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Abstract

In this paper, we study the configuration model (CM) with i.i.d. degrees. We establish
a phase transition for the diameter when the power-law exponent τ of the degrees satisfies
τ ∈ (2, 3). Indeed, we show that for τ > 2 and when vertices with degree 1 or 2 are present with
positive probability, the diameter of the random graph is, with high probability, bounded from
below by a constant times the logarithm of the size of the graph. On the other hand, assuming
that all degrees are 3 or more, we show that, for τ ∈ (2, 3), the diameter of the graph is, with
high probability, bounded from above by a constant times the log log of the size of the graph.

1 Introduction

Random graph models for complex networks have received a tremendous amount of attention in
the past decade. See [1, 23, 27] for reviews on complex networks and [2] for a more expository
account. Measurements have shown that many real networks share two fundamental properties.
The first is the fact that typical distances between vertices are small, which is called the ‘small
world’ phenomenon (see [28]). For example, in the Internet, IP-packets cannot use more than a
threshold of physical links, and if the distances in terms of the physical links would be large, e-mail
service would simply break down. Thus, the graph of the Internet has evolved in such a way that
typical distances are relatively small, even though the Internet is rather large. The second and
maybe more surprising property of many networks is that the number of vertices with degree k
falls off as an inverse power of k. This is called a ‘power law degree sequence’, and resulting graphs
often go under the name ‘scale-free graphs’ (see [16] for a discussion where power laws occur in the
Internet).

The observation that many real networks have the above two properties has incited a burst
of activity in network modelling using random graphs. These models can, roughly speaking, be
divided into two distinct classes of models: ‘static’ models and ’dynamic’ models. In static models,
we model with a graph of a given size a snap-shot of a real network. A typical example of this
kind of model is the configuration model (CM) which we describe below. A related static model,
which can be seen as an inhomogeneous version of the Erdős-Rényi random graph, is treated in
great generality in [4]. A much studied class of examples of ‘dynamic’ models consist of the so-
called preferential attachment models (PAM’s), where added vertices and edges are more likely to
be attached to vertices that already have large degrees. PAM’s often focus on the growth of the
network as a way to explain the power law degree sequences.

Physicists have predicted that distances in PAM’s behave similarly to distances in the CM with
similar degrees. Distances in the CM have attracted considerable attention (see e.g., [15, 17, 18, 19]),
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but distances in PAM’s far less (see [5, 20]), which makes it hard to verify this prediction. Together
with [20], the current paper takes a first step towards a rigorous verification of this conjecture. At
the end of this introduction we will return to this observation, but let us first introduce the CM
and present our diameter results.

1.1 The configuration model

The CM is defined as follows. Fix an integer N . Consider an i.i.d. sequence of random variables
D1, D2, . . . , DN . We will construct an undirected graph with N vertices where vertex j has degree
Dj . We will assume that LN =

∑N
j=1 Dj is even. If LN is odd, then we will increase DN by 1. This

single change will make hardly any difference in what follows, and we will ignore this effect. We
will later specify the distribution of D1.

To construct the graph, we have N separate vertices and incident to vertex j, we have Dj stubs
or half-edges. The stubs need to be paired to construct the graph. We number the stubs in a given
order from 1 to LN . We start by pairing at random the first stub with one of the LN − 1 remaining
stubs. Once paired, two stubs form a single edge of the graph. Hence, a stub can be seen as the
left- or the right-half of an edge. We continue the procedure of randomly choosing and pairing the
stubs until all stubs are connected. Unfortunately, vertices having self-loops, as well as multiple
edges between vertices, may occur, so that the CM is a multigraph. However, self-loops are scarce
when N →∞ (see e.g., [3] or [8]).

The above model is a variant of the configuration model [3], which, given a degree sequence, is
the random graph with that given degree sequence. The degree sequence of a graph is the vector
of which the kth coordinate equals the fraction of vertices with degree k. In our model, by the law
of large numbers, the degree sequence is close to the distribution of the nodal degree D of which
D1, . . . , DN are i.i.d. copies.

