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A
s the scale of engineered systems such as

electric power grids, communication net-

works, and the Internet expands and as so-

ciety’s dependence upon reliable

operation of these networks increases, it is

vital that system engineers seek a better

understanding of how small-scale failures of individual ele-

ments may propagate to produce global, system-wide fail-

ures. Within this general class of problems, importance

sampling methods have improved the efficiency of search

techniques for identifying rare failures in probabilistic mod-

els for communication networks [1], [2]; similar progress

has been made in characterizing the role of graph intercon-

nection structure in propagation of failures in electric

power networks [3], [4]. The work here is motivated largely

by the electric power systems application. Efforts to date on

these problems for power networks have focused primarily

on Markov chain-like representations, in which the state of

the system is represented as discrete and the engineering

constraints impacting failure transitions are those of the

steady state. Our goal here will be somewhat different in fla-

vor. In a deterministic model, we seek to capture the role of

transient dynamic response following a specified initiating

disturbance and examine subsequent (“cascading”) ele-

ment failures that are induced when operating thresholds

for individual elements are exceeded along the state trajec-

tory. In the formulation to be presented here, the potentially

probabilistic nature of initiating events is not treated.

To allow tractable analysis of continuous dynamics in

state-space models of high dimension, we will restrict atten-

tion to a specialized class of system representation, one in

which energy storage associated with individual elements is
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closely tied to a structure of ordinary differential equations

that describes the system dynamics. Hamiltonian systems

will be members of this class, as well as Euler Lagrange sys-

tems with certain structure to their dissipation terms. This

will include a wide class of R-L-C models in electric circuits

(including nonlinear inductive and capacitive elements)

and classical models for electric power systems. Key to our

formulation will be the fact that the threshold failure mecha-

nisms modeled can be associated with energy-storing ele-

ments and that the threshold itself may be expressed in

terms of energy stored in the branch. We believe that in

many systems, this association of failure with excessive en-

ergy stored in an element is well supported by the underly-

ing physics governing failure, even when details of the tran-

sition to the failed state are more crudely approximated in

the macroscopic system model.

In the context of the control systems literature, systems

displaying threshold failure mechanisms naturally suggest

representation through the techniques of hybrid systems, in

which continuous dynamics described by ordinary differen-

tial equations interact with discrete logic terms. In the sce-

nario of interest, failure of individual elements would be gov-

erned by threshold logic, and the (assumed irreversible) fail-

ure of an element would induce a discontinuous change in

the structure of the vector field, with a corresponding change

in the equilibria, and a potentially significant

transient in the state trajectory. From an ana-

lytic perspective, rigorous treatment of systems

of differential equations with discontinuous

right-hand sides raises a host of interesting and

challenging issues, motivated by such practical

problems as the dynamics and control of ro-

botic mechanisms making contact with rigid

surfaces [5]. Treatment of the analytic issues in

differential equations with discontinuous right-hand sides is

beyond the scope of this article. We will instead seek a

smooth model from the outset, with the view that the ele-

ment failures to be represented display behavior that can oc-

cur on a very fast time scale, but are fundamentally continu-

ous (e.g., consider the transition to open circuit due to “burn-

out” of a circuit element experiencing overcurrent). The key

objective here will be to develop a model in which the tools of

Lyapunov stability analysis can treat the interaction of multi-

ple-element failure events. To judge whether the system

maintains acceptable performance, one would like to deter-

mine whether or not the state returns to some acceptable sta-

ble equilibrium following the initiating event, and what ele-

ments have failures induced along the state trajectory lead-

ing to this equilibrium (if it exists). Hence a large piece of the

work to be presented here can be interpreted as a stability

analysis for a particular class of smoothed hybrid system.

The recent perspective provided in [6] gives an overview

of a variety of approaches to stability analysis within hybrid

systems. As noted there, a considerable literature exists em-

ploying Lyapunov-based techniques for determining stabil-

ity in such systems, with many approaches resting upon a

partitioning of the state space, and the “stitching together”

of individual Lyapunov functions appropriate to dynamics

within each partition. Such approaches are often employed

for the design of a logic-based switching controller, and one

seeks conditions to guarantee acceptable performance.

This contrasts with our goal of characterizing possible

paths to system failure. The difference is important, be-

cause many of the techniques reviewed in [6] presume a sin-

gle, fixed equilibrium point of interest about which stability

is to be established. Our analysis will be strongly focused on

multiple points, and we will seek to estimate the attractive

regions associated with locally stable equilibria and to char-

acterize the transitions between them, the “phase transi-

tions” alluded to in the title. Despite these differences, the

approach to be presented here does have strong connec-

tions to the ideas underlying the use of partitioned

Lyapunov functions in hybrid systems. While we will di-

rectly construct a single, global Lyapunov function, our

modeling of element failure introduces a natural partition-

ing of the state space in which the Lyapunov function varies

its behavior across failure boundaries. This will be clearly il-

lustrated in the circuit example to be presented below.

