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A PHD filter for tracking multiple

extended targets using random matrices
Karl Granström, Member, IEEE, and Umut Orguner, Member, IEEE

Abstract—This paper presents a random set based approach
to tracking of an unknown number of extended targets, in the
presence of clutter measurements and missed detections, where
the targets’ extensions are modeled as random matrices. For this
purpose, the random matrix framework developed recently by
Koch et al. is adapted into the extended target PHD framework,
resulting in the Gaussian inverse Wishart PHD (GIW-PHD) filter.
A suitable multiple target likelihood is derived, and the main
filter recursion is presented along with the necessary assump-
tions and approximations. The particularly challenging case of
close extended targets is addressed with practical measurement
clustering algorithms. The capabilities and limitations of the
resulting extended target tracking framework are illustrated both
in simulations and in experiments based on laser scans.

Index Terms—Target tracking, extended target, PHD filter,
random set, Gaussian distribution, inverse Wishart distribution,
random matrix, laser sensor, occlusion, probability of detection.

I. INTRODUCTION

Early target tracking often made the assumption that each

target can produce at most one measurement at a given time

step, see e.g. [1]. With modern and more accurate sensors, the

targets may occupy multiple resolution cells of the sensor, thus

potentially producing more than one measurement at a given

time step. Such targets are denoted extended, and tracking

of extended targets has received increasing research attention

over the past decade. Examples of extended target tracking

include vehicle tracking using automotive radar, tracking of

sufficiently close airplanes or ships with ground or marine

radar stations, and person tracking using laser range sensors.

Assuming that the received target measurements are Poisson

distributed in number, Gilholm and Salmond presented an

approach to extended target tracking [2]. Their approach is

illustrated with two examples, one in which the target is mod-

eled as a point that may generate more than one measurement,

and another example in which the target is an infinitely thin

stick of length l. An inhomogeneous Poisson point process

measurement model is suggested in [3], where a Poisson

distributed number of measurements is distributed around the

target. The model implies that the target is sufficiently far away

from the sensor for the measurements to resemble a cluster

rather than a geometric structure.
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Another approach to extended target modeling is the random

hypersurface model [4], which has been used to estimate

elliptic targets [5]. Measurements of target down-range extent

are used to aid track retention in [6]. Further approaches

to estimating the target extensions, as ellipses, rectangles, or

more general shapes, are given in [7]–[10].

With finite set statistics (FISST), Mahler introduced a set

theoretic approach in which targets and measurements are

modeled using random finite sets (RFS). The approach allows

multiple target tracking in the presence of clutter and with

uncertain associations to be cast in a Bayesian framework [11],

resulting in an optimal multi-target Bayes filter. An important

contribution of FISST is the statistical moments of the RFS,

which enable practical implementation of the optimal multi-

target Bayes filter. The first order moment of an RFS is

called the probability hypothesis density (PHD), and is an

intensity function defined over the target state space. The PHD

filter propagates the target set’s PHD in time [11], [12], and

represents an approximation to the optimal multi-target Bayes

filter. By approximating the PHD with a Gaussian mixture

(GM), a practical implementation of the PHD filter is obtained,

called the Gaussian mixture PHD (GM-PHD) filter [13]. An

extension of the PHD filter to handle extended targets of the

type presented in [3] is given in [14]. For the closely related

area of group target tracking, in which several targets move

in unison, an approach using the Gaussian mixture PHD filter,

where groups are identified as targets with similar position or

velocity estimates, is presented in [15]. The individual targets

in a group are predicted together using a leader-follower

model. A random finite set formulation of single extended

target tracking is given in [16], a particle implementation is

given for the general case and a closed form solution is shown

for the linear Gaussian case.

A Gaussian mixture implementation of the extended tar-

get PHD filter [14], called the ET-GM-PHD-filter, has been

presented in [17], with an early version given in [18]. In

both of the works [17] and [18], only the kinematic prop-

erties of the targets’ centroids are estimated. Estimating the

targets’ extents is omitted to reduce the complexity of the

presentation, however this also leads to some drawbacks. In

this paper, the case where the target extents are explicitly

modeled and estimated along with the kinematic target states is

investigated. For this purpose, we give an extended target PHD

filter implementation where the target extents are represented

with symmetric positive definite random matrices, i.e. the

extensions are elliptical.

Using random matrices to track extended objects and groups

of targets was suggested by Koch in 2008 [19]. The target
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kinematical states are modeled using a Gaussian distribution,

while the target extension is modeled using an inverse Wishart

distribution. Using random matrices to track group targets

under kinematical constraints is discussed in [20]. Modifi-

cations and improvements to the Gaussian-inverse Wishart

model of [19] have been suggested in [21], and the model [19]

has also been integrated into a Probabilistic Multi-Hypothesis

Tracking (PMHT) framework in [22]. A comparison of random

matrices and the random hypersurface model under single

target assumption is given in [23].

