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A single-sort continuum Curie-Weiss system of interacting particles is studied. The particles are placed in the
space R4 divided into congruent cubic cells. For aregion V C R4 consisting of N € IN cells, every two particles
contained in V attract each other with intensity J; /N. The particles contained in the same cell are subjected to
binary repulsion with intensity J, > J;. For fixed values of the temperature, the interaction intensities, and the
chemical potential the thermodynamic phase is defined as a probability measure on the space of occupation
numbers of cells, determined by a condition typical of Curie-Weiss theories. It is proved that the half-plane
J1 X chemical potential contains phase coexistence points at which there exist two thermodynamic phases of
the system. An equation of state for this system is obtained.
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1. Introduction

The mathematical theory of phase transitions in continuum particle systems has much fewer results
as compared to its counterpart dealing with discrete underlying sets like lattices, graphs, etc. It is then
quite natural that the first steps in such theories are being made by employing various mean field
models. In [1]], the mean field approach was mathematically realized by using a Kac-like infinite range
attraction combined with a two-body repulsion. By means of rigorous upper and lower bounds for the
canonical partition function obtained in that paper, the authors derived the equation of state indicating the
possibility of a first-order phase transition. Later on, this result was employed in [2, 3] to go beyond the
mean field, see also [4} [5]] for recent results. Another way of realizing the mean-field approach is to use
Curie-Weiss interactions and then appropriate the methods of calculating the asymptotics of integrals,
cf. [6]. Quite recently, this way was formulated as a coherent mathematical theory based on the large
deviation techniques, in the framework of which the Gibbs states (thermodynamic phases) of the system
are constructed as probability measures on an appropriate phase space, see [[7, section II].

In this work, we introduce a simple Curie-Weiss type model of a single-sort continuum particle system
in which the space R is divided into congruent (cubic) cells. For a bounded region V ¢ R consisting of
N such cells, the attraction between every two particles in V is set to be J; /N, regardless of their positions.
If such two particles lie in the same cell, they repel each other with intensity J, > J;. Unlike [1]], we
deal with the grand canonical ensemble. Therefore, our initial thermodynamic variables are the inverse
temperature 8 = 1/kgT and the physical chemical potential. However, for the sake of convenience we
employ the variables p = J; and u = B X (physical chemical potential) and define single-phase domains
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of the half-plane {(p, 1) : p > 0, u € R} (see definition 2.1)) by a condition that ensures the existence of
a unique j € R, which determines a probability measure Q,, ,,, given in (2.22) and (2.21). In the grand
canonical formalism and in the approach of [7]], this measure is set to be the thermodynamic phase of the
system. The points (p, i) where the mentioned single-phase condition fails to hold due to the existence
of multiple § correspond to the coexistence of multiple thermodynamic phases. In theorem [2.1] we show
that there exists pg > 0 such that R(pg) := {(p, ) : p € (0,po), 4 € R} is a single-phase domain,
that is, there is no phase-coexistence point in the strip R(po) for small enough attractions. Note that
for some models on graphs, see the example given in [8], there exist multiple phases for each positive
attraction. Thereafter, in theorem we show that for each value of J,/J; := a > 1, there exist points
in which two phases do coexist. Namely, we show that there exists p; > 0 such that for each p > py,
there exists uc(p) € R and small enough € > 0 such that the sets {(p, 1) : u € (uc(p) — € uc(p))} and
{(p, ) : u € (uc(p), uc(p) + €)} lie in different single-phase domains, and that there exist at least two
7 whenever u = uc(p). In section [3] we present a number of results of the corresponding numerical
calculations which illustrate the postulates proved in theorems 2.T]and [2.2]

2. The model

By IN, R and C we denote the sets of natural, real and complex numbers, respectively. We also put
INg = INU {0}. For d € IN, by R¢, we denote the Euclidean space of vectors x = (x',...,x%), x' € R.In
the sequel, its dimension d will be fixed. By dx we mean the Lebesgue measure on R. In this section,
we use some tools of the analysis on configuration spaces whose main aspects can be found in [9].

2.1. The integration

For n € N, let I be the set of all n-point subsets of R?. Every subset of this kind, y € I'"”
(called configuration), is an n-element set of distinct points x € R<. Let also I'© be the one—element set
consisting of the empty configuration. Every I' is equipped with the topology related to the Euclidean
topology of R¥. Then, we define

ro=| | r®,

nelNg

that is, Iy is the topological sum of the spaces I'™). We equip I'y with the corresponding Borel o-field
B(Ip) that makes (T'p, B(I'p)) a standard Borel space. A function G : Ty — R is B([p)-measurable
if and only if, for each n € N, there exists a symmetric Borel function G™ : (R¢)" — R such that
G(y) = G™(xy,...,x,) for y = {x1,...,x,}. For such a function G, we also set G = G(@). The
Lebesgue-Poisson measure A on (I'g, B(Ip)) is defined by the relation

- 1
JG(y)/l(dy) =G0 4 Z o f G™(xy,. .., xp)dx; ... dx,, 2.1)
FO n=1 (Rd)n

which should hold for all measurable G : Iy — R, := [0, +o0) for which the right-hand side of (2.1)) is
finite.