To facilitate the proposed Lyapunov analysis in a system

of fixed structure, we will smooth the discontinuity of an ele-

ment failure event. The ideal binary indicator variable de-

scribing {element in service} versus {element out of service} is

treated as a continuously varying state in a smooth differen-

tial equation. The construction of the state equation for the

indicator variable will be such that it exhibits strongly bi-

stable behavior, maintaining its value in a small neighbor-

hood of 1 so long as the element is operational, and rapidly

forcing its value to a small neighborhood of 0 during the fail-

ure event. It is important to emphasize that this approach is

adopted to facilitate Lyapunov-based estimates of stability

and of attractors associated with multiple equilibria that

arise in this model. It is not advocated as the most effective

means for numerical simulation. While the example to follow

will employ simulated trajectories to verify the qualitative

behavior of the model, use of smoothed representations of el-

ement failure is typically not efficient in simulations. As illus-

trated in our circuit example, the smoothed model is con-

structed so that the failure transition, when triggered, occurs

much more rapidly than the dynamic evolution of states be-

tween failures. This inherently introduces widely separated

time scales, creating a stiff set of differential equations.
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Given the fairly specialized failure model this work will de-

velop, a key goal of the exposition to follow will be to con-

vince the reader that the class of applicable systems is wide

enough to be of importance. Our motivation stems from a

class of systems that contains classical Hamiltonian dynam-

ics as a special case and applies to a variety of nonlinear cir-

cuit models and mechanical system models for which energy

storage plays an intimate role in determining the structure of

the state equations. The recent review in [7] argued strongly

for the importance of energy storage and energy-shaping

techniques in control analysis and design; the work to be pre-

sented here will seek to further reinforce that view.

Hamiltonian-Like System Model
Structure: Failure-Free Case
As noted above, the class of systems to which our element

failure approach can be applied includes Hamiltonian sys-

tems as a special case; it is useful to briefly review the

Hamiltonian structure as motivation. Recall that the state

space of a Hamiltonian system has a special symplectic

structure; in the standard coordinate system of classical

mechanics, one has an even number of system states, which

partition into a vector of positions, z, and an associated vec-

tor of momenta, p. The Hamiltonian function is then a differ-

entiable real-valued function of these states, H(z, p), with

the state equations taking the form
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The nondissipative property of the system is then re-

flected in the fact that the derivative of H along trajectories

is guaranteed to be zero; i.e.,
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To generalize the class of systems of interest, consider a

state space of arbitrary dimension, x R∈ n, with an associ-

ated differentiable function, ϑ(x), and a full-rank, negative

semidefinite matrix A R∈ ×n n. The systems to be treated

here, prior to the addition of the element failure model, will

be required to take the form

( )& .x A x= ∇ϑ (1)

This structure appears in certain Euler-Lagrange systems,

provided the Rayleigh dissipation can be captured in a term

closely related to the energy storage. The reader is encour-

aged to consult [8, chap. 4], in which a class of generalized

Hamiltonian systems also closely related to (1)

is reviewed; there A is allowed to be a smooth

function of state, with a requirement of skew

symmetry to yield losslessness. A number of

physical examples developed in [8] argue for

the usefulness of that class; specifically, it is ob-

served that LC circuits possess the generalized

Hamiltonian structure, and that “the inclusion

of resistive elements will affect the Hamiltonian

form of the equations, but not the passivity of

the system.” For the circuit example to be pre-

sented below, the addition of linear resistive terms simply

requires relaxing the skew symmetric requirement on A, by

addition to A of a symmetric (often diagonal) negative

semidefinite matrix that captures the dissipative effects of

the resistors.

Note that the assumption of A full rank ensures that equi-

libria for (1) will occur only at those points x e for which

∇ =ϑ( )x e 0; A negative semidefinite ensures that ϑ(x(t)) is

nonincreasing along any x(t) that is a solution trajectory of

(1). Given ϑ(x(t)) nonincreasing, sets of the form

{ constant}x x| ( )ϑ < are invariant. With certain additional

assumptions (to ensure that d dtϑ/ will not remain identi-

cally zero along nontrivial trajectories), ϑ(x) serves as a nat-

ural, global Lyapunov function for (1), and ∇ >2 0ϑ( )x e pro-

vides a necessary and sufficient condition for an equilib-

rium x e to be asymptotically stable. In this framework, a

geometric picture emerges suggestive of that describing

phase transitions in materials; that is, stable equilibria are

local minima of “potential wells” with respect to ϑ(x), and

the ease of transition between two equilibria is governed by

the height of the potential barrier that must be overcome in

the transition. The lowest energy path of transition between

two stable equilibria will typically pass through a “saddle

exit” point, which is itself a critical point at which∇ =ϑ( )x 0.