The probability mass function and the distribution function of the nodal degree law are denoted
by

P(D = k) = fk, k = 1, 2, . . . , and F (x) =
bxc∑

k=1

fk, (1.1)

where bxc is the largest integer smaller than or equal to x. We pay special attention to distributions
of the form

1− F (x) = x1−τL(x), (1.2)

where τ > 2 and L is slowly varying at infinity. This means that the random variables Dj obey a
power law, and the factor L is meant to generalize the model. We denote the expectation of D by
µ, i.e.,

µ =
∞∑

k=1

kfk. (1.3)

1.2 The diameter in the configuration model

In this section we present our results on the bounds on the diameter. The distance considered in
this paper is the ordinary graph distance, i.e., the distance d(A,B) between the vertices A and B
in graph G is the minimal number of edges of a connecting path. The average or typical distance
of a (connected) graph G is the graph distance between two uniformly chosen connected vertices
from the vertex set. The diameter of a graph G, denoted by diam(G), is

diam(G) = sup
A,B

d(A,B), (1.4)

where the supremum is taken over all pairs of connected vertices in the graph. We use the abbre-
viation whp for a statement that occurs with probability tending to 1 if the number of vertices of
the graph N tends to ∞.
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Theorem 1.1 (Lower bound on diameter) For τ > 2, assuming that f1 + f2 > 0 and f1 < 1,
there exists a positive constant α such that whp the diameter of the configuration model is bounded
below by α log N .

A more precise result on the diameter in the CM is presented in [17], where it is proved that
under rather general assumptions on the degree sequence of the CM, the diameter of the CM
divided by log N converges to a constant. This result is also valid for related models, such as the
Erdős-Rényi random graph, but the proof is quite involved. Since Theorem 1.1, together with
Theorem 1.2 below, proves that the diameter of the CM has a phase transition when τ ∈ (2, 3), and
the proof of Theorem 1.1 is substantially simpler than the more precise result in [17], we decided
to include this proof. While Theorem 1.1 is substantially weaker, the fact that a positive constant
times log N appears is most interesting, as we will discuss now in more detail.

Indeed, the result in Theorem 1.1 is most interesting in the case when τ ∈ (2, 3). By [19,
Theorem 1.2], the average distance for τ ∈ (2, 3) is proportional to log log N , whereas we show
here that the diameter is bounded below by a positive constant times log N when f1 + f2 > 0 and
f1 < 1. Therefore, we see that the average distance and the diameter are of a different order of
magnitude. The pairs of vertices where the distance is of the order log N are thus scarce. The
proof of Theorem 1.1 reveals that these pairs are along long lines of vertices with degree 2 that are
connected to each other. Also in the proof of [17], one of the main difficulties is the identification
of the precise length of these long thin lines.

Our second main result states that when τ ∈ (2, 3), the above assumption that f1 + f2 > 0 is
necessary and sufficient for log N lower bounds on the diameter. In Theorem 1.2 below, we assume
that there exists a τ ∈ (2, 3) such that, for some c > 0 and all x ≥ 1,

1− F (x) ≥ cx1−τ , (1.5)

which is slightly weaker than the assumption in (1.2). We further define for integer m ≥ 2 and a
real number σ > 1,

CF = CF (σ,m) =
2

| log (τ − 2)| +
2σ

log m
. (1.6)

Then our main upper bound on the diameter when (1.5) holds is as follows:

Theorem 1.2 (A log log upper bound on the diameter) Fix m ≥ 2. We assume that P(D ≥
m + 1) = 1, that E[D] = µ < ∞, and that (1.5) holds for some τ ∈ (2, 3). Then, for every
σ > (3− τ)−1, the diameter of the configuration model is, whp, bounded above by CF log log N .

Summarizing, we show for τ > 2 and when vertices of degree 1 or 2 are present then a constant
times log N is, whp, a lower bound for the diameter, whereas for τ ∈ (2, 3), and assuming that all
degrees are at least 3, the diameter is, whp, bounded from above by a constant times log log N .

