant derivative as the correct generator 
of translations automatically leads to a ray representation: 

(2) 

where D denotes covariant derivation (D=V + iA). 
On the basis of Eq. (2), one obtains a direct connection between the one-cochain 
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a1(r; a) entering the ray representation and the one-form A; dx;. One simply writes 

(3) 

Note that a serves as the coordinate label for the translation group element. 
Following the rules of cohomology theory, a two-cocycle is constructed according 

to 

(4) 

where Sis a surface bounded by the vectors r, r+a1 and r+a1+a2, F=17XA, and 
ds is an oriented surface element. For definiteness, Sis chosen so that it corresponds 
to the minimal triangular surface bounded by the aforementioned three vectors. 

It becomes obvious that as long as the flux through the triangle is not zero, the 
two-cocycle is non-trivial, and a genuine projective representation emerges. 

With the above observations in hand we now depart company with Refs. 7)~9) in 
that we shall insist on associativity for the group action, i.e., we shall not be interested 
in 3-cocycles and monopoles. At the same time, we backtrack to the more primitive 
situation within which translations are regarded as elements of the Weyl-Heisenberg 
group. 

In order to utilize the work of Ref. 6) we adopt a discrete set of coordinate states 
{In>} and a corresponding dual basis {In>} which carries a discrete "momentum" label. 
Both sets are periodic, with period N.*> According to Schwinger's fundamental 
construction,10

> there exists a pair of unitary operators U and V with the following 
mutual action on members of the above sets: 

Uln>=ln+ 1>, Ul n>=e2"in/Nin>; Vln>=e 2"in/Nin>, V(n)=ln + 1). (5) 

It is evident that U and V operate as generators of translations along the (discrete) 
q and P-directions, respectively. They can be viewed as special elements of the 
Weyl-Heisenberg group acting on the dual collection of discrete quantum states. 

There is, now, a further aspect of Schwinger's scheme which involves the follow­
ing set of operators: 

(6) 

As it turns out, the Wnn form a complete set in terms of which any dynamical operator 
can be constructed. 10

> This occurrence parallels the role of classical monomials, in 
phase space variables, which provide a basis of expansion for any physical quantity. 

Consider now a generic wave function 1Jf(n) in our discrete coordinate representa­
tion. Wmm acts as a translation operator on 1Jf(n) via a ray representation: 

Wmm 7Jf(n)= ei"(2n+m>m1N1Jf(n+ m) (7) 

with one co-cycle 

*> For simplicity we assume the same number of sites per direction. 
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A straightforward application of the co-boundary operation produces the following 
two-cocycle: 

(9) 

Observe that az is globally defined, i.e., it does not depend on n. Its existence, never­
theless, underlines the projective character of Weyl-Heisenberg group representations 
on our set of states. Independently, one verifies that 

(10) 

Had we worked within a restricted framework, we would have defined conventional 
translation operators um which furnish a "ray-free" representation: 

umlJf(n)= lJf(n+m). (11) 

It follows that only once the full phase space description of the system is taken into 
account does a non-vanishing two-cocycle and, hence, a projective representation 
emerge. Intuitively, we understand projectiveness to result from a translation ac­
companied by a "drift" in the momentum direction. Given that in the coordinate 
representation momentum fluctuations cannot be controlled, such drifts do have a 
natural, albeit implicit, presence. In a phase space context they acquire more direct 
meaning as they reflect localizability problems that arise on account of the canonical 
commutation relations. 

To summarize, translations, when studied in isolation, do not give any signal of 
projectiveness. As part of the wider Weyl-Heisenberg group structure, on the other 
hand, they most certainly do. Similar comments apply to "translations" in momen­
tum space as well. 

Let us now return to the two-cocycle az(n; Wm.n, Wtl) and "read" the right-hand 
side of (9) as a two-form, in analogy to (3). This two-form corresponds to a given 
area formed on a certain toroidal section of the phase space grid. We are referring 
to the triangular area with vertices at the points (n,O), (n+m, iii) and (n+m+l, iii 
+ l) lying on the two-dimensional toroidal surface formed by a conjugate pair, 
labeled by j, of (discrete) phase space variables. 