The random matrix approach [19], to the best of our

knowledge, has previously not been used in a framework

for tracking an unknown number of multiple extended tar-

gets, in the presence of missed detections and clutter. The

extended target PHD filter presented in this paper is capable

of estimating both the kinematic states and the extents of

multiple targets, in scenarios where both missed detections

and clutter are allowed. At each time step, we first assume that

the last estimated PHD is approximated with an unnormalized

mixture of Gaussian inverse Wishart (GIW) distributions (i.e.

the weights do not have to sum up to unity). We then show how

the prediction and the measurement updates can be performed

as was done in the single target case in [19], and also give

a likelihood function suitable to handle multiple extended

targets. The extended target PHD filter [14] requires all the

partitions of the measurement set. As a feasible approximation,

as in [17] we use only a subset of all partitions. In order to

better handle spatially close targets, two additional approaches

to measurement set partitioning are suggested. The resulting

filter, called the Gaussian inverse Wishart PHD filter (GIW-

PHD filter), is tested in simulations and in experiments based

on laser scans.

The paper is organized as follows. Section II clearly speci-

fies the extended targets of interest considered in this work and

the selected extent modeling methodology. We mathematically

describe the addressed target tracking problem in Section III.

Section IV first lists the assumptions made, then gives the

extended target PHD filter prediction and correction equations

for the GIW-PHD filter, and finally presents a merging and

pruning scheme for the GIW components. In this work, due

to space considerations, we are not able to give all the details

about the main partitioning algorithm described originally in

[17]. For this reason, Section V presents only the required

modifications and additions to the measurement partitioning

method of [17]. Results from simulations and experiments are

presented in Section VI and Section VII, and the paper is

finalized with conclusions and future work in Section VIII.

II. MODELING THE TARGET EXTENSION

The extended targets considered in this work are charac-

terized by a number of reflection points spread over their

extents. Early examples of extended target tracking assume

fixed measurement sources on the target, which can be tracked

individually to estimate the overall lumped behavior of the

extended target [24]. In many practical cases such an approach

might fail, because the location of the measurement sources

usually change fast according to the target sensor geometry.

Having few measurements from a single source might not

be sufficient to generate good quality individual tracks. For

these reasons, we avoid such an explicit estimation of the

measurement sources, and instead model the global behavior

of the measurements over the target extent.

As a general and simple model for the target extensions,

we use ellipsoids represented by positive definite matrices,

proposed by Koch in his pioneering work [19]. As admitted

by Koch in [19], “ellipsoidal object shapes are certainly a

major simplification in view of large target groups which can

be irregular in shape and in target density”. This remark

might be considered to be true for extended targets when the

targets are very close to the sensor. In this case the target

features form clusters of sensor reports that are too structured

to be represented accurately by ellipsoids. Nevertheless, in

many real-life target tracking scenarios, the targets are neither

sufficiently far from the sensors to generate only a single

measurement, nor are they sufficiently close to the sensors

such that their features are clearly articulated.

In this work, the targets of interest are those sufficiently

far away from the sensor so that their measurements resemble

a cluster of points. In Figure 1 we give an example of the

ellipsoidal model applied to real laser range data. The figure

shows two plots with measurements of a bicyclist and a

pedestrian. While neither bikes nor humans are shaped as

ellipses, we see that, given the measurements, the random

matrix model is a reasonable approximation of the extensions

of the bicyclist and pedestrian. In the results section of this

work we also present results from experiments where multiple

humans are tracked in laser range data using the ellipsoidal

models.

When the target extents are modeled as ellipsoids, clearly

there are many different ways to estimate the parameters

of the ellipses. Classically, the target tracking problem is

considered in a Bayesian framework utilizing state estimators

such as Kalman filters, its extensions, and particle filters.

We follow this tradition and use Koch’s Bayesian random

matrix methodology, where the random matrices are inverse-

Wishart distributed. The inverse Wishart probability density

function is a convenient prior for the considered types of

measurements, and iterative update formulae for the inverse-

Wishart parameters are obtained. The Bayesian framework

used conveniently supplies probabilistic uncertainty measures

to describe the extension estimates.

III. TARGET TRACKING PROBLEM FORMULATION

The set of extended targets at time k is denoted

Xk =
{

ξ
(i)
k

}Nx,k

i=1
, ξ

(i)
k ,

(

x
(i)
k , X

(i)
k

)

, (1)

where Nx,k is the unknown number of targets, and, in accor-

dance with [19], x
(i)
k is referred to as the kinematical state of

the i:th target, and X
(i)
k is referred to as the extension state.

We denote the augmented state composed of the kinematic

and extension states by ξ
(i)
k . Let the operation | · | denote

set cardinality, i.e. |Xk| = Nx,k. The target dynamic motion

model is defined as [19]

x
(i)
k+1 =

(
Fk+1|k ⊗ Id

)
x
(i)
k +w

(i)
k+1 (2)
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Fig. 1. The ellipsoidal extension model applied to laser range data. Measurements of a bicyclist (a) and a pedestrian (b). Both legs of the pedestrian are

measured, explaining the two distinct clusters of three and four measurements, respectively. The measurements z
(j)
k

are shown as black dots, the kinematical

state estimates x̂k|k are shown as a black squares, and the representative extension state estimates X̂k|k are shown as gray ellipses.

where w
(i)
k+1 is zero mean Gaussian process noise with co-

variance ∆
(i)
k+1|k = Qk+1|k ⊗ X

(i)
k+1 and d is the dimension

of the target extent, i.e. X
(i)
k is a d × d symmetric positive

definite matrix and Id is an identity matrix of dimension

d. The notation A ⊗ B denotes the Kronecker product of

matrices A and B. The object kinematics are modeled up to

the (s− 1):th derivative, i.e. the length of the kinematic state

vector is nx = s×d. Here s = 3, and Fk+1|k and Qk+1|k are

given by [19]

Fk+1|k =





1 Ts
1
2T

2
s

0 1 Ts

0 0 e−Ts/θ



 , (3a)

Qk+1|k = Σ2
(

1− e−2Ts/θ
)

diag ([0 0 1]) , (3b)

where Ts is the sampling time, Σ is the scalar acceleration

standard deviation and θ is the maneuver correlation time.