1.3 Discussion and related work

Theorem 1.2 has a counterpart for preferential attachment models (PAM) proved in [20]. In these
PAM’s, at each integer time t, a new vertex with m ≥ 1 edges attached to it, is added to the graph.
The new edges added at time t are then preferentially connected to older edges, i.e., conditionally
on the graph at time t − 1, which is denoted by G(t − 1), the probability that a given edge is
connected to vertex i is proportional to di(t − 1) + δ, where δ > −m is a fixed parameter and
di(t − 1) is the degree of vertex i at time t − 1. A substantial literature exists, see e.g. [7, 11],
proving that the degree sequence of PAM’s in rather great generality satisfy a power law (see e.g.
the references in [12]). In the above setting of linear preferential attachment, the exponent τ is
equal to [22, 12]

τ = 3 +
δ

m
. (1.7)
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A log log t upper bound on the diameter holds for PAM’s with m ≥ 2 and −m < δ < 0, which,
by (1.7), corresponds to τ ∈ (2, 3) [20]:

Theorem 1.3 (A log log upper bound on the diameter of the PAM) Fix m ≥ 2 and δ ∈
(−m, 0). Then, for every σ > 1

3−τ , and with

CG(σ) =
4

| log (τ − 2)| +
4σ

log m
,

the diameter of the preferential attachment model is, with high probability, bounded above by
CG log log t, as t →∞.

Observe that the condition m ≥ 2 in the PAM corresponds to the condition P(D ≥ m + 1) = 1
in the CM, where one half-edge is used to attach the vertex, while in PAM’s, vertices along a path
have degree at least three when m ≥ 2. Also note from the definition of CG and CF that distances
in PAM’s tend to be twice as big compared to distances in the CM. This is related to the structure
of the graphs. Indeed, in both graphs, vertices of high degree play a crucial role in shortest paths.
In the CM vertices of high degree are often directly linked to each other, while in the PAM, they
tend to be connected through a third (later) vertex which links to both vertices of high degree.

Unfortunately, there is no log t lower bound in the PAM for δ > 0 and m ≥ 2, or equivalently
τ > 3. However, [20] does contain a (1−ε) log t/ log log t lower bound for the diameter when m ≥ 1
and δ ≥ 0. When m = 1, results exists on log t asymptotics of the diameter, see e.g. [6, 25].

The results in Theorems 1.1–1.3 are consistent with the non-rigorous physics predictions that
distances in the PAM and in the CM, for similar degree sequences, behave similarly. It is an
interesting problem, for both the CM and PAM, to determine the exact constant C ≥ 0 such that
the diameter of the graph of N vertices divided by log log N converges in probability to C. For the
CM, the results in [17] imply that C > 0, for the PAM, this is not known.

We now turn to related work. Many distance results for the CM are known. For τ ∈ (1, 2)
distances are bounded [15], for τ ∈ (2, 3), they behave as log log N [26, 19, 10], whereas for τ > 3
the correct scaling is log N [18]. Observe that these results induce lower bounds for the diameter
of the CM, since the diameter is the supremum of the distance, where the supremum is taken over
all pairs of vertices. Similar results for models with conditionally independent edges exist, see e.g.
[4, 9, 14, 24]. Thus, for these classes of models, distances are quite well understood. The authors in
[17] prove that the diameter of a sparse random graph, with specified degree sequence, has, whp,
diameter equal to c log N(1 + o(1)), for some constant c. Note that our Theorems 1.1–1.2 imply
that c > 0 when f1 + f2 > 0, while c = 0 when f1 + f2 = 0 and (1.5) holds for some τ ∈ (2, 3).

There are few results on distances or diameter in PAM’s. In [5], it was proved that in the PAM
and for δ = 0, for which τ = 3, the diameter of the resulting graph is equal to log t

log log t(1 + o(1)).
Unfortunately, the matching result for the CM has not been proved, so that this does not allow us
to verify whether the models have similar distances.

This paper is organized as follows. In Section 2, we prove the lower bound on the diameter
formulated in Theorem 1.1 and in Section 3 we prove the upper bound in Theorem 1.2 .

2 A lower bound on the diameter: Proof of Theorem 1.1

We start by proving the claim when f2 > 0. The idea behind the proof is simple. Under the
conditions of the theorem, one can, whp, find a path Γ(N) in the random graph such that this
path consists exclusively of vertices with degree 2 and has length at least 2α log N . This implies
that the diameter is at least α log N , since the above path could be a cycle.

Below we define a procedure which proves the existence of such a path. Consider the process of
pairing stubs in the graph. We are free to choose the order in which we pair the free stubs, since
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this order is irrelevant for the distribution of the random graph. Hence, we are allowed to start
with pairing the stubs of the vertices of degree 2.