In the framework we will describe, each element failure cre-

ates the possibility of a new stable equilibrium. For very se-

vere failures, an equilibrium may fail to exist. Our goal will

be to exploit the geometric insights regarding the behavior

of ϑ(x) to supplement simulation techniques in evaluating

the vulnerability of a system to transitions in which large

numbers of elements fail or to a case in which the state

never reaches an acceptable stable equilibrium.

To allow the element failure representation to be added,

we will place additional assumptions on the form of ϑ(x). In

particular, for each element subject to possible failure, ϑ(x)

must contain a separable term that identifies energy storage

in that element. As noted in the introduction, we require that

the element failure threshold be expressible as a limiting
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value on stored energy in the element. In many cases there

will be an equivalence between a more intuitive form of the

failure threshold and this threshold expressed in terms of

stored energy. To illustrate, consider an interconnected

spring-mass-damper model, as might arise in a finite ele-

ment representation of a flexible mechanical element. In

such a framework, individual spring elements represent the

connective bonds. The reader will recall that the behavior of

a linear spring, with spring constant K, is simply repre-

sented as {restorative force, f } = K × {displacement, x}, and its

stored energy as ( / )1 2 2Kx . To a good first approximation,

failure of such a spring would be triggered by the spring

force magnitude exceeding some specified threshold; upon

failure, the effective spring constant K goes to zero. These

simple relations then provide the motivation for our failure

model. One first observes that in the operative state (K at its

“normal” operational value), there is a one-to-one relation-

ship between spring force magnitude and stored energy in

the spring; hence, the failure threshold may be expressed in

terms of either quantity. Once the failure threshold is ex-

ceeded, the system dynamics must drive the spring con-

stant K to zero.

Extending this perspective to circuit applications, the

analogous element failure would be triggered by the magni-

tude of a branch current i exceeding a specified threshold.

In a circuit context, a common representation of such a fail-

ure would be a “fuse” element, modeled as a nonlinear resis-

tor with a transition from a low resistance value to a high

(possibly infinite) resistance value when the triggering

threshold is exceeded. In contrast, our approach will re-

quire that branches subject to failure have series induc-

tance, L. The inductor, analogous to the spring in the me-

chanical context, becomes the focal point for representing

failure in the branch, and the branch flux, λ, becomes the

state variable analogous to displacement in the mechanical

context. Given an inductor current magnitude as a thresh-

old for failure, there exists an equivalent failure threshold

expressed as a limit of stored inductor energy ( / )1 2 2L λ .

Once the threshold is triggered, the appropriate response to

represent an infinite impedance (failed) branch will be to

drive1/L to zero. To capture this behavior in a smooth state

space model of the form (1), our approach requires that the

“original” ϑ(x) for the circuit (before modification for the

failure representation) contains the separable term

( / )1 2 2L λ . The following section will demonstrate how the

state equations to represent the threshold-driven failure

can be specially structured to create a new model that main-

tains the form of (1), with only a very simple modification to

ϑ(x). This observation is at the heart of our approach.

A Bistable Branch Threshold
Failure Model
To represent failure in a branch, the state space of our

model will be augmented to associate an approximately bi-

nary indicator with each branch that is subject to the possi-

bility of failure. A dynamic structure is imposed that yields

two (potentially) stable equilibria for each indicator vari-

able. As will be illustrated below, by construction these

equilibria will be placed in a neighborhood of 1, correspond-

ing to the operational state of the branch, and in a neighbor-

hood of 0, indicating a failed state. While representations of

branch recovery are possible within this general frame-

work, our exposition here will focus on a “one-way” model;

(i.e., a branch that undergoes failure will have no possibility

of returning to the operational state). We let γk denote the

failure indicator state for branch k.

As motivated in the previous section, the mechanism of

failure to be represented removes a branch from service

when a specified threshold of energy storage in the branch

is exceeded. In our illustrative R-L-C circuit model to follow,

the energy function ϑ( )x contains terms associated with

magnetic energy storage in inductive branches, of the form
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( / )1 2 2
L λ . We seek to modify ϑ(x) to introduce dependence

on the branch failure states, γ. In particular, the new ϑ γ( , )x

should have the property that ∂ϑ ∂γ/ recovers a term suit-

able for “driving” the time derivative of γ.

A construct to achieve this behavior within the dynamics

of γ proves quite simple. As a first step, the term describing

energy stored in branch k is simply premultiplied by γ
k
; for

example, in the circuit model, ( / )1 2 2
L

k
λ in ϑ(x) is replaced

by ( / )1 2 2
L

k k
γ λ . Moreover, for each branch, we add another

term to ϑ(x) that is dependent only on the γ
k

for that branch;

this term characterizes the threshold that must be over-

come to induce a failure. Denote the term to be added to

ϑ(x) as Θ(γ
k
); its associated derivative, with sign reversed,

is denoted in lower case, i.e.,θ γ ∂ ∂γ( ): ( / )
k k

= − Θ . A represen-

tative example of a θ(γ) reflecting a unity failure threshold is

displayed below (the subscript k on γ is dropped to mini-

mize notational clutter):

( ) ( ) ( )[
( )( ) ( )( ) ]

θ γ γ γ

γ γ

: exp exp

exp exp . .