The set of measurements obtained at time k is denoted

Zk =
{

z
(j)
k

}Nz,k

j=1
(4)

where Nz,k = |Zk| is the number of measurements. The

measurement model is defined as [19]

z
(j)
k = (Hk ⊗ Id)x

(i)
k + e

(j)
k , (5)

where e
(j)
k is white Gaussian noise with covariance given by

the target extension matrix X
(i)
k , and Hk = [1 0 0] as in

[19]. Each target generates a Poisson distributed number of

measurements, where the Poisson rate γ (ξk) is a function of

the augmented state.

Clutter measurements are modeled as being Poisson dis-

tributed in number, with rate parameter βFA,k clutter measure-

ments per surveillance volume per scan. With surveillance vol-

ume S , the mean number of clutter measurements is βFA,kS
clutter measurements per scan. The clutter measurements are

modeled as being uniformly distributed over the surveillance

area.

The goal at each time step is to estimate the set of targets

XK given the sets of measurements ZK = {Zk}
K
k=1. This

is achieved by propagating the predicted and updated PHDs

of the set of targets Xk, denoted Dk|k−1( · ) and Dk|k( · ),
respectively, using the extended target PHD filter presented

in [14].

IV. THE GAUSSIAN INVERSE WISHART PHD FILTER

For the multi-target tracking problem described in Sec-

tion III, the extended target PHD filter prediction equations

are given as follows [12].

Dk+1|k (ξk+1) =

∫

pS (ξk) pk+1|k (ξk+1|ξk)Dk|k (ξk) dξk

+Db
k+1 (ξk+1) , (6)

where we omitted new target spawning1, and

• pS ( · ) is the probability of survival as a function of the

augmented target state;

• pk+1|k ( · | · ) is the state transition density, describing the

transition from state ξk to state ξk+1;

• Db
k ( · ) is the birth PHD, representing new targets.

The correction equations for the extended target PHD filter has

the following form [14],

Dk|k

(
ξk|Z

k
)
= LZk

(ξk)Dk|k−1

(
ξk|Z

k−1
)
. (7)

The measurement pseudo-likelihood function LZk
( · ) in (7) is

defined as

LZk
(ξk) ,

(

1− e−γ(ξk)
)

pD (ξk) + e−γ(ξk)pD (ξk) (8)

×
∑

p∠Zk

ωp

∑

W∈p

γ (ξk)
|W |

dW

∏

zk∈W

φzk
(ξk)

λkck (zk)
,

where

• λk , βFA,kS is the mean number of clutter measure-

ments;

• ck (zk) = 1/S is the spatial distribution of the clutter

over the surveillance volume;

• the notation p∠Zk denotes that p partitions the measure-

ment set Zk into non-empty cells W . When used under

a summation sign, the summation is over all possible

partitions;

• the notation W ∈ p denotes that the set W is a cell in

the partition p. When used under a summation sign, the

summation is over all sets in the partition;

1More details on target spawning are given in Section VI-D.
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• the quantities ωp and dW are non-negative coefficients

defined, for each partition p and cell W respectively, as

ωp =

∏

W∈p dW
∑

p′∠Zk

∏

W ′∈p′ dW ′

, (9)

dW =δ|W |,1 +Dk|k−1

[

pDγ
|W |e−γ

∏

zk∈W

φzk
( · )

λkck (zk)

]

,

(10)

where δi,j is the Kronecker delta and the notation f [g]
denotes the integral

∫
f(x)g(x)dx.

• φzk
(ξk) , p(zk|ξk) is the likelihood function for a single

target generated measurement. Under the measurement

model (5) it is given as

φzk
(ξk) = N (zk ; (Hk ⊗ Id)xk, Xk) . (11)

In the following subsections, we are going to assume that

we are at an intermediate stage of estimation at time tk and

the current estimated PHD Dk|k( · ) can be approximated as

an unnormalized mixture of Gaussian inverse Wishart (GIW)

distributions as follows.

Dk|k (ξk) ≈

Jk|k
∑

j=1

w
(j)
k|kN

(

xk ; m
(j)
k|k, P

(j)
k|k ⊗Xk

)

×IW
(

Xk ; ν
(j)
k|k, V

(j)
k|k

)

, (12)

where

• Jk|k is the number of components;

• w
(j)
k|k is the weight of the j:th component;

• m
(j)
k|k and P

(j)
k|k ⊗Xk are the Gaussian mean and covari-

ance of the j:th component;

• ν
(j)
k|k and V

(j)
k|k are the inverse Wishart degrees of freedom

and inverse scale matrix of the j:th component;

• the notation N (x ; m,P ) denotes a Gaussian distribution

defined over the variable x with mean m and covariance

P ;

• the notation IW (X ; ν, V ) denotes an inverse Wishart

distribution defined over the variable X with degrees of

freedom ν and inverse scale matrix V .

Further, let ξ
(j)
k|k be an abbreviation of the sufficient statistics

of the j:th GIW component, i.e.