Let N(2) be the number of vertices of degree 2 and SN(2) = (i1, . . . , iN(2)) ∈ NN(2) the collection
of these vertices. We will pair the stubs and at the same time define a permutation Π(N) =
(i∗1, . . . , i

∗
N(2)) of SN(2), and a characteristic χ(N) = (χ1, . . . , χN(2)) on Π(N), where χj is either 0

or 1. Π(N) and χ(N) will be defined inductively in such a way that for any vertex i∗k ∈ Π(N),
χk = 1, if and only if vertex i∗k is connected to vertex i∗k+1. Hence, χ(N) contains a substring of
at least 2α log N ones precisely when the random graph contains a path Γ(N) of length at least
2α log N .

We initialize our inductive definition by i∗1 = i1. The vertex i∗1 has two stubs, we consider the
second one and pair it to an arbitrary free stub. If this free stub belongs to another vertex j 6= i∗1
in SN(2) then we choose i∗2 = j and χ1 = 1, otherwise we choose i∗2 = i2, and χ1 = 0. Suppose for
some 1 < k ≤ N(2), the sequences (i∗1, . . . , i

∗
k) and (i1, . . . , χk−1) are defined. If χk−1 = 1, then one

stub of i∗k is paired to a stub of i∗k−1, and another stub of i∗k is free, else, if χk−1 = 0, vertex i∗k has
two free stubs. Thus, for every k ≥ 1, the vertex i∗k has at least one free stub. We pair this stub
to an arbitrary remaining free stub. If this second stub belongs to vertex j ∈ SN(2) \ {i∗1, . . . , i∗k},
then we choose i∗k+1 = j and χk = 1, else we choose i∗k+1 as the first stub in SN(2) \ {i∗1, . . . , i∗k},
and χk = 0. Hence, we have defined that χk = 1 precisely when vertex i∗k is connected to vertex
i∗k+1.

We show that whp there exists a substring of ones of length at least 2α log N in the first
half of χN , i.e., in χ 1

2
(N) = (χi∗1 , . . . , χi∗bN(2)/2c). For this purpose, we couple the sequence χ 1

2
(N)

with a sequence B 1
2
(N) = {ξk}, where ξk are i.i.d. Bernoulli random variables taking value 1 with

probability f2/(4µ), and such that, whp, χi∗k ≥ ξk for all k ∈ {1, . . . , bN(2)/2c}. We write PN for
the law of the CM conditionally on the degrees D1, . . . , DN . Then, for any 1 ≤ k ≤ bN(2)/2c, the
PN -probability that χk = 1 is at least

2N(2)− CN(k)
LN − CN(k)

, (2.1)

where, as before, N(2) is the total number of vertices with degree 2, and CN(k) is one plus the
total number of paired stubs after k − 1 pairings. By definition of CN(k), for any k ≤ N(2)/2, we
have

CN(k) = 2(k − 1) + 1 ≤ N(2). (2.2)

Due to the law of large numbers we also have that whp

N(2) ≥ f2N/2, LN ≤ 2µN. (2.3)

Substitution of (2.2) and (2.3) into (2.1) then yields that the right side of (2.1) is at least

N(2)
LN

≥ f2

4µ
.

Thus, whp, we can stochastically dominate all coordinates of the random sequence χ 1
2
(N) with an

i.i.d. Bernoulli sequence B 1
2
(N) of Nf2/2 independent trials with success probability f2/(4µ) > 0.

More precisely, for two vectors x and y, we define x < y when we have xi ≥ yi for all coordinates
i. Then

lim
N→∞

P
(
χ 1

2
(N) < B 1

2
(N)

)
= 1.

It is well known (see e.g. [13]) that in i.i.d. Bernoulli sequences the probability of existence of a run
of 2α log N ones converges to one whenever

2α log N ≤ %
log (Nf2/2)
| log (f2/(4µ))| ,
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for some 0 < % < 1.
We conclude that whp the sequence B 1

2
(N) contains a substring of 2α log N ones. Since whp

χN < B 1
2
(N), the sequence χN also contains, whp, the same substring of 2α log N ones, and hence

there exists a required path consisting of at least 2α log N vertices with degree 2. Thus, whp the
diameter is at least α log N , and we have proved Theorem 1.1 in the case that f2 > 0.