= × − − + −

+ − − − −

2 20 200

20 1 200 1 0 2

A plot of this unity threshold θ(γ) is illustrated in Fig. 1.

An understanding of the bistable branch failure

model may be gained through the properties of θ(γ).

Suppose the derivative of γ with respect to time is com-

posed of θ(γ) minus the energy stored in the branch; i.e.,

suppose ( / ) ( ) ( / )d dt Lγ θ γ γλ= − 1 2 2. Assume that λ2
were

to begin from an initial condition near 0, and γ from an ini-

tial condition near 1, so that the initial γ lies along the

steeply sloped region in Fig. 1 labeled as the “operational

region.” Suppose further that dynamics of the circuit are

such that ( / )1 2 2
L λ increases with time. In this scenario, γ

would maintain a stable, quasi-equilibrium value along the

operational region of θ(γ) (thereby keeping γ ≈ 1), so long as

( / )1 2 2
L γλ had a magnitude less than 1. If ( / )1 2 2

L γλ were to

exceed the threshold value of 1, ( / )d dtγ would become

negative, pushing γ to values less than 1. The nature of θ(γ),

and the fact that ( / )1 2 2
L λ is nonnegative by construction,

ensure that when γ drops below 1 by any appreciable mar-

gin, d dtγ/ becomes very strongly negative and γ further de-

creases until it is “captured” in a new quasi-equilibrium in

the vicinity of γ = 0, along the portion of the plot denoted as

the “failed region” in Fig. 1.

By appropriate scaling of θ(γ), the threshold value that

initiates failure is parametrized in the model. Similarly, by

suitable adjustment of the coefficients of the exponential

terms, the slopes in the vicinity of the γ = 0 and γ =1critical

points can be modified, forcing equilibrium values to lie as

close to 0 or 1 as desired. The seemingly arbitrary choice in

the construction of θ(γ) is the negative offset selected for

its “flat” region; in the graph, one observes a negative off-

set of approximately 0.4. The impact of this choice of offset

can be easily interpreted. As noted above, to obtain the

structure of state equations that allows the potential func-

tion ϑ(x, γ) to serve as a global Lyapunov function in our

augmented model, a sign-reversed integral of θ(γ) must be

added to the potential. Hence, our interest focuses on the

integrated function below (note: a representative lower

limit of integration of 1 is shown below; more precisely, this

lower limit would be the exact equilibrium value of γ in the

vicinity of 1):

( ) ( )Θ γ θ η η
γ

: .= −∫ d

1
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Figure 3. Eight-node R-L-C circuit example.



For the representative θ(γ) illustrated in Fig. 1, the result-

ing Θ(γ) is shown in Fig. 2. The impact of the –0.4 offset in

constructing θ(γ) is clear; a transition of a branch from oper-

ational state to failed state contributes a net drop in energy

of approximately –0.4. Moreover, the graph of Θ(γ) illus-

trates the qualitative properties we have obtained: local

minima about 1 and 0, with a potential barrier blocking the

transition from 1 to 0. The key parameter is the height of the

potential that must be overcome to escape the local mini-

mum about the “operational” equilibrium point; this is set

by the failure threshold and is not affected by the arbitrary

choice of the −0.4 term in the definition of θ(γ).

Circuit Example with
Branch Failure Model
Consider a failure-free linear R-L-C network in which each

node is connected to ground through a parallel R-C combina-

tion, and nodes are interconnected through inductive

branches to form a simply connected graph. Each node may

optionally have a piece-wise constant current source at-

tached. Standard textbook treatments [9] show that this cir-

cuit topology yields a direct analogy to a class of spring-mass-

damper systems. We will consider a scenario in which the

network is subject to an initial disturbance in the form of one

or more simultaneous step changes at current inputs. To rep-

resent branch failure, an inductive branch is removed from

service when a specified current threshold is exceeded (or

equivalently, a specified ( / )1 2 2L λ threshold). In this applica-

tion, we wish to efficiently determine if a given disturbance

causes one or more branch failures, and whether these fail-

ures are triggered in a relatively small number of branches, al-

lowing an acceptable new steady state to emerge, or whether

they continue to propagate, ultimately separating the net-

work into disconnected components.

To illustrate these ideas in a circuit of modest complex-

ity, an eight-node, 11-branch R-L-C network example is

shown in Fig. 3. With the goal of focusing attention on the

nonlinear behavior introduced by our branch failure model,

this example is chosen to be purely linear in other respects;

i.e., for a fixed set of inductors in service, it is governed by

linear state equations. However, we wish to stress that the

fact that the state equations display the special structure of

(1) is not dependent upon linearity of energy storage ele-

ments. The model developed below easily generalizes to the

case of nonlinear charge-controlled capacitors, and nonlin-

ear flux-controlled inductors, while keeping the important

special structure of (1).