For some ¢ > 0, we let A = (=c/2,¢/2]? c R be a cubic cell of volume v = ¢ centered at the
origin. Let also V C R4 be the union of N € IN disjoint translates Ay of A, i.e.,

V=

(=

Ag.
=1

As is usual for Curie-Weiss theories, cf. [6, (7], the form of the interaction energy of the system of particles
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placed in V depends on V. In our model, the energy of a configuration y C V is

1
W) = 5 > on(xy),
X, Yy&ey
N
On(y) = —Ji/N+D ) Ta, (0l (y) (2.2)
=1

where I, is the indicator of Ay, that is, I, (x) = 1 if x € A, and Is,(x) = O otherwise. For convenience,
in Wy above we have included the self-interaction term @y (x, x), which does not affect the physics of the
model. We also write Wy and @ instead of Wy and @y since these quantities depend only on the number
of cells in V. The first term in ®n with J; > 0 describes the attraction. By virtue of the Curie-Weiss
approach, it is taken equal for all particles. The second term with J, > 0 describes the repulsion between
two particles contained in one and the same cell. That is, in our model every two particles in V attract
one another independently of their location, and repel if they are in the same cell. The intensities J; and
J are assumed to satisfy the following condition

D> Jp. (23)

The latter is to secure the stability of the interaction [[10], that is, to satisfy

J@N(x, y)dy > 0, forallx e V.
v

Let B = 1/kgT be the inverse temperature. To optimize the choice of the thermodynamic variables we
introduce the following ones
p=pBJn, a=Jh/J, (2.4)

and the dimensionless chemical potential u = B8 X (physical chemical potential). Then, (p, u) € R+ X R
is considered to be the basic set of thermodynamic variables, whereas a and v are model parameters.
The grand canonical partition function in region V is

En(pp) = jexp[m—ﬁww(y)u(dy)
I'v
p ap Y
= [elubts ZbE-L Y 3wl )| At @5)
Iy x,ye€y £=1

where |y| stands for the number of points in the configuration y, and I'y is the subset of Iy consisting of
all y contained in V. We write Ey instead of Ey for the reasons mentioned above.

2.2. Transforming the partition function

Now we use a concrete form of the energy as in (2.2)) to bring (2.5)) to a more convenient form. For
agiven ¢ = 1,...,N and a configuration y € I'y, we set y, = ¥y N Ay, that is, y, is the part of the
configuration contained in A,. Then, |y,| will stand for the number of points of y contained in A,. Note

that
el = >0 1= ) Ta (). 2.6)

X€yr xey

Then, cf. (2.2) and 2.3)),

N N 2 N
S onen=> 3 Y wx,y):-%(zw) 53l
=1 =1

X, yey =1 x€Ap yeA,
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To rewrite the integrand in (2.5)) in a more convenient form we set

N

de) +#ZQ£ %Z , @7)

=1

Fn(o p, p) = exp ﬁ

where o € IN}Y is a vector with nonnegative integer components o, £ = 1,2, ..., N. Then, (2.5) takes the
form

En(pp) = j Fy (v(y). p. 1) Ay, 2.8)

I'v

where Fy is as in (2.7) and v(y) € N}/ is the vector with component |y¢|, £ = 1,...,N. For n,m € No,
the Kronecker 6-symbol can be written

1
Snm = Jexp [2rit(n — m)]dt,  i=V-1.
0

Applying this in (2.8) we get

=) = Y, P [ [ ew [ZMZ@FWWI Ady)dr .

oelNy’ Ty [0,1]N
= Z Fn(o.p, ) J exp (27512 Qﬂf)RN(tl,.. Jiv)de . : (2.9
0Ny’ 0,117
Here,
N N
RN(tl, ... tN) = J exp ( - 2’“2 |yg|tg)/l(dy) = J exp | - 2:;12 ZEA,(x)zg}A(dy)
r =1 r =1 xey
\%4 \%4
o 1
= Z = J exp [ — 2mi Z Z ]IA{,(xj)tg}dxl (2.10)
n=0 yn (=1 j=

In getting the second line of (2.10), we use (2.6)), and then the integral with A is written according to (2.1).
Note that the expression under the integral in the last line of (2.10) factors in j, which allows for writing
it in the form

n
(o8]

N
1
Z 1 Jexp l—2ni ; Ia, (x)tgl dx
v -

Ry(t1, ..., tN)
n=0

n

1
—' Z Jexp( 2mity)dx| =exp [
n!