We now complete the proof of Theorem 1.1 when f2 = 0 by adapting the above argument.
When f2 = 0, and since f1 + f2 > 0, we must have that f1 > 0. Let l∗ > 2 be the smallest integer
such that fl∗ > 0. This l∗ must exist, since f1 < 1. Denote by N∗(2) the total number of vertices
of degree l∗ of which its first l∗− 2 stubs are connected to a vertex with degree 1. Thus, effectively,
after the first l∗−2 stubs have been connected to vertices with degree 1, we are left with a structure
which has 2 free stubs. These vertices will replace the N(2) vertices used in the above proof. It is
not hard to see that whp N∗(2) ≥ f∗2 N/2 for some f∗2 > 0. Then, the argument for f2 > 0 can be
repeated, replacing N(2) by N∗(2) and f2 by f∗2 . In more detail, for any 1 ≤ k ≤ bN∗(2)/(2l∗)c,
the PN -probability that χk = 1 is at least

2N∗(2)− C∗
N(k)

LN − C∗
N(k)

, (2.4)

where C∗
N(k) is the total number of paired stubs after k − 1 pairings of the free stubs incident to

the N∗(2) vertices. By definition of C∗
N(k), for any k ≤ N∗(2)/(2l∗), we have

CN(k) = 2l∗(k − 1) + 1 ≤ N∗(2). (2.5)

Substitution of (2.5), N∗(2) ≥ f∗2 N/2 and the bound on LN in (2.3) into (2.4) gives us that the
right side of (2.4) is at least

N∗(2)
LN

≥ f∗2
4µ

.

Now the proof of Theorem 1.1 in the case where f2 = 0 and f1 ∈ (0, 1) can be completed as above.
We omit further details. ¤

3 A log log upper bound on the diameter for τ ∈ (2, 3)

In this section, we investigate the diameter of the CM when P(D ≥ m + 1) = 1, for some integer
m ≥ 2. We assume (1.5) for some τ ∈ (2, 3), and that E[D] = µ < ∞, so that LN ≤ 2µN whp.
We will show that under these assumptions CF log log N is an upper bound on the diameter of the
CM, where CF is defined in (1.6).

The proof is divided into two key steps. In the first, in Proposition 3.1, we give a bound on
the diameter of the core of the CM consisting of all vertices with degree at least a certain power of
log N . This argument is very close in spirit to the one in [26], the only difference being that we have
simplified the argument slightly. After this, in Proposition 3.4, we derive a bound on the distance
between vertices with small degree and the core. We note that Proposition 3.1 only relies on the
assumption in (1.5), while Proposition 3.4 only relies on the fact that P(D ≥ m + 1) = 1, for some
m ≥ 2. The proof of Proposition 3.1 can easily be adapted to a setting where the degrees are fixed,
by formulating the appropriate assumptions on the number of vertices with degree at least x for a
sufficient range of x. This assumption would replace (1.5). Proposition 3.4 can easily be adapted
to a setting where there are no vertices of degree smaller than or equal to m. This assumption
would replace the assumption P(D ≥ m + 1) = 1, for some m ≥ 2. We refrain from stating these
extensions of our results, and start by investigating the core of the CM.

We take σ > 1
3−τ and define the core CoreN of the CM to be

CoreN = {i : Di ≥ (log N)σ}, (3.1)
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i.e., the set of vertices with degree at least (log N)σ. Also, for a subset A ⊆ {1, . . . , N}, we define
the diameter of A to be equal to the maximal shortest path distance between any pair of vertices
of A. Note, in particular, that if there are pairs of vertices in A that are not connected, then the
diameter of A is infinite. In the following proposition the diameter of the core is bounded. This
proposition appeared earlier as [26, Proposition 3.13]. We included the proof for completeness.

Proposition 3.1 (Diameter of the core) For every σ > 1
3−τ , the diameter of CoreN is, whp,

bounded above by
2 log log N

| log (τ − 2)|(1 + o(1)). (3.2)

Proof. We note that (1.5) implies that whp the largest degree D(N) = max1≤i≤N Di satisfies

D(N) ≥ u1, where u1 = N
1

τ−1 (log N)−1, (3.3)

because, when N →∞,

P(D(N) > u1) = 1− P(D(N) ≤ u1) = 1− (F (u1))N ≥ 1− (1− cu1−τ
1 )N

= 1−
(

1− c
(log N)τ−1

N

)N

∼ 1− exp(−c(log N)τ−1) → 1. (3.4)