Note that the inductive branches in Fig. 3 are purely in-

ductive, with no series resistive term. The reader familiar

with circuit modeling will observe that this reduces the di-

mension of the state space, as each inductor no longer has

associated a unique state variable (e.g., current or flux link-

age). Rather, as we will show, it becomes natural to associ-

ate flux quantities with each node, and the differences of

these nodal fluxes become elements of our state vector.

This “branch-resistance-free” property is not necessary for

the construction; it is selected for the convenience of re-

duced state dimension and because of its resemblance to a

class of models that appears in stability analysis of electric

power systems.

The element values selected in Fig. 3 produce a lightly

damped linear system with a large number of closely

grouped oscillatory modes having natural frequencies

slightly below 1 Hz. These characteristics present a chal-

lenging scenario in which to predict element failure, as dis-

turbances damp out slowly and a current may first reach its

maximum magnitude well after the initiating event. To illus-

trate a representative response, Fig. 4 displays the branch

currents in L9 and L10 over a 4-s interval following simulta-

neous step inputs of 10 mA at node 1 and −10 mA at node 8,

with all inductors and capacitors having zero initial condi-

tions. Given our choice of input, which balances a 10-mA

current flow in at node 1 with equal flow out at node 8, key

properties of the associated steady state can be predicted

by inspection; all the node voltages will go to zero in steady

state (i.e., the capacitors must fully discharge through their

parallel resistances), and any cutset of branches separating

node 1 from node 8 will carry a net flow of 10 mA, with cur-

rents dividing equally among branches in the cut. Hence,

relevant to Fig. 4, currents in L9 and L10 ultimately approach

steady-state values of 5 mA.

To obtain further insights into the dynamic behavior of

this circuit, and to confirm that it possesses the structure of

(1) for fixed current inputs, we begin from basic circuit

quantities:

q q R

v

:

:

= ∈

=

nodal charges on capacitors;

node voltag

8

es relative to ground;

inductor branch cur

v R

i

∈

=

8

L : rents; i RL ∈ 11.

It will prove useful to reduce the vector of node voltages, as

we will be interested only in differences of node voltage

quantities. To this end, we define
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ciate a vector of nodal flux differences with these v
r
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ing φ via
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Important to the development of state equations will be a

description of the interconnection of the inductive

branches to nodes, through a reduced node-to-branch inci-

dence matrix [10], denoted as H
r
. Node 1 is chosen as the

reference node for this incidence matrix (note that the in-

ductive branches make no connection to the ground node,

so ground does not play a role in this reduced incidence ma-

trix). The resulting H
r
for this circuit is given by

H
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This reduced incidence matrix is important to our state

space formulation because it allows recovery of the vector

of branch fluxes associated with inductors, λ, from nodal

fluxes φ. In particular, one has:

λ φ= H
r

T .

Moreover, it is straightforward to show that through H
r

and E
r
one may obtain:

E
r
H

r
i
L

= sum of inductor currents leaving each node.

Relevant circuit parameter matrices are defined as:

C := diagonal matrix of capacitance values,

indexed by node,

diagonal matrix of conductances

C R

G

∈

=

×8 8

: to ground,

indexed by node,

diagonal matr

G R

L

∈

=

×8 8

: ix of inductance values,

indexed by branch, L R∈ 11×11

so that

v C q v E C q i L L H= ⇒ = = =− − − −1 1 1 1
r r

T

L r

T; .λ φ

The model state variables are then φ and q, with the expres-

sions above defining the recovery of more standard quantities

such as capacitor voltages and inductor currents from these

states. The actual state equation for φ follows directly as

& .φ = −E C q
r

T 1
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The state equation for q is obtained by recognizing that &q

represents current flow into each of the node capacitors,

which must be balanced by –{current into each node resis-

tance}, –{sum of current flow out of each node into

inductors}, and +{current source inputs at nodes}, yielding

& .q GC q E H L H i= − − +− −1 1
r r r

T φ in

Rearranging terms, one obtains

&

&

φ φ

q

0 E

E G

H L H

C q

0

i









 =

− −


















 +

−

−
r

T

r

r r

T1

1
in









 .

Letting

A
0 E

E G
:=

− −











r

T

r

and

( ) [ ]ϑ φ φ φ φ, : ,q q C q H L H q A
0

i
= + +











− − −1

2

1

2

1 1 1T T

r r

T T T

in

direct calculation confirms that these state equations dis-

play the special structure of (1). Moreover, given the diago-

nal form of L, it is clear that the quadratic form for inductive

energy storage allows one to separate an individual term

equivalent to λ2 2/ L for each inductor. We also reaffirm the

earlier claim that this structure generalizes easily to the

case of charge-controlled nonlinear capacitors and flux-con-

trolled nonlinear inductors. To treat the case of nonlinear

capacitors and inductors, the quadratic forms in q and φ ap-

pearing in ϑ(φ, θ) are simply replaced by terms obtained by

integrating capacitor voltage against charge and integrating

inductor current against flux. Identical reasoning applies if

one wishes to treat the analogous mechanical spring-mass-

damper system, in the case of nonlinear spring (elastic)

forces connecting masses.