Now we apply this in (2.9) and obtain

¢ N
Evpw) = ) FN(Q,p,#)]_[(Z; )= D, o ﬁ(z Qf) l_[ﬂ(m,#), (2.11)

N N =
©0€Ny 0€lN; t=1 t=1

DO

Mz

exp (—2mt{»)l .

n=0 =1
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where p is as in (2.4) and
v 1,
n(n, u) = —exp | un - iapn , n € INy. (2.12)
n!

Note that, for p = 0,  turns into the (non-normalized) Poisson distribution with parameter ve*. Hence,
alternating the cell size amounts to shifting u.

2.3. Single-phase domains

By a standard identity

» N 2 N e N

= 1> = |— —N-+y > orldy,

P 2N (f_l Qf) 2np Jexp( 2p y[_l QZ) y
— R —

we transform (2.T1)) into the following expression

N
NP ) = | jexp INE(y, p. )] dy, 2.13)
p
R

where )
E(y,p, u) = —g—p +InK(y, p, p), (2.14)
and, cf. (2.4) and 2.12),
(o] U" a
K(y.p.u)= ) —exp [(y + n — Tpnz : (2.15)

n=0 "
Note that E is an infinitely differentiable function of all its arguments. Set

|

Pn(p, ) = — InEN(p, p). (2.16)
uN
By the following evident inequality
2
+
(y+u)n—@n2<u, n e Ny,
2 2ap
we obtain from (2.15)) and (2.14)) that
a-1
E(pop) < —=— + 2y + p) +v. (2.17)
2ap 2ap

By virtue of Laplace’s method [L1]], to calculate the large N limit in (2.16) we should find the global
maxima of E(y, p, u) as a function of y € R.

Remark 2.1. From the estimate in (2.17) it follows that: (a) the integral in (2.13)) is convergent for all
p > 0and € Rsince a > 1, see (2.3) and (2.4); (b) for fixed p and u, as the bounded from the above
function E(y, p, u) has global maxima, each of which is also its local maximum.

To get (b) we observe that (2.17) implies lim, |+ E(y, p, ) = —o0; hence, each point j of global
maximum belongs to a certain interval (§ — €, j + &), where it is also a maximum point. Since E is
everywhere differentiable in y, then y is the point of global maximum only if it solves the following
equation

d
Ei(y,p, p) = @E(y,p, w) = 0. (2.18)
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By (2.14) and (2.15) this equation can be rewritten in the form

K
_y_ Ki.pw 0. (2.19)
p  K(y,p,u
. = nu't ap ,
Ki(y,p, p) := Z &P [(y + wn — 5" ] .

Remark 2.2. As we will see from the proof of theorem [2.1] below, the equation in (2.19) has at least one
solution for all p > 0 and i € R. Since both K| and K take only strictly positive values, these solutions
are also strictly positive.

Definition 2.1. We say that (p, i) belongs to a single-phase domain if E(y, p, i) has a unique global

maximum j € R such that
2

_ 0
Ex§.p.p) =55 E@.p)| <0 (2:20)
y y=y
Note that jj can be a point of maximum if E|(#, p, u) = E>(y, p, ) = 0. That is, not every point of
global maximum corresponds to a point in a single-phase domain.
The condition in @]) determines the unique probability measure Q), , on INp such that

v exp [(g + wn — @nz] , n € Ny, (2.21)

Qp,[l (n) = 3

K(7, p: p)n!
which yields the probability law of the occupation number of a single cell. Then, the unique thermody-
namic phase of the model corresponding to (p, i) € R is the product

Q= (X O 2.22)
=1

of the copies of the measure defined in (2.21)). It is a probability measure on the space of all vectors
n = (n¢);.,, in which n, € INg is the occupation number of ¢-th cell.

The role of the condition in (2.20) is to yield the possibility to apply Laplace’s method for asymptotic
calculation of the integral in @I) By direct calculations, it follows that

Exypop) = — 4 — !
20y, p ) = —— + ———————————
P 20Ky, p )

© Un1+n2 ) ap 5 5
X Z m(m —m) exp [(y + w)(ng +np) — 7(111 + ”2)] . (2.23)

nl,nZ:O

In dealing with the equation in (2.19) we fix p > 0 and consider E; as a function of y € R and u € R.
Then, for a given po, we solve (2.19) to find jy and then check whether it is the unique point of global
maximum and is satisfied, i.e., whether (p, uo) belongs to a single-phase domain. Then, we slightly
vary u and repeat the same. This will yield a function u — §(u) defined in the neighbourhood of uy,
which dependends on the choice of p and satisfies 5(ug) = ¥o. In doing so, we use the analytic implicit
function theorem based on the fact that, for each fixed p > 0, the function R? 3 (y, u) — E1(y, p, pt) can
be analytically continued to some complex neighbourhood of R?, see and (2.19). For the reader’s
convenience, we present this theorem here in the form adapted from [12} section 7.6, page 34]. For some
po > 0, let B ¢ €2 be a connected open set containing R? such that the function (y, i) — E1(y, po, 1)
should be analytic in 8.