ξ
(j)
k|k ,

(

m
(j)
k|k, P

(j)
k|k, ν

(j)
k|k, V

(j)
k|k

)

. (13)

Note that the distribution for the kinematical state xk depends

on the extension state Xk. Estimates of the kinematic state

uncertainty and of the target extent are obtained as in [19],

P̂
(j)
k|k =

P
(j)
k|k ⊗ V

(j)
k|k

ν
(j)
k|k + s− sd− 2

, (14)

X̂
(j)
k|k =

V
(j)
k|k

ν
(j)
k|k − 2d− 2

, (15)

for ν
(j)
k|k such that the denominators are positive. In the

following, we give the assumptions made in the derivation

of the GIW-PHD filter in Section IV-A. The prediction and

update formulas for the PHD representation in (12) are then

presented in Section IV-B and Section IV-C. Finally, GIW

mixture reduction using a pruning and merging scheme is

addressed in Section IV-D.

A. Assumptions

In order to derive prediction and correction equations for

the GIW-PHD filter, a number of assumptions are made. The

first four assumptions are standard in most target tracking

applications, see e.g. [1].

Assumption 1: Each target evolves and generates observa-

tions independently of all other targets. �

Assumption 2: Each target’s kinematical part follows a lin-

ear Gaussian dynamical model, and the sensor has a linear

Gaussian measurement model. �

Assumption 3: Clutter is Poisson distributed in number, and

independent of target-originated measurements. �

Assumption 4: The survival probability is state indepen-

dent, i.e. pS (ξk) = pS. �

The next assumption is reasonable in scenarios where target

interactions are negligible [13].

Assumption 5: The predicted multi-target RFS is Poisson.

�

In [13], [17] the PHD is represented as a mixture of Gaussian

distributions, here a different assumption is made to accom-

modate the random matrix model.

Assumption 6: The intensity of the birth RFS is a mixture

of GIW distributions. �

The following assumption is inherited from [19], where it is

noted that it implies restrictions that can be justified in many

practical cases.

Assumption 7: The target augmented state transition den-

sity satisfies

pk+1|k (ξk+1|ξk) ≈p1k+1|k (xk+1|Xk+1,xk) p
2
k+1|k (Xk+1|Xk)

(16)

for all ξk and ξk+1. �

In addition to these, two more assumptions are made con-

cerning the probability of detection pD ( · ) and the rate γ( · )
that governs each target’s measurement generation. These

assumptions require a bit more elaboration.

Assumption 8: The following approximation about pD ( · )
holds for all ξk

pD (ξk)N
(

xk ; m
(j)
k|k−1, P

(j)
k|k−1 ⊗Xk

)

× IW
(

Xk ; ν
(j)
k|k−1, V

(j)
k|k−1

)

≈pD

(

ξ
(j)
k|k−1

)

N
(

xk ; m
(j)
k|k−1, P

(j)
k|k−1 ⊗Xk

)

× IW
(

Xk ; ν
(j)
k|k−1, V

(j)
k|k−1

)

. (17)

Let p
(j)
D , pD

(

ξ
(j)
k|k−1

)

abbreviate the probability of detection

for the j:th GIW component. �

In Assumption 8 the approximation (17) is trivially satisfied

when pD ( · ) = pD, i.e. when pD ( · ) is constant. In general,

Assumption 8 holds approximately when the function pD ( · )
does not vary much in the uncertainty zone of a target in the
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augmented state space ξk. This is true either when pD ( · ) is

a sufficiently smooth function, or when the signal to noise

ratio (SNR) is high enough such that the uncertainty zone is

sufficiently small. A similar approach to variable probability

of detection has been taken in order to model the clutter notch

in ground moving target indicator target tracking [25].

For the expected number of measurements from the targets,

represented by γ( · ), similar remarks apply and the following

assumption is made.

Assumption 9: The following approximation about γ( · )
holds for all ξk, j = 1, . . . , Jk|k−1 and all integers n ≥ 1,

e−γ(ξk)γn(ξk)N
(

x ; m
(j)
k|k−1, P

(j)
k|k−1 ⊗Xk

)

× IW
(

Xk ; ν
(j)
k|k−1, V

(j)
k|k−1

)

≈e
−γ

(

ξ
(j)

k|k−1

)

γn
(

ξ
(j)
k|k−1

)

N
(

x ; m
(j)
k|k−1, P

(j)
k|k−1 ⊗Xk

)

× IW
(

Xk ; ν
(j)
k|k−1, V

(j)
k|k−1

)

. (18)

Let γ(j) , γ
(

ξ
(j)
k|k−1

)

abbreviate the expected number of

measurements for the j:th GIW component. �

The trivial situation γ( · ) = γ, i.e. when γ( · ) is constant,

is again a special case where Assumption 9 is satisfied.

In general, satisfying Assumption 9 is more difficult than

Assumption 8. Nevertheless Assumption 9 is expected to

hold approximately either when γ ( · ) is a sufficiently smooth

function or when the signal to noise ratio (SNR) is high enough

such that the uncertainty zone of a target in the augmented

state space ξk is sufficiently small.