Addition of Branch Failure
to Circuit Model
As described previously, failure of a branch k will be repre-

sented by the inductance L
k

becoming infinite, or equiva-

lently, by L
k

−1going to zero. L
k

infinite yields a circuit element

whose impedance is unbounded, resulting in no flow of cur-

rent along the branch k. This representation of branch failure

is perhaps more intuitive if first described in the mechanical

analogy. In the spring-mass-damper equivalent to the circuit

of Fig. 3, L
k

−1 is analogous to the spring constant relating

spring force to spring displacement; L
k

−1 going to zero de-

scribes a “broken” spring that no longer applies any forces

to the masses it previously connected.

With this model of branch failure, and recalling that we

will associate a (ideally) binary failure indicator variable γ
k

with each branch, the first modification to our model, and to

ϑ, is straightforward. The arguments of ϑ are augmented to

produce ϑ(φ, q, γ), with each L
k

−1 term in ϑ(φ, q) replaced by

the product γ
k k
L

−1. It will prove convenient to define

( ) { }N Lγ γ γ γ: , ,..., .= × −diag 1 2 11
1

Next, for each inductive branch in our circuit, the current

magnitude failure threshold is assumed specified, and the

equivalent threshold on inductive energy storage is com-

puted; the resulting constant parameter describing the en-

ergy threshold is denoted ν
k
. The remaining modification to

the energy function ϑ is simply an addition of a term of the

form ν γ
k k
Θ( ) for each branch. In summary then, we define

our augmented energy function as

( ) ( )

[ ]

ϑ φ γ φ γ φ

φ ν

, , :q q C q H N H

q A
0

i

1

= +

+








 +

−

−

1

2

1

2

1T T

r r

T

T T

k

in

( )Θ γ
k

k=
∑

1

11

(2)

and

~
:A

A 0

0 I
=









1

τ

where τ is a time constant parameter selected to govern the

speed of transition in γ (e.g., τ = 0 4. ms is selected for the sim-

ulations below). Direct calculation then verifies that the de-

sired state equations for (φ, q, γ) are recovered as

( )

&

&

&

~
, , .

φ

γ

ϑ φ γq A q

















= ∇

Failure Simulations and Properties of
the Potential Function
Before examining and interpreting our Lyapunov (energy)

function ϑ, it is useful to verify the time domain behavior

both of the branch failure model (specifically, the failure in-

dicator variables, γ(t)), and the claimed nonincreasing prop-

erty of ϑ along trajectories. As a simple illustrative case, we

intentionally set two branch failure thresholds quite low:

branches L5 and L10 are set to fail at 0.396 mJ (equivalently, at

8.9 mA), while all the remaining branches are set to thresh-

olds of 2.53 mJ (22.5 mA). Our test inputs remain current

steps of +10 mA (in) at node 1, −10mA (out) at node 8. Figs. 5

and 6 provide plots of branch current L5 with γ5 versus time

and branch current L10 with γ10 (all on a 12-s interval). As

confirmation that no other current magnitudes exceeded

their thresholds of 22.5 mA, Fig. 7 provides an ensemble plot

of the remaining nine inductor currents.

The state equations as constructed guarantee that the

time derivative of ϑ must be nonincreasing along trajecto-

ries; the light damping of our circuit suggests that the decay

should be slow away from failure event intervals. To confirm

these properties, Fig. 8 plots ϑ(φ(t), q(t), γ(t)) versus time.

Note that the transitions associated with failure of branches
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5 and 10 do induce relatively rapid decreases in ϑ, in con-

trast to the slow decay away from failure zones. This is ex-

pected due to the structure of
~
A, whose symmetric part gov-

erns dissipation. The large diagonal entries formed by

(−1/τ) terms, with our choice of τ = 0.4 ms, suggest that any

excitation of the γ state components away from their equi-

libria will induce relatively rapid dissipation.

We wish to illustrate the geometric insights available by

viewing the state trajectory as a process of phase transition

between potential wells about equilibria and how this view-

point might be used to supplement information available

from limited time horizon simulations. Consider the perti-

nent questions facing an analyst having in hand simulation

data through the second branch failure above; e.g., on an in-

terval of 0 to perhaps 4.25 s. A key question to be answered

is whether or not further branch failures will occur as the

time interval of interest is extended. Based on the data plot-

ted in Fig. 7, with simulation data out to 12 s, we have strong

evidence to suggest that while our system trajectories pass

moderately close to a failure threshold (with peak current

magnitudes of approximately 19 mA versus the failure

threshold of 22.5 mA), no further failures occur. Could we

gain qualitative insight from data available at 4 s to support

this hypothesis, without the costly simulation out to 12 s?