Proposition 2.1 (Implicit function theorem). Let py and (yo, o) be such that Ei(yo, po, o) = 0 and
E>(yo, pos o) # 0. Let also B © C? be as just described. Then, there exist open sets D; € C and D, c C
such that yo € Dy, uo € Dy, D1 X D, C B, and an analytic function iy : D, — Dy, for which the
following holds

{(y. 1) € D1 X Dy 2 Er(y, po, 1) = 0} = {(§(1), p) - e € D}

23502-6
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The derivative of i in D is

dg(w) _ _ 1
du Ex(g(u), po, 1)

[;—MEl(y, Po, ,U)] e (2.24)
y=y(u)

Remark 2.3. In the sequel, we also use the version of the implicit function theorem in which we do not

employ the analytic continuation of E; to complex values of p. Let the conditions of proposition [2.1]

regarding E| and E, be satisfied. Then, there exist open sets D; C R, i = 1,2,3, and a continuous

function j : D3 X Dy — Dy such that py € D3, py € D, and the following holds

{(y,p, 1) € D1 X Dy X D3 2 E1(y, po, ) = 0} = {(§(p, ), p, ) : p € D3, p € Dy}

The partial derivative of §(p, 1) over u € D, is given by the right-hand side of (2.24). In the sequel,
by writing () we assume both the function as proposition defined for a fixed p known from the
context, and that as in remark@] with the fixed value of p.

For a fixed po > 0, assume that (po, o) belongs to a single-phase domain. By proposition
there exists & > 0 such that the function (ug — &, o + €) > u — j(u) can be defined by the equation
E1(y, po, 1) = 0. Its continuation from the mentioned interval is related to the fulfilment of the condition
E>(g(w), po, 1) < 0, cf. (2.20), which may not be the case. At the same time, by we have that

0 1
—Ei(y,p, ) = Ex(y,p, 1) + — > 0,
Ou p

holding forall y € R, p > 0 and y € R. In view of this and (2.24)), it might be more convenient to use the
inverse function y — fi(y) since the u-derivative of E| is always nonzero. Its properties are described by
the following statement obtained from the analytic implicit function theorem mentioned above. Recall
that only positive y solves the equation in (2.19).

Proposition 2.2. Given pg, let B be as in proposition [2.1] Then, there exist open connected subsets
D; c C i = 1,2, and an analytic function Dy > y — a(y) € D, such that Dy contains Ry,
D1 X Dy C B, and the following holds

{(y. 1) € Dy X Dy 2 Er(y. po. p) = 0} = {(y. &(y)) : y € D1}
The derivative of i in Dy is

day) _ __ Ex(y.po. Ay)
dy Ex(y, po, fi(y)) +

Proposition 2.3. Each single-phase domain, R, has the following properties: (a) it is an open subset
of Ry X R; (b) for each (po, no) € R, the function I, := {u € R : (po,u) € R} > u +— i(u) as in
proposition is continuously differentiable on I,,. Moreover,

dy(u)
du

Proof. For a single-phase domain, R, take (po, o) € R. By remark 2.3 the function (p, 1) — 7(p, p),
defined by the equation Ej(y, p, u) = 0 is continuous in some open subset of R containing (po, uo). By
the continuity of E>(§(p, u), p, 1) and the fact that E»(5(po, o), po, o) < 0 (since (pg, 1o) € R) we get
that E>(g(p, ), p, i) < 0 for (p, u) in some open neighbourhood of (pg, uo). Hence, R contains (po, uo)
with some neighbourhood and thus is open. The continuous differentiability of i and the sign rule in
(2.25) follow by proposition 2.1 and (2.24), respectively. O

By (2.21) and (2.19) we get the Q,, ,-mean value 2 = 7(p, ) of the occupation number of a given

cell in the form
_ Ki(5(p, ), p, ) y(p. p1)
ip,p) = ) nQpu(n) = —— = .
nZ:O P K@powpw)

> (), for all u € I, (2.25)

(2.26)

Note that, up to the factor v~ 7i(p, p) is the particle density in phase Q p.u- For afixed p, by proposition
i(p, -) in an increasing function on 7,, which can be inverted to give fi(p, i1). By Laplace’s method we
then get the following corollary of proposition
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Proposition 2.4. Let R be a single-phase domain. Then, for each (p,u) € R, the limiting pressure
P(p, ) = limy 400 Pn(p, ), see (2.16), exists and is continuously differentiable on R. Moreover, it is
given by the following formula

P(p, ) = v 'E(i(p, p), p, p). (2.27)

Let N, be the image of 7, under the map u +— 7(p, u). Then, the inverse map i — fi(p, it) is
continuously differential and increasing on N,. By means of this map, for a fixed p, the pressure given
in (2.27) can be written as a function of n

P=P@)=v 'E(pii, p, i(p;7)), €Ny, (2.28)

which is the equation of state.