But 1/2 lm l -liiil furnishes the area of the above-mentioned triangle. There­
fore, we are in a position to make the following identification. Upon comparison 
with (4), 

where j denotes the particular pair of conjugate variables whose toroidal surface is 
being surveyed. To retrieve physical units, let us introduce a lattice spacing a, 
whereupon the previous relation assumes the form 
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(13) 

For each conjugate pair (q;, p;) we have a "magnetic field"*> Bj, referred to as the 
"geometrical magnetic field", whose magnitude controls passage to the continuous 
limit: 

I. 2;r B 
tm~= i· 
a-o a1vi 

N;-oo 

(14) 

We have thereby reached a picture, associated with the projective implementation 
of the Weyl-Heisenberg group on the space of states, according to which the non­
vanishing of each commutator [q;, Pil. j=i, ···, n, induces an equivalent "geometric 
magnetic field" Bj. Moreover, the global nature of the two-cocycle (9) leads to the 
conclusion that Bi is a (scalar) constant on the jth phase-space toroidal. 

The fact that our geometrical picture has been attained within a two-dimensional 
phase space "slice" automatically puts us in touch with the work of Dunne, Jackiw 
and Trugenberger11> which addresses a similar situation. We shall come back to this 
point once we extend our considerations to the Galilei group. 

The situation appears somewhat reversed when our reference group shifts from 
the Weyl-Heisenberg to that of Galilei. Recall, first, that the latter is a ten­
dimensional group whose natural action takes place in R 3®R. It consists of time 
translations, space traslations, (Galilean) velocity boosts, and rotations. Adopting 
this particular order, we denote the generic group element by g=(b, a, v, R). The 
corresponding generators are T, P;, K; and L;, i=l, 2, 3. These generators obey the 
commutation relations: 

[L;, T]=[P;, T]=[P;, Pj]=[K;, Kj]=[P;, Kj]=O. (15) 

We focus our attention on the commutator [P;, Kj]=O for the system of a single, free 
quantum mechanical particle, classically speaking, the P; generate space and the K; 
velocity translations. For free particles, of course, Pj= mui, and thus the Ki can be 
thought of as generators of momentum translations as well.**> Some key ingredient 
is thereby missing when this particular algebraic commutator is set to assume its 
quantum mechanical form. 

As already mentioned, the situation has reversed itself in that the problem is not 
how to accomodate, representation-wise, the given algebraic commutator, but how to 
alter it as it is being transferred to the quantum domain. In dealing with this 
problem, Bargmann2> realized that the unitary implementation of the Galilei group on 
the one-particle (with mass m) quantum system must attain projective status. In 
particular, he determined 

*> Our two-dimensional (q, p) arrangement implies that the "magnetic field" is a scalar. 
**> Note, on the other hand, that in the presence of an electromagnetic field, the covariant derivative, 

which was used earlier as a generator of translations, corresponds to particle velocity and not canonical 
momentum. 
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U(g,) U(g2) = e't<g,,f}z) U(g,, g2) , (16) 

where g;=(b,, a,, V;, R,), i=1, 2, and the function~ is given by 

~(g,, g2)= ~(a,· R1v2- v,· R1a2+ b2v,- R1v2). (17) 

From the cohomological point of view, ~ is a (global) two-cocycle which would be 
removable, i.e., trivial, if there existed some function a(g) of a single group element 
such that . 

Let us verify, by counterexample, that such a function does not exist. Recall first 
the composition law for the Galilei group: 

g,2=(b,, a,, v,, R,)(b2, a2, V2, R2)=(b, + b2, a,+ R1a2+ b2v1, v, + R1v2, R1R2). 
(19) 

Consider the following two cases: i) a2=0, b2=0 and ii) v2=0, b2=0. The 
triviality condition (18) gives for the first case 

(20) 

and for the second 

(21) 

The mixed terms entering the left-hand sides of the above equations can only be 
eliminated from corresponding terms coming from a(g,2). An inspection of (19) leads 
to the following choice: 

(22) 

where A is an as yet undertermined parameter. Substituting in (20) we find 

(23) 

while substitution in (21) gives 

(24) 

We observe that A=+ 1 solves the first triviality condition, whereas A= -1 solves 
the second. The incompatibility between the two solutions implies that ~(g,, g2) is 
nontrivial, therefore we have a genuine two-cocycle. We note in passing that what 
has been determined here is the occurrence of an anomaly, in a similar sense by which 
it arises in massless fermionic field theories.l2) The novelty of the present anomaly 
is that it pertains to a space-time symmetry group. 