B. Prediction

Utilizing Assumptions 4 and 7, the prediction of existing

targets can be written as

pS

∫

p1k+1|k (xk+1|Xk+1,xk)

× p2k+1|k (Xk+1|Xk)Dk|k (xk, Xk) dxkdXk

=pS

Jk|k
∑

j=1

w
(j)
k|k

∫
N
(

xk ; m
(j)
k|k, P

(j)
k|k ⊗Xk+1

)

×p1k+1|k (xk+1|Xk+1,xk)
dxk

︸ ︷︷ ︸

Kinematical part

×

∫

IW
(

Xk ; ν
(j)
k|k, V

(j)
k|k

)

p2k+1|k (Xk+1|Xk) dXk

︸ ︷︷ ︸

Extension part

. (19)

Using the linear Gaussian model given in (2), the prediction

for the kinematical part becomes [19]
∫

N
(

xk ; m
(j)
k|k, P

(j)
k|k ⊗Xk+1

)

× p1k+1|k (xk+1|Xk+1,xk) dxk

=N
(

xk+1 ; m
(j)
k+1|k, P

(j)
k+1|k ⊗Xk+1

)

, (20)

where

m
(j)
k+1|k =

(
Fk+1|k ⊗ Id

)
m

(j)
k|k, (21a)

P
(j)
k+1|k = Fk+1|kP

(j)
k|kF

T

k+1|k +Qk+1|k. (21b)

The extension part is less straightforward. Here, we apply

the same heuristic approach as in [19], i.e. we make the

approximation
∫

IW
(

Xk ; ν
(j)
k|k, V

(j)
k|k

)

p2k+1|k (Xk+1|Xk) dXk

≈IW
(

Xk+1 ; ν
(j)
k+1|k, V

(j)
k+1|k

)

(22)

where the predicted degrees of freedom and inverse scale

matrix are approximated by

ν
(j)
k+1|k = e−Ts/τν

(j)
k|k, (23a)

V
(j)
k+1|k =

ν
(j)
k+1|k − d− 1

ν
(j)
k|k − d− 1

V
(j)
k|k , (23b)

where τ is a temporal decay constant. Thus, the PHD

corresponding to predicted existing targets is

Jk|k
∑

j=1

w
(j)
k+1|kN

(

xk+1 ; m
(j)
k+1|k, P

(j)
k+1|k ⊗Xk+1

)

×IW
(

Xk+1 ; ν
(j)
k+1|k, V

(j)
k+1|k

)

, (24)

where w
(j)
k+1|k = pSw

(j)
k|k, the Gaussian mean m

(j)
k+1|k and

covariance P
(j)
k+1|k are given in (21), and the inverse Wishart

degrees of freedom ν
(j)
k+1|k and inverse scale matrix V

(j)
k+1|k are

given in (23).

The birth PHD

Db
k (ξk) =

Jb,k∑

j=1

w
(j)
b,kN

(

xk ; m
(j)
b,k, P

(j)
b,k ⊗Xk

)

×IW
(

Xk ; ν
(j)
b,k , V

(j)
b,k

)

, (25)

represents new targets that appear at time step k. The full

predicted PHD Dk+1|k (ξk+1) is the sum of the PHD of

predicted existing targets (24) and the birth PHD (25), and

contains a total of Jk+1|k = Jk|k + Jb,k+1 GIW components.

C. Correction

The corrected PHD is a GIW mixture given by

Dk|k (ξk) = DND
k|k (ξk) +

∑

p∠Zk

∑

W∈p

DD
k|k (ξk,W ), (26)

where DND
k|k ( · ), handling the no detection cases, is given by

DND
k|k (ξk) =

Jk|k−1
∑

j=1

w
(j)
k|kN

(

xk ; m
(j)
k|k, P

(j)
k|k

)

× IW
(

Xk ; ν
(j)
k|k, V

(j)
k|k

)

, (27a)

w
(j)
k|k =

(

1−
(

1− e−γ(j)
)

p
(j)
D

)

w
(j)
k|k−1, (27b)

ξ
(j)
k|k =ξ

(j)
k|k−1. (27c)

The GIW mixture DD
k|k (ξk,W ), handling the detected target

cases, requires the likelihood of the measurements in each cell
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W ,

∏

zk∈W

φzk
(ξk)

λkck (zk)
=β

−|W |
FA,k

∏

zk∈W

N
(

z
(i)
k ; (Hk ⊗ Id)xk, Xk

)

,

(28)

multiplied with the predicted GIW components,

N
(

xk ; m
(j)
k|k−1, P

(j)
k|k−1 ⊗Xk

)

IW
(

Xk ; ν
(j)
k|k−1, V

(j)
k|k−1

)

.

(29)

The product of (28) and (29) can be rewritten as

β
−|W |
FA,kL

(j,W )
k N

(

xk ; m
(j,W )
k|k , P

(j,W )
k|k ⊗Xk

)

×IW
(

Xk ; ν
(j,W )
k|k , V

(j,W )
k|k

)

. (30)

The details behind the derivation are given in Appendix A. The

corrected Gaussian mean and covariance and inverse Wishart

degrees of freedom and inverse scale matrix in (30) are given

by

m
(j,W )
k|k = m

(j)
k|k−1 +

(

K
(j,W )
k|k−1 ⊗ Id

)

ε
(j,W )
k|k−1, (31a)

P
(j,W )
k|k = P

(j)
k|k−1 −K

(j,W )
k|k−1S

(j,W )
k|k−1

(

K
(j,W )
k|k−1

)T

, (31b)

ν
(j,W )
k|k = ν

(j)
k|k−1 + |W |, (31c)