2.4. The phase transition

Recall that the notion of the single-phase domain was introduced in definition 2.1} and each domain
of this kind is an open subset of the open right half-plane {(p, u) : p > 0, p € R}, see proposition [2.3]
With this regard we have the following possibilities: (i) the whole half-plane {(p, u) : p > 0, u € R} is
such a domain; (ii) there exist more than one single-phase domain. In case (i), for all (p, u) there exists
one phase (2.22). In the context of this work, a phase transition is understood as the possibility of having
different phases at the same value of the pair (p, ). If this is the case, (p, u) is called a phase coexistence
point. Clearly, such a point should belong to the common topological boundary of at least two distinct
single-phase domains. That is, to prove the existence of phase transitions we have to show that possibility
(ii) takes place and that these single-phase domains have a common boundary. We do this in theorems[2.1]
and 2.2] below.

Let R be a single-phase domain. Take (po, 10) € R and consider the line ,, = {(po, pt) : u € R}. If
the whole line lies in R, by proposition[2.3] 7(u) is a continuously differentiable and increasing function
of u € R. In our first theorem, we prove that this is the case for small enough py.

Theorem 2.1. There exists py > 0 such that the set R(po) := {(p,p) : p € (0, pol} is a single-phase
domain.

Proof. In view of remark[2.1] we have to show that, for fixed p < po and all x4 € R, E(y, p, 1) has exactly
one local maximum such that (2.20) holds. For x € R, we set, cf. 2.13),

n

> v a
Iy = exp (xn - 7pn2) , (2.29)

é(x, p)

ak
¢k(x7p) = W(b('x’p)’ k= 1a2

Similarly to (2.17)), we get
2

o(x,p) < v+ %p . (2.30)

Note also that, for the functions defined in (2.29)), we have
lim ¢(x, p) = lim ¢(x, p) = lim ¢, (x, p) = ve*, x €R. (2.31)
p—0 p—0 p—0

By means of (2.29) we rewrite the equation in (2.19) in the following form

X = y + ﬂs
{ H=x=pdi(x,p). (232)

Our aim is to show that there exists pg > 0 such that, for each p € (0, pg], the following holds: (a) the
second line in (2.32) defines an increasing unbounded function fi(x), x € R; (b) pga(x, p) < 1 -6 for
some ¢ € (0, 1) and all x € RR. Indeed, the function mentioned in (a) can be inverted to give an unbounded

23502-8



A phase transition in a Curie-Weiss system

increasing function ¥(u), u € R, such that the solution of (2.19) is §(u) = %(u) — u. Then, by (2.29) and
EZ we get
_ 1 -
Ex(y (), p, ) = 5t $a2(%(w), p) <0,

where the latter inequality follows by (b). Thus, to prove both (a) and (b), it is enough to show that there
exists positive po such that

1
pdar(x,p) < — for all x e R and p € (0, po]. (2.33)
a’
By ([2.29) we have
1 0 Un1+n2 p ) 5
D) = T 2 i e [xn ) - e e @3
-~ 2
v 2
O(x,p) = lz — P (xn - —n )l
n=0
s ni+ny
= Z v exp [x(nl +ny) — Q(n% + né)] . (2.35)
ny !I’lz! 2
nl,n2=0

Since O(x, p) > 1, we get from the latter

1 < ny+ny
Blep) < 5 D T =m) exp |x(n +m) = (0} + )
nip, n2:0 ’
ke ny+ny )
< 5 I ,(nl — )" exp [x(n + n2)]
ni,ny= 0 2

© 9 © > ?
lz % (vex)nl : lz % (Uex)n] ) lz % (vex)nl = vexp(x +2ve"). (2.36)

n=1
Fix some xy > 0 and then set
1
Po1 = —exp( xo — 2ve*?). (2.37)
av
Then, by (2.36) we get

1
pdr(x,p) < — for all x < x9 and p < po1. (2.38)
a’

By (2.29) and (2.31) we see that the function

U-— ¢(O’ p)
¢1(0’ p)

continuously depends on p > 0 and ¥(p) — 0 as p — 0. For each x > 0, one finds ¢ € (0, 1], dependent
on x and p, such that

w(p) = (2.39)

1
¢(X,p) = ¢(O’ p) + ¢1(0’ p)x + §¢2(§x’ p)xz'
From this and (2.30) we get

1
@€ " x, p) = ¢(0,p) + ¢1(0, p)E " x + S#a(x, PIEXT v+ (2.40)
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For the function defined in (2.39) and xj as in (2.37)), we pick pg, such that ¥ (p) < xg for all p < pgs.
For such values of p, this yields

$1(0, )¢ x > ¢1(0.p)xo > v — ¢(0,p),  for all x> xo.