Define
N (1) = {i : Di ≥ u1}, (3.5)

so that, whp, N (1) 6= ∅. For some constant C > 0, which will be specified later, and k ≥ 2 we
define recursively

uk = C log N
(
uk−1

)τ−2
, and N (k) = {i : Di ≥ uk}. (3.6)

We start by identifying uk:

Lemma 3.2 (Identification of uk) For each k ∈ N,

uk = Cak(log N)bkN ck , (3.7)

with

ck =
(τ − 2)k−1

τ − 1
, bk =

1
3− τ

− 4− τ

3− τ
(τ − 2)k−1, ak =

1− (τ − 2)k−1

3− τ
. (3.8)

Proof. The proof is left to the reader. ¤
The key step in the proof of Proposition 3.1 is the following lemma:

Lemma 3.3 (Connectivity between N (k−1) and N (k)) Fix k ≥ 2, and C > 4µ/c (see (1.3),
and (1.5) respectively). Then, the probability that there exists an i ∈ N (k) that is not directly
connected to N (k−1) is o(N−γ), for some γ > 0 independent of k.

Proof. We note that, by definition,
∑

i∈N (k−1)

Di ≥ uk−1|N (k−1)|. (3.9)

Also,
|N (k−1)| ∼ Bin

(
N, 1− F (uk−1)

)
, (3.10)

and we have that, by (1.5),
N [1− F (uk−1)] ≥ cN(uk−1)1−τ , (3.11)
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which, by Lemma 3.2, grows as a positive power of N , since ck ≤ c2 = τ−2
τ−1 < 1

τ−1 . We use a
concentration of probability result

P(|X − E[X]| > t) ≤ 2e
− t2

2(E[X]+t/3) , (3.12)

which holds for binomial random variables [21], and gives that the probability that |N (k−1)| is
bounded below by N [1 − F (uk−1)]/2 is exponentially small in N . As a result, we obtain that for
every k, and whp ∑

i∈N (k)

Di ≥ c

2
N(uk)2−τ . (3.13)

We note (see e.g., [19, (4.34)]) that for any two sets of vertices A, B, we have that

PN(A not directly connected to B) ≤ e
−DADB

LN , (3.14)

where, for any A ⊆ {1, . . . , N}, we write

DA =
∑

i∈A

Di. (3.15)

On the event where |N (k−1)| ≥ N [1− F (uk−1)]/2 and where LN ≤ 2µN , we then obtain by (3.14),
and Boole’s inequality that the PN -probability that there exists an i ∈ N (k) such that i is not
directly connected to N (k−1) is bounded by

N exp
{
−ukNuk−1[1− F (uk−1)]

2LN

}
≤ N exp

{
−cuk(uk−1)2−τ

4µ

}
= N

1− cC
4µ , (3.16)

where we have used (3.6). Taking C > 4µ/c proves the claim. ¤

We now complete the proof of Proposition 3.1. Fix

k∗ =
⌈ log log N

| log (τ − 2)|
⌉
. (3.17)

As a result of Lemma 3.3 and since k∗N−γ = o(1), we have that every vertex in N (k−1) is directly
connected to a vertex in N (k) for all k ≤ k∗. Further, all vertices in N (1) are directly connected,
since u2

1/N = N
2

τ−1
−1 log N →∞ as a positive power of N for τ ∈ (2, 3) (compare the exponent in

(3.14)). We conclude that, whp, the diameter of N (k∗) is at most 2k∗ + 1.
Therefore, we are done when we can show that

CoreN ⊆ N (k∗). (3.18)

For this, we note that
N (k∗) = {i : Di ≥ uk∗}, (3.19)

so that it suffices to prove that uk∗ ≥ (log N)σ, for any σ > 1
3−τ . According to Lemma 3.2,

uk∗ = Cak∗ (log N)bk∗N ck∗ . (3.20)

It is not hard to see that N ck∗ = O(1), (log N)bk∗ = (log N)
1

3−τ
+o(1), and Cak∗ = O(1), so that

uk∗ = (log N)
1

3−τ
+o(1), (3.21)

so that, by picking N sufficiently large, we can make 1
3−τ + o(1) ≤ σ. This completes the proof of

Proposition 3.1. ¤

For an integer m ≥ 2, we define
C(m) = σ/ log m. (3.22)
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Proposition 3.4 (Maximal distance between periphery and core) Assume that P(D ≥ m+
1) = 1, for some m ≥ 2. Then, for every σ > (3 − τ)−1 the maximal distance between any vertex
and the core is, whp, bounded from above by C(m) log log N .