V
(j,W )
k|k = V

(j)
k|k−1 +N

(j,W )
k|k−1 + ZW

k , (31d)

where the centroid measurement, scatter matrix, innovation

factor, gain matrix, innovation vector and innovation matrix

are defined as

z̄Wk =
1

|W |

∑

z
(i)
k

∈W

z
(i)
k , (32a)

ZW
k =

∑

z
(i)
k

∈W

(

z
(i)
k − z̄Wk

)(

z
(i)
k − z̄Wk

)T

, (32b)

S
(j,W )
k|k−1 =HkP

(j)
k|k−1H

T

k +
1

|W |
, (32c)

K
(j,W )
k|k−1 =P

(j)
k|k−1H

T

k

(

S
(j,W )
k|k−1

)−1

, (32d)

ε
(j,W )
k|k−1 =z̄Wk − (Hk ⊗ Id)m

(j)
k|k−1, (32e)

N
(j,W )
k|k−1 =

(

S
(j,W )
k|k−1

)−1

ε
(j,W )
k|k−1

(

ε
(j,W )
k|k−1

)T

. (32f)

The likelihood in (30) is given by

L
(j,W )
k =

1
(

π|W ||W |S
(j,W )
k|k−1

) d
2

∣
∣
∣V

(j)
k|k−1

∣
∣
∣

ν
(j)
k|k−1

2

∣
∣
∣V

(j,W )
k|k

∣
∣
∣

ν
(j,W )
k|k

2

Γd

(
ν
(j,W )

k|k

2

)

Γd

(
ν
(j)

k|k−1

2

) .

(33)

where |V | denotes the determinant of the matrix V , and |W |
is the number of measurements in the cell W . The updated

GIW component weight is given by

w
(j,W )
k|k =

ωp

dW
e−γ(j)

(
γ(j)

βFA,k

)|W |

p
(j)
D L

(j,W )
k w

(j)
k|k−1, (34)

where

dW = δ|W |,1 +

Jk|k−1
∑

ℓ=1

e−γ(ℓ)

(
γ(ℓ)

βFA,k

)|W |

p
(ℓ)
D L

(ℓ,W )
k w

(ℓ)
k|k−1.

(35)

Finally, the coefficients ωp can be calculated by (9). The

corrected PHD is of the form given in (12) with weights given

by (34), and Gaussian and inverse Wishart parameters given

in (31). Let |pp| denote the number of cells W in the p:th par-

tition, and let the set of partitions contain P unique partitions.

The corrected PHD then has Jk|k = Jk|k−1+Jk|k−1

∑P
p=1 |pp|

GIW components.

D. Pruning and merging

From the prediction and correction, one quickly realizes

that as time progresses, the number of GIW components

increases rapidly. To keep the number of components at a

tractable level, pruning and merging of GIW components is

performed similarly to [13]. Empirically we have found that

the merging threshold U must be chosen conservatively to

avoid merging GIW components which correspond to multiple

spatially close targets, because merging such components may

cause cardinality error. The details of the implemented pruning

and merging scheme are given below in Table I. Note that

calculation of the merged covariance P̃
(ℓ)
k|k does not include

the spread of means, the reason is that the means m
(i)
k|k and

covariances P
(i)
k|k are of different dimensions (s × d and s,

respectively). However, with a conservative merging threshold

U , the spread of means is typically quite small and is thus

negligible.

We also alert the reader about the very simple approach

to merging of inverse-Wishart parameters in Table I. This

procedure is sufficient when a conservative threshold is used,

and the GIW-PHD filter is not very sensitive to changes in

the merging algorithm. Nevertheless, finding a better method

for GIW component merging is a potential subject for future

research.

E. Implementation of the GIW-PHD filter

To facilitate implementation, we give pseudo code for

the GIW-PHD filter, and address implementation issues and

computational complexity, in a Technical Report [26, Online].

V. PARTITIONING THE MEASUREMENT SET

A central part of the correction equation given in (7), (8), is

the partitioning of the set of measurements Zk into partitions

p containing non-empty cells W with measurements z
(j)
k . For

a given partition, the cells can be understood as containing

measurements that are all from the same source, either a single

target or a clutter source.

The measurement pseudo-likelihood (8) requires a sum-

mation over all possible partitions, which quickly becomes

intractable because the number of possible partitions increases

very rapidly as the size of Zk increases [14], [17]. It has been

noted that the full set of partitions can be approximated with
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TABLE I
PSEUDO-CODE FOR GIW-PHD FILTER PRUNING AND MERGING

1: input: GIW components
{

w
(j)
k|k

, ξ
(j)
k|k

}Jk|k

j=1
, a truncation threshold T ,

a merging threshold U and a maximum allowable number of GIW

components Jmax.

2: initialize: Set ℓ← 0 and I ←
{

i = 1, . . . , Jk|k

∣

∣

∣
w

(i)
k|k

> T
}

.

3: repeat

4: ℓ← ℓ+ 1

5: j ← argmax
i∈I

w
(i)
k|k

6: Compute P̂
(j)
k|k

using (14).