We apply this in (2.40) and get
1
pd2(x,p) < —, for all x > xp and p < po; . (2.41)
a
This and (2.38) yields (2.33)) with pg = min{po;; po2}, which completes the proof. O

Theorem 2.2. For each a > 1, there exists p1 = pi(a) > 0 such that, for each p > p, the line
I, = {(p, 1) : u € R} contains at least one phase-coexistence point.

Proof. Let ji(y) be the function as in proposition2.2] By (2:29) and (2:32)) we have that

A(y) = [x = pd1(x, P))c=x(y) (2.42)
and
lim f(y) = —oo, lim f(y) = +co.
y—0 Yy—+0o

In (2.42), X(y) is the inverse of the function R 5 x — y = p¢(x, p). Note that

X 1
i€ = [ } , (2.43)
dy pé2(x, p) x=%(y)
hence (0, +c0) 3 y — X(y) € R is increasing. By (2.42) and (2.43)) it follows that
da(y) _ dx(y) 1
= ———[1=pd2(x, P)s=xy) = | =7 -1 (2.44)
dy dy w p9a(x, p) x=%(y)

For a given p > 0, pick x” > 0 such that y(p) defined in (2.39) satisfies ¥(p) < xP. Then, as in (2.41]
we obtain p@(x, p) < 1/a for all x > xP. By (2.44), this yields that

da(y)
dy

>a-1, for y € [y?, +0), (2.45)

where y” = p¢(x?, p). For the same p, let x, be such that avp = exp(—x, —2ve*r), cf. (2.37). Then, by

(2.36) and (2.44), we conclude that the inequality in (2.45) holds also for y € (0, y,, 1, y, := po1(xp, p).
As we have seen in the proof of theorem [2.1] the mentioned two intervals may overlap, i.e., it may be

that y, > y?, if p is small enough. Let us prove that this is not the case for big p. That is, let us show
that there exists p; > 0 such that, cf. (Z.44) and (2:41), for all p > p, there exists x € R such that the
following holds

p1oa(x, p1) = 1, and pga(x,p)>1, for p>p;. (2.46)

To this end, we estimate the denominator of (2.34) from the above and the numerator from the below. For
x = ap/2, by (2.35) it follows that

© 2 o n\2
O(x, p) = {Z % exp [—%n(n - 1)]} < (Z %) =e%, (2.47)
n=0 n=0

where we used the fact that p > 0. In the sum in the numerator of (2.34)), we take just two summands
corresponding to ny = 1, np = 0 and n; = 0, np = 1, and obtain, by (2.47), the following estimate

pa(x, p) > pre ™, (2.48)
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holding for x = ap/2. Then, we set p; = v~'e?”. For this p; and x = ap; /2, by (2.48) we obtain (2.46).
Clearly, for p > p1, x;, and x? introduced above satisfy

x, <ap/2 < xP.

For p > pi, let (x,, x7) be the biggest interval which contains x = ap/2 and is such that pg,(x, p) > 1
for each x € (xp, x”). Then, pgo(x, p) = 1 for x = x,, and x = x”. Set

yp = po1(xp. ). y” = pdi(x”, p).
Then, by (2.44) and (2.43) it follows that

da(y)

ay = 0, for y =y, y-,

dii

% < 0, for y € (yp, y"),

dﬁ—(y) > a-1>0, for y <y, and y > yP. (2.49)
y

From this we see that y, (resp. y?) is the first maximum (resp. the last minimum) of fi(y). Let §” be the
first minimum of fi(y). Set ¥ = ji(§”). Now we pick y» > §” such that: (a) either ji(y>) = fi(y,); (b) or
y> is the second maximum of fi(y) if fi(y2) < fi(y,). Then, set i, = ji(y2). Clearly, 1, > . In case (a),
we have i, = ji(y,); and i, < ji(yp) in case (b). Now we pick y; € (0, y,,) such that fi(y;) = fi(j”). By
(2.49) and the above construction, the function fi(y) is increasing on [y1, y,) and (,, y2), and decreasing
on (yp, j¥), see ﬁgure Let i and i be the inverse functions to the restrictions of fi(y) to [y1, yp) and
(9p» y2), respectively. Let also i3 be the inverse function to the restrictions of ji(y) to the interval (y,, 7).
All the three functions are defined on M), := (4", [i,,) and are continuously differentiable thereon. Note

that ij2 (1) > 73(p) > i1 (w) for all u € (A%, f1,) and
y1(fp) = y3(ap), p(af) = p3(av). (2.50)