On the basis of (16), Bargmann recognized2) that a faithful unitary representation, 
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for the single particle system, of the Galilei group is attainable provided that the latter 
is extended by a phase factor. At the infinitesimal level, Hammermesh determined3

> 

that the called for extension amounts to the restoration of the canonical commutation 
relations via the introduction of mass: 

[Kj, Pj]=O ------+[K;, PJ=imou. 
Bargmann 
extension 

(25) 

Once again, the canonical commutation relation has induced a new quantity, this time 
mass, into quantum algebraic structure. We conjecture that the (scalar) "geometri­
cal magnetic field" introduced via the more primitive setting of the Weyl-Heisenberg 
group is equivalent to the "mass extension" induced on the Galilei group. We base 
our conjecture on the work of Ref 11), where a first order Lagrangian in two dimen­
sions using the Lorentz force term as a "kinetic term" leads to a commutator of the 
form 

[q, p]=i/B, (26) 

where B is a single-component magnetic field for the 2-d space spanned by the 
conjugate pair (q, p). The similarity with (25), per conjugate pair, is self-evident. 
We shall not elaborate any further on this connection in the present note. We do 
intend, however, to make it the focal point of a forthcoming study. 

For our closing subject of discussion we wish to consider the implications of the 
Galilei group action on a phase space representation of states (for the free particle 
system). We adopt a scheme that we have developed in a series of papers (see, e.g., 
Refs. 13) and 14)), according to which a wave function lJT(q, p) is constructed as 
follows: 15

> 

(27) 

where W(x) is a conventional configuration space wave function, and the coefficient 
functions ~q,p(x) satisfy the completeness property 

(28) 

The specific features of our "phase-space representation" scheme can be summarized 
by the conditions: 

i) Position and momentum operators take the Van Hove form16
> (or variations 

there of) 

(29) 

which obey canonical commutation relations. 

ii) The phase space integration measure which furnishes the inner product is 
specified in terms of the ~q,p(x). If we write 
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(30) 

then one consistent choice13> is p(q, p)=e- 112<q2
+P

2 >. 

iii) The wave function lJf(q, p) can serve simultaneously as an eigenstate of a 
certain version of Van Hove's Q and P, i.e., 

QjlJf(q, p)=qjlJf(q, p), P;1f!(q, p)=P;lJf(q, p). (31) 

However, under the inner product (30), Van Hove's P and Q cannot be simultaneous­
ly defined as hermitian operators. 14

> 

We wish to assess the action of Galilean translations and velocity boosts on the 
phase space wave function 1/f(q, p). Our first task is to characterize P; and K; as 
differential operators independent of the Van Hove choice. Consider translations 
first. If U(a) denotes translation by the constant vector a, then 

The infinitesimal version of the above relation reads 

a . -
lJf(p, q)+aJ~lJf(p, q)= 1/f(p, q)+zaJPJlJf(p, q), 

UQj 

which implies the identification 

- . a 
Pj=-z~. 

UQj 

In a similar manner, we find for an infinitesimal boost transformation 

(32) 

(33) 

(34) 

a a . -
1/f(p, q)- mvj apj 1/f(p, q)- tvj aqj-1/f(p, q)= 1/f(p, q)+ zmvjKj1f!(p, q). (35) 

A very specific circumstance under which K could be indentified with the position 
operator can be read off the above relation. Namely, if (a/aqj) 1/f(p, q)=O, then 

- . a 
Kj=z apj. (36) 

We recognize, in the above solution, the position operator in the momentum 
representation. In this case, of course, (34) is devoid of any meaning, an occurence 
which serves to underline the impossibility of simultaneously defining the position and 
momentum operators in a quantisation scheme based on faithful unitary irreducible 
representations of the Galilei group. 

To identify a bonafide position operator, we proceed as follows. Consider the 
time slice t=O on which (36) holds automatically. Now form the operators 

Q;=K;+qJ. (37) 

From (35) we deduce 

- . a 
(Q;-q;)lJf(q,p)=z ap; 1/f(p, q). (38) 
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In the position representation, where (a/ap;) 1J!(p, q)=O and where (34) retains its 
validity, the above equation gives 

Q;1J!(q)=q;1J!(q)' (39) 

i.e., Q behaves as the true position operator in the coordinate representation, while P 
is, according to (34), the corresponding momentum operator. In the general case, i.e., 
in a bonafide phase space representation of the Galilei group, Q can be read off (39) 
as Van Hove's position operator: 

- . a 
Qj=z apj +qj 0 (40) 

It is certainly satisfying that we have arrived at Van Hove's solution of the 
canonical quantisation mapping (cf. Eqs. (34) and (40)) via considerations based on the 
unitary implementation of the Galilei group. 

One way of interpreting the above result is that, upon quantisation, the Galilean 
boost generators Kj gain the status of Van Hove's position operators Qj. This 
alternative version of the Galilean anomaly further emphasizes the importance of 
phase space structures as far as our understanding of the quantisation process is 
concerned. 
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