7: L←

{

i ∈ I

∣

∣

∣

∣

(

m
(i)
k|k
−m

(j)
k|k

)T (

P̂
(j)
k|k

)−1 (

m
(i)
k|k
−m

(j)
k|k

)

≤ U

}

8: w̃
(ℓ)
k|k
←

∑

i∈L w
(i)
k|k

9: m̃
(ℓ)
k|k
← 1

w̃
(ℓ)
k|k

∑

i∈L w
(i)
k|k

m
(i)
k|k

,

10: P̃
(ℓ)
k|k
← 1

w̃
(ℓ)
k|k

∑

i∈L w
(i)
k|k

P
(i)
k|k

11: ν̃
(ℓ)
k|k
← 1

w̃
(ℓ)
k|k

∑

i∈L w
(i)
k|k

ν
(i)
k|k

,

12: Ṽ
(ℓ)
k|k
← 1

w̃
(ℓ)
k|k

∑

i∈L w
(i)
k|k

V
(i)
k|k

13: I ← I\L
14: until I = ∅

15: If ℓ > Jmax then replace
{

w̃
(j)
k|k

, m̃
(j)
k|k

, P̃
(j)
k|k

, ν̃
(j)
k|k

, Ṽ
(j)
k|k

}ℓ

j=1
by those

of the Jmax GIW components with largest weights.

16: output:
{

w̃
(j)
k|k

, ξ̃
(j)
k|k

}ℓ

j=1
, ξ̃

(j)
k|k

=

(

m̃
(j)
k|k

, P̃
(j)
k|k

, ν̃
(j)
k|k

, Ṽ
(j)
k|k

)

a subset of partitions, so long as this subset contains the most

likely ones among all of the possible partitions [17], [18]. A

method called Distance Partition was suggested in [18], and

it was augmented with the Sub-Partition algorithm in [17] to

better handle the case of spatially close targets.

Distance Partition is based on the fundamental insight that

measurements that are caused by the same extended target

are spatially close to each other. Partitions are computed such

that spatially close measurements are put into the same cell.

However, a method based only on this places measurements

from multiple targets in the same cell if two or more targets are

spatially close, which may cause cardinality errors. In the Sub-

Partition algorithm presented in [17], this problem was solved

by generating additional partitions by considering the number

of measurements in each cell |W |, and comparing it to the

expected number of measurements from a single target. Given

a maximum likelihood estimate K of the number of targets that

caused the measurements in the cell, Sub-Partition uses K-

means++ clustering to split the cell into K sub-cells. A new

partition, that includes the sub-cells instead of the original cell,

is added to the list of partitions. Though this method solves

the cardinality issues in many practical cases, it is noted in

[17] that it is only a first order solution to the problem.

Initial simulations with extended targets modeled using

random matrices showed that Distance Partitioning with Sub-

Partition was insufficient to handle some instances of multiple

extended targets that are spatially close. The phenomenon is

best explained with an example. Consider the two different

sized and spatially close extended targets, with correspond-

ing measurements, in Figure 2a. Distance Partition would

place all measurements in the same cell, due to the spatial

proximity of the measurements. Compare to the division of

the measurements using K-means++ in Figure 2b, which

is the algorithm used in Sub-Partition. The result from K-

means++ is typical, because for this type of scenario the

K-means++ loss function profits much more by dividing

the measurements by a vertical line, rather than a horizontal

one. Because such a resulting additional partition will get a

relatively lower likelihood, compared to the partition which

assigns all the measurements to a single target (obtained

initially by Distance Partitioning), the additional partition

would not improve performance. Despite using Sub-Partition,

the result would typically be a cardinality error in the filtering.

In order to be able to handle this type of true target

scenario, in this paper two additional partitioning methods are

suggested. The first is a method called Prediction Partition,

which is based on the predicted GIW-PHD components. The

second method, called EM Partition, is based on the expec-

tation maximization (EM) algorithm [27]. Both methods are

based on the intuition that in order to solve the problem for

situations as in Figure 2, one has to incorporate the predicted

kinematic and extent states of the targets into the partitioning

process.

A. Prediction Partition

This partitioning method uses the predicted GIW compo-

nents. For components with weight w
(j)
k+1|k > 0.5, a d-

dimensional extension estimate X̂
(j)
k+1|k is computed as in

(15). A corresponding position mean is obtained by taking the

d first components of m
(j)
k+1|k, denoted m

(j),d
k+1|k. A partition

is obtained by iterating over the components, in the order

of decreasing weight, and putting all measurements z
(i)
k that

fulfill
(

z
(i)
k −m

(j),d
k+1|k

)T (

X̂
(j)
k+1|k

)−1 (

z
(i)
k −m

(j),d
k+1|k

)

< ∆d (p)

(36)

into the same cell. Here, ∆d (p) is computed using the inverse

cumulative χ2 distribution with d degrees of freedom, for

probability p = 0.99. If a measurement falls into two or more

extension estimates, it is only put into the cell corresponding to

the component with highest weight. The measurements that do

not fulfill (36) for any GIW component are placed in individual

cells containing only one measurement.

This method works well when the true target motion can be

well modeled by the dynamic motion model (2). However,

when the targets maneuver the method is expected to be

insufficient because the target predictions will be significantly

erroneous.