Moreover, all the three i;(u), i = 1,2, 3, satisfy and, for u € (g%, fi,,), E(y, p, pt) has local maxima
aty = ij;(u),i = 1,2 and alocal minimum at y = y3(w). This follows from the fact that E»(i; (), p, u) < 0
for u € M, and i = 1,2, and from Ex(73(u), p, ) > 0 for u € M,,, see (2.49).
Set
D(u) = E(g2(w), p, 1) — E(G1(), p, 1) HE M. (2.51)
If D(u) < 0, then i () is the point of global maximum of E(y, p, 1) and hence (p, ) lies in a single-phase
domain, say R;. If D(u) > 0, then the same holds for ,(u) and R,. If

D(u) <0, and D(up) > 0, (2.52)

for some py, pp € M, then there should exist u. in between where D vanishes. Thus, (p, ) belongs to
the boundaries of both R; and R,, and hence is a phase coexistence point, if y is an isolated zero of

(2.51)). The phases are then given in (2.21)) and (2.22) with §;(u.) and (), respectively. Note that the
vanishing of D at y. corresponds to the Maxwell rule, cf. [1]], and to the existence of two global maxima

of E(y, p, u). Since both y;(u) are differentiable, by (2.14)), (2.13), (2.18)), and (2.23)) we have

dD(u) EvGin().p ﬂ)dl?z(ﬂ) L Kipw.p ) dii(w) — Ki(§1(w), p, )

du T de K(ga(p), po ) du  K(72u). p. )
K. p.p)  Ki((whpop) 1

Ko p ) K@, 20+ >0

for some 7. (1) € [1 (), G2(w)]. Note that E, (5;(w), p, ) = 0, i = 1,2, cf. (2.18). Therefore, D can hit
the zero level once at most. Let us show that @) does hold. If u; € M, is close enough to 4P, then by
and the mentioned continuity we have that E(#(u1), p, p1) is close to E(y3(u1), p, u1), and hence
> cannot be the global maximum of E(y, p, ;). Therefore, D(u;) < 0 for such u. Likewise, we establish
the existence of uy such that D(uy) > 0. Now, the existence of u. € (u, up) follows by the continuity

and (2.52). O

E1(y1(w), p, 1)
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3. Numerical results

Here, we present the results of numerical calculations of the functions which appear in the preceding
part of the paper.

We begin by considering the extremum points of the functions that appear in section [2.4] According
to definition 1 the line [, = {(p, p) : 4 € R} lies in a single-phase domain, if the function R, 3 y
E(y, p, ), see (2.14), has a unique non-degenerate global maximum for all 4 € R. The corresponding
condition in determines an increasing function (), see proposition[2.3] which can be inverted to
give fi(y), see (2.42). In theorem [2.1] we show that this holds for small enough p. Figure [I| presents the
results of the calculation of fi(y) for

a=1.2, v=12, 3.1

and p = 2,3,4,6 — curves (a), (b), (c) and (d), respectively. In the first two cases, g is an increasing
function, which corresponds to the situation described in theorem [2.1] That is, the values of p = 2 and 3
are below the critical value p. = p.(a). For a and v as in (3.1)), our calculations yield

Pe = 3.928235(8).

For p = p., the function y +— E(y, p., u) still has a unique global maximum, which gets degenerate, i.e.,
E>(§, pe, ) = 0, cf. (2.20). The value of i = j at which this occurs gives the value of the critical density
fic = Ye/pe. see (2.28)). For various values of the parameter a, see (2.4), the values of pc(a), jc(a) and
fic(a) are given in the following table[l}

The values of p = 4 and 6 are above the critical point p., which can be clearly seen from the curves (c)
and (d) of figure[l} In this case, one deals with the situation described by theorem [2.2] figure [2] presents
more in detail the curve plotted in figure [T] (d), i.e., corresponding to p = 6 and a = 1.2. It provides a
good illustration to the proof of theorem Here, we have fi(y2) = i(yp).

i) )

2
2

b) y
6] Ay

c) d) g

Figure 1. (Colour online) Plot of fi(y) defined in (2.42) for a = 1.2, v = 12 and various values of the
attraction parameter: p = 2 (curve a), p = 3 (curve b), p = 4 (curve c), p = 6 (curve d).
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Table 1. Values of p(a), j(a), #(a) in the critical point for v = 12.

a 1.0001 1.2 1.5 2 10
pe(a) 3.8255 3.9282 3.9796 3.9973 4.0000
Jc(a) 2.0485 2.0187 2.0052 2.0007 2.0000
ic(a) 0.5355 0.5139 0.5038 0.5005 0.5000

L) |

7]

4]
b ]
He iy
T

SR T o

B I i s e s s e e e

25 ...5.0 7.5
V1Ye Yo ¥’ yLY2 y

Figure 2. Plot of fi(y) for a = 1.2 and p = 6 more in detail.