The question would be one of determining whether the

state at t = 4 s is yet “trapped” in the attractive set about the

locally stable equilibrium produced when branches 5 and

10 are out of service. A rigorous examination of this ques-

tion would involve computation of the lowest energy saddle

exit x
u in the vicinity of this stable equilibrium; conceptu-

ally, one expands constant contours of ϑ(x) from the stable

equilibrium until the “closest” critical point x
u at which

∇ =ϑ( ) 0x
u is encountered. The nonincreasing property of ϑ

along trajectories ensures that the component of the set

{ | ( ) ( )}x x xϑ ϑ< u containing the stable equilibrium will be

invariant, and provided ϑ(x(t)) cannot be constant away

from equilibria, convergence to the local stable equilibrium

can be guaranteed. The attractive property of our formula-

tion is that the lowest energy unstable x
us in the neighbor-

hood of a stable equilibrium are each naturally associated

with a single branch moving to the “cusp” of failure. These

x
us are therefore easily computed.

To illustrate these ideas graphically in a single contour

plot, one is unfortunately limited to examination of the be-

havior with respect to two degrees of freedom in a planar

“cut” of the higher dimensional state space. Judicious selec-

tion of these two degrees of freedom is important, and any

intuitive insights obtained must be checked against more

rigorous conditions for the invariant set in the higher di-

mensional state space. Nonetheless, the geometric insights

gained, even in a two-dimensional plot, are valuable, as our

circuit example will illustrate. Given the information in hand

following the two branch failures, a natural choice of a pla-

nar cut of interest presents itself. Select three points to de-

termine the plane: i) the stable equilibrium with all

branches in service; ii) the stable equilibrium with only

branch 5 out of service; and iii) the stable equilibrium with

branches 5 and 10 out of service. A rectangular planar cut

embedded in the higher dimensional state space is con-

structed, with these equilibrium points at three of the cor-

ners. The figures to follow illustrate a variety of views of the

energy ϑ(x) as contour plots or surface plots over this

plane. Because the local minima associated with two of the

three equilibria are quite “shallow,” two figures are used to

display behavior for these two equilibria. The first, as found

in Figs. 9(a) and 10(a), are “global” contour views, with axes

scaled so that all three equilibria are contained in the range

of the axes’ limits. The second, as found in Figs. 9(b) and

10(b), are expanded, local views, shown as surface plots to

better illustrate the potential wells. Behavior about the
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third equilibrium of interest is shown in the single contour

plot of Fig. 11, because the potential well shown is wide

enough in expanse that an expanded view is unnecessary.

As further explanation of the plots, the reader should

note that the axes describing the two degrees of freedom are

not aligned with any single physical state variable. There-

fore, in the global views of Figs. 9(a), 10(a), and 11, the hori-

zontal axis (first coordinate) and vertical axis (second coor-

dinate) are arbitrarily labeled with scales of 0 to 24. The first

plot, Fig. 9(a), focuses on the stable equilibrium associated

with all branches being in service; in the coordinate axes

shown, this point occurs in the vicinity of the grid location

(2,22), with an energy value of approximately 6.307 mJ. Note

that Fig. 9(a) displays behavior over a very narrow range of

energy variation, and the color assignments “saturate” for

any energy value below or above that range. Therefore, all

values below an energy of 6.308 are shaded red in Fig. 9(a);

all points with energy above 6.316 are shaded in deep blue.
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Figure 9. (a) Contour plot of ϑ(x): Focus on stable equilibrium at (2,22). (b) Surface plot of ϑ(x): Expanded detail about location (2,22).

24.000

23.000

22.000

21.000

20.000

19.000

18.000

17.000

16.000

15.000

14.000

13.000

12.000

11.000

10.000

9.000

8.000

7.000

6.000

5.000

4.000

3.000

2.000

1.000

0.000

0
.0

0
0

1
.0

0
0

2
.0

0
0

3
.0

0
0

4
.0

0
0

5
.0

0
0

6
.0

0
0

7
.0

0
0

8
.0

0
0

9
.0

0
0

1
0

.0
0

0

1
1

.0
0

0

1
2

.0
0

0

1
3

.0
0

0

1
4

.0
0

0

1
5

.0
0

0

1
6

.0
0

0

1
7

.0
0

0

1
8

.0
0

0

1
9

.0
0

0

2
0

.0
0

0

2
1

.0
0

0

2
2

.0
0

0

2
3

.0
0

0

2
4

.0
0

0

5.990 6.004 6.018 6.032 6.046 6.059 6.073 6.087 6.101 6.115

6.115

6.101

6.086

6.072

6.057

6.043

6.028

6.014

5.999

5.985

6.115

6.101

6.086

6.072

6.057

6.043

6.028

6.014

5.999

5.985

(a) (b)

Figure 10. (a) Contour plot of ϑ(x): Focus on stable equilibrium at (2,2). (b) Surface plot of ϑ(x): Expanded detail about location (2,2).