Proof. We start from a vertex i and will show that the probability that the distance between
i and CoreN is at least C(m) log log N is o(N−1). This proves the claim. For this, we explore
the neighborhood of i as follows. From i, we connect the first m + 1 stubs (ignoring the other
ones). Then, successively, we connect the first m stubs from the closest vertex to i that we have
connected to and have not yet been explored. We call the arising process when we have explored
up to distance k from the initial vertex i the k-exploration tree.

When we never connect two stubs between vertices we have connected to, then the number
of vertices we can reach in k steps is precisely equal to (m + 1)mk−1. We call an event where a
stub on the k-exploration tree connects to a stub incident to a vertex in the k-exploration tree a
collision. The number of collisions in the k-exploration tree is the number of cycles or self-loops in
it. When k increases, the probability of a collision increases. However, for k of order log log N , the
probability that more than two collisions occur in the k-exploration tree is small, as we will prove
now:

Lemma 3.5 (Not more than one collision) Take k = dC(m) log log Ne. Then, the PN-probab-
ility that there exists a vertex of which the k-exploration tree has at least two collisions, before hitting
the core CoreN , is bounded by (log N)dL−2

N , for d = 4C(m) log (m + 1) + 2σ.

Proof. For any stub in the k-exploration tree, the probability that it will create a collision before
hitting the core is bounded above by (m+1)mk−1(log N)σL−1

N . The probability that two stubs will
both create a collision is, by similar arguments, bounded above by

[
(m + 1)mk−1(log N)σL−1

N

]2
.

The total number of possible pairs of stubs in the k-exploration tree is bounded by
(
(m + 1)(1 + m + . . . + mk−1)

)2
≤

(
(m + 1)mk

)2
,

so that, by Boole’s inequality, the probability that the k-exploration tree has at least two collisions
is bounded by (

(m + 1)mk
)4

(log N)2σL−2
N . (3.23)

When k = dC(m) log log Ne, we have that
(
(m + 1)mk

)4
(log N)2σ ≤ (log N)d, where d is defined

in the statement of the lemma. ¤

Finally, we show that, for k = dC(m) log log Ne, the k-exploration tree will, whp connect to the
CoreN :

Lemma 3.6 (Connecting exploration tree to core) Take k = dC(m) log log Ne. Then, the
probability that there exists an i such that the distance of i to the core is at least k is o(N−1).

Proof. Since µ < ∞ we have that LN/N ∼ µ. Then, by Lemma 3.5, the probability that
there exists a vertex for which the k-exploration tree has at least 2 collisions before hitting the
core is o(N−1). When the k-exploration tree from a vertex i does not have two collisions, then
there are at least (m − 1)mk−1 stubs in the kth layer that have not yet been connected. When
k = dC(m) log log Ne this number is at least equal to (log N)C(m) log m+o(1). Furthermore, the
expected number of stubs incident to the CoreN is at least N(log N)σP(D1 ≥ (log N)σ) so that
whp the number of stubs incident to CoreN is at least (compare (1.5))

1
2
N(log N)σP(D1 ≥ (log N)σ) ≥ c

2
N(log N)

2−τ
3−τ . (3.24)
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By (3.14), the probability that we connect none of the stubs in the kth layer of the k-exploration
tree to one of the stubs incident to CoreN is bounded by

exp

{
−cN(log N)

2−τ
3−τ

+C(m) log m

2LN

}
≤ exp

{
− c

4µ
(log N)

2−τ
3−τ

+σ

}
= o(N−1), (3.25)

because whp LN/N ≤ 2µ, and since 2−τ
3−τ + σ > 1. ¤

Proof of Theorem 1.2. Take any two vertices, say A and B. Then Proposition 3.4 shows that,
whp, the distance from node A to the core is bounded by C(m) log log N , and similarly for node
B. According to Proposition 3.1, any two nodes within the core are within mutual distance of
size 2k∗(1 + o(1)), where k∗ is given in (3.2). This shows that the diameter of the graph is, whp,
bounded above by

2C(m) log log N +
2 log log N

| log (τ − 2)| = CF log log N,

where the additional contribution of o(k∗) is compensated by the fact that σ > (3− τ)−1. ¤
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