Let us now turn to the maximum points of E(y, p, 1). For a as in and p = 6, figure 3] presents
the dependence of E on y for yu; = —2.3080 (curve a), and pup = —1.4700 (curve b). This provides
an illustration to (2.52). The curve plotted in figure ] corresponds to the critical value of u defined
by the condition D(u) = 0. That is, (p, uc) with p = 6 and y. = —1.890291 is the phase coexistence
point whose existence was proved in theorem Figure [5| presents the dependence of E(ij(u), p, i)
(line 1, red) and E(y2(u), p, 1) (line 2, blue) on u € M,,, p = 6, cf. . Their intersection occurs at
o= pu. =—1.890291.

The curves plotted in figure [f] present the isotherms — the dependence of the pressure on 7, which
is equivalent to the dependence on the density 7, see (2.26)), calculated from (2.28)) for a number of fixed
values of p.

E(yp,1)
E(y,p,0)

0.3

0.3 0.2

-0.4
0.14

0 1 2 3 1 5 6 0 1 2 3 4 5 6

a) Y b) y

Figure 3. (Colour online) Plot of the function E(y, p, u) for p = 6, a = 1.2 and p; = —2.3080 (curve a),
up = —1.4700 (curve b).
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—
0.6 2 o4
= =
Q. ~
3 0.04 \E 03
[Sa] I
N
0.02] m 2
0.14 1
o]
0
-0.021
-0.1
2
-0.041 0.2
-0.3
-0.061 : : , : : : ‘ e
0 1 2 3 4 5 6 7 23 22 -21 -2 -19 -18 -1.7 -16 -15
y [
Figure 4. (Colour online) The same as in figure 3] Figure 5. (Colour online) Plot of the pressure as
for u = pe = —1.890291. a function of temperature in the extremum points

of the compressibility. Plot of the functions M, >

u E(yi (), p,u),i =1,2,see (2.51), and p = 6,
a=1.2.

Figure 6. (Colour online) Plot of the dependence of the pressure on j = pi (isotherms) see (2.27) and
(2.28). Curve 1 corresponds to p = 3.8 < pc. The curves 2-9 correspond to p > pc: p = pc (curve 2),
p = 4 (curve 3), p = 4.135 (curve 4), p = 4.3647 (curve 5), p = 4.5824 (curve 6), p = 4.8 (curve 7),

p =5 (curve 8), p = 6 (curve 9).

4. Concluding remarks

In this work, we proved the existence of multiple thermodynamic phases at the same values of the
extensive model parameters — temperature and chemical potential. In contrast to the approach of [1]], we
deal directly with thermodynamic phases in the grand canonical setting. To the best of our knowledge,

this is the first result of this kind.
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da3oBUN nepexig y cncTemi i3 napHoto B3aemogieto Kropi-Belica

10.B. Ko3uubkuiAl, M.M. Kosnoscbkui?, 0.A. fobyuf

L IHcTUTYT MaTemaTnky, YHiBepcuTeT Mapii Kropi-Ck1040BCbKOI,
nn. Mapii Kropi-Cknogoscbkoi, 1, 20-031 J11061iH, MonbLua

2 IHCTUTYT di3nKkun koHAeHCcoBaHMX cnctem HAH YkpaiHu, Byn. CBeHuiupkoro, 1, 79011 JibBiB, YkpaiHa

Y pob6oTi gocnifkeHo 04HOKOMMNOHEHTHY HerepepBHY CUCTeMY YacTUHOK i3 B3aeMogieto Kropi-Beiica. YacTnHKm
nepebysatoTb y NpocTopi RY, noAineHoMy Ha OAMHaKoBi Kyb6iuHi koMipku. Ansa obnacti V. C RY, Lo CcKna-
paetbcs 3 N € IN KoMipoK, KOXHi ABi YaCTVHKWM, WO MICTATbCA B V, NpUTATyOTb OAHA OAHY 3 iIHTEHCUBHICTIO
J1/N. YacTvHKY, WO MICTATbCA B OAHIM KOMipLy, MONApHO BIALUTOBXYIOTLCS 3 iHTEHCUBHICTIO Jp > J|. Ans
dikCcoBaHNX 3HaYeHb TemnepaTypu, iIHTEHCMBHOCTI B3aEMOZIil Ta XiMiYHOro NoTeHLiany TepmoAnHaMiyHa dpasa
BU3HaYa€ETbCA AK Mipa MMOBIPHOCTI Ha NPOCTOPI 3aHATUX YMCeN KOMIPOK, L0 BU3HAYAETLCA YMOBOO, TUMO-
BO Ans Teopili Kiopi-Beiica. JoBegeHo, Lo HaniBnaowwmHa J1 X XiMiyHWUii moTeHyian MicTTb TOUKkM $a3oBoro
CNiBiCHYBaHHS, MpU AKMX iCHYIOTb ABi TepMOAMHaMIYHI $a3n cuctemm. OTPUMaHO PIBHAHHS CTaHy ANS L€l cn-
cTemu.

KntouoBi cnoBa: mosiekynsipHe nose, piBHHHS CTaHy, CriBiCHyBaHHS ¢as
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