The reader should note the small potential well that appears

in red about the (2,22) point. The local behavior about that

point is shown in more detail in the 3-D surface plot in Fig.

9(b). Note that the lowest saddle point that allows escape

from the stable equilibrium appears at the energy level

shown in light blue, a level of approximately 6.313, indicat-

ing that only a very modest addition of energy to the system

can cause a transition to failure. Moreover, this saddle point,

which appears near (2,21) in Fig. 9(a), is associated with

branch 5 being on the cusp of transition to its failed state.

The reader should recall Fig. 2; there Θ(γ) displays a local

maximum in the vicinity of γ = 0.92, which creates the saddle

point shown in Fig. 9(a) and (b).

The next locally stable equilibrium is associated with

the configuration that has branch 5 failed, but branch 10

still operational, and has an energy value of approximately

5.985. Fig. 10(a) displays this point, keeping the same coor-

dinate axes as Fig. 9(a), but reassigns contour colors to fo-

cus on values at or slightly above 5.985. Here the local mini-

mum associated with the stable equilibrium is very weak,

as indicated by the very small region in red about (2,2). The

saddle exit point that governs escape from this well is lo-

cated in the vicinity of (4,2). Analogous to Fig. 9(b), Fig.

10(b) shows an expanded view of energy levels about this

stable equilibrium and saddle point as a surface plot. Exit

through the saddle point requires only a minuscule addi-

tion of energy, to overcome a boundary that has energy of

approximately 6.005.

The final contour plot focuses on the stable equilibrium

associated with the system configuration having branch 5

and branch 10 failed; this behavior is displayed in the single

Fig. 11. Again, the scaling of the horizontal and vertical coor-

dinate axes is identical to that of Figs. 9(a) and 10(a); the

only modification is in the range of contour levels and the

assignment of color to level. The stable equilibrium here is

associated with the red shaded region in the vicinity of the

(22,2) point, with an energy value of approximately 5.40. In

contrast to the equilibria seen in Figs. 9 and 10, this point is

strongly stable, as indicated by a much deeper “energy

well,” which does not offer an easy path of escape through a

low energy saddle point in its neighborhood.

With these energy plots in hand, a qualitative interpreta-

tion of the time domain state trajectory data of Fig. 7

emerges. The starting energy associated with the system

initial conditions is approximately 7.20, placing the initial

condition in the energy range far above that of any of our

stable equilibria. Therefore, it is quite plausible that the sys-

tem would not be captured in the very shallow well associ-

ated with the “no failure” equilibrium at (2,22). Similarly,

even after the energy dissipation of the first branch failure

has reduced ϑ(x) to approximately 6.75, the energy is still

not sufficiently small to suggest that the state would be cap-

tured by the shallow well about (2,2). Based on the energy

contours, one would have the strong hypothesis that the

state would be captured in the attractive well about equilib-

rium (22,2). However, an examination of contours with re-

spect to two degrees of freedom within the state space is not

a rigorous guarantee that this hypothesis holds; rather, one

must search for the lowest energy saddle exit from this re-

gion, as described above. Such a search is straightforward,

as low energy saddle points in this system are associated

with a single branch on the cusp of failure, and are easily lo-

cated by a Newton-Raphson iteration that initializes the as-

sociated branch at 0.92. Such a search here confirms that

the saddle point at (4,2) is the lowest exit out of the potential

well about (22,2), as the next lowest saddle point, x
u, is asso-

ciated with failure of branch L3, with ϑ(xu) > 7. With this

data in hand, obtained at a computational cost much lower

than that of 8 s of additional time domain simulation, one

could conclude that no additional branch failures occur.

Conclusions
In this work, we have considered a special structure of dy-

namic system model that admits a very tractable inclusion

of element failure phenomena, for which a global system

Lyapunov function can be constructed. This class includes

Hamiltonian systems as a special case, with a wide class of

R-L-C circuits and mechanical spring-mass-damper systems

in which branch failures are induced by exceeding thresh-

olds of inductor current or spring force magnitude. Using a

detailed R-L-C circuit as our illustrative example, this article

described how geometric features of the global Lyapunov

function constructed, along with partial trajectory informa-

tion from time domain simulations, can be used to more effi-

ciently predict which branches are subject to failure in a

specific disturbance scenario. The underlying concepts are

closely related to techniques of merging families of

Lyapunov functions in hybrid system analysis. However, the
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nature of our application, and the construction that yields a

clear algorithmic procedure for producing the appropriate

global Lyapunov function, present unique features. It is

hoped that these techniques will add to the set of tools avail-

able for predicting and preventing cascading failure in large-

scale networks.
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