B. EM Partition

The reason that K-means++ were successful in some

scenarios in [17] was that the targets were mainly of the

same size and circular (i.e. as opposed to elliptical). A

typical extended target scenario can have targets of quite

different sizes generating significantly different numbers of

measurements, and the targets’ measurement distributions can

be significantly skewed, rather than circular. When there are

targets of different sizes, the K-means++ algorithm, which

does not use any measure of the clusters’ physical sizes,
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Fig. 2. Illustration of Sub-Partition. (a) Two spatially close extended targets, with corresponding measurements in black and gray. (b) Sub-cells resulting
from K-means++, shown in black and gray. Ideally, the measurements should be split into two sub-cells along the y = 15 line.

often fails. The Expectation Maximization (EM) algorithm

for Gaussian mixtures, which is a generalization of the K-

means++ algorithm (see e.g. chapter 9 of [28]), incorporates

both cluster sizes and number of measurements in each cluster

via the covariances and the mixing coefficients. The specifics

of the EM algorithm for Gaussian mixtures can be found in

e.g. [28].

In the EM Partition algorithm, the Gaussian mixture param-

eters are initialized with means µℓ = m
(j),d
k+1|k, covariances

Σℓ = X̂
(j)
k+1|k and mixing coefficients πℓ ∝ γ

(

ξ
(j)
k+1|k

)

for components j with weight w
(j)
k+1|k > 0.5. An additional

mixture component is added with mean µℓ at the center of the

surveillance area, circular covariance Σℓ scaled such that the

corresponding 99% probability volume approximately covers

the surveillance area, and mixing coefficient πℓ = 10−9. The

mixing coefficients πℓ are normalized to satisfy
∑

ℓ πℓ = 1
before the first E-step.

The additional mixture component is added to capture

the clutter measurements, such that the mixture components

corresponding to the target estimates can converge approx-

imately to the true partitioning. Note that for a given set

of initial Gaussian mixture components, the EM algorithm

will converge to the closest local maximum of the likelihood

function, i.e. there is no guarantee that EM converges to the

global maximum. Because EM Partition is initialized using the

predicted GIW components, similarly to Prediction Partition

it is sensitive to maneuvers that are modeled poorly by the

motion model. However, because of the adaptation capability

of the EM-iterations, EM Partition is slightly less sensitive than

Prediction Partition.

C. Discussion

It is important to note that each of the three partitioning

methods2 used in this work have its respective failure modes.

A problem with Distance Partition with Sub-Partition was

highlighted in Figure 2. Prediction Partition relies on the

prediction of the GIW components, this method sometimes

returns a non-informative partition when targets are maneu-

vering. EM Partition can converge to a local maximum of the

likelihood function that yields a non-informative partition. For

this reason, it is a better choice to use all three methods, rather

than just one method on its own. The more partitions that

are used, the better the full set of partitions is approximated.

Indeed, it is possible that adding further partitioning methods

2Distance Partition with Sub-Partition [17], Prediction Partition and EM

Partition

would improve performance, however this should also be

balanced against the fact that considering more partitions

requires more computations.

VI. SIMULATION RESULTS

This section presents results from extended target tracking

simulations. The target tracking setup is presented in the next

section, followed by the results from four different extended

target tracking scenarios.

A. Target tracking setup

Four different scenarios were simulated, each with two

targets. The true tracks are shown in Figure 3. The true target

extensions are given by

X
(i)
k = R

(i)
k diag

([
A2

i a2i
]) (

R
(i)
k

)T

, (37)

where R
(i)
k is a rotation matrix applied such that the i:th

extension’s major axis is aligned with the i:th target’s direction

of motion at time step k, and Ai and ai are the length of

the major and minor axes, respectively. In all four scenar-

ios, the major and minor axes are (A1, a1) = (20, 5) and

(A2, a2) = (10, 2.5) for the two targets, respectively.

The expected number of measurements generated by the

targets is assumed to be a function of the extended target

volume V
(i)
k , π

√∣
∣
∣X

(i)
k

∣
∣
∣ = πAiai. This assumption is

reasonable in many real world scenarios, where a smaller

target would occupy fewer of the sensor’s resolution cells than

a larger target, thus yielding fewer measurements. Here we

adopt the following simple model for the expected number of

measurements that the targets generate,

γ
(i)
k =

⌊√

4

π
V
(i)
k + 0.5

⌋

=
⌊

2
√

Aiai + 0.5
⌋

, (38)

where ⌊ · ⌋ is the floor function and ⌊x+ 0.5⌋ rounds x to

the nearest integer. This model is equivalent to assuming a

uniform expected number of measurements per square root

of surveillance area. In a typical real world scenario, the

number of target measurements may also depend on the

distance between the target and the sensor, i.e. depend on the

kinematical target state x
(i)
k . This case can easily be handled

with a modified expected number of measurements model. For

the sake of simplicity, this case is not included in this paper,

and the readers are referred to [17] for such an example.

The motion model parameters are set to Ts = 1s, θ = 1s,
Σ = 0.1m/s2 and τ = 5s. In three of four scenarios, the
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parameters of the Jb,k = 2 birth PHD components are set as

follows, w
(j)
b,k = 0.1, and

m
(j)
b,k =

[(

x
(j)
0

)T

0T

4

]T

, P
(j)
b,k = diag

(
[1002 252 252]

)
,

ν
(j)
b,k = 7, V

(j)
b,k = diag ([1 1]) . (39)

The mean vectors m
(j)
b,k are set such that they correspond to

the starting points of the true targets. In the fourth scenario,

there is Jb,k = 1 birth component, with mean vector set to the

mean of the two targets’ starting points. Knowing the starting

points of the targets a priori is naturally not possible in many

real world scenarios. In the experiment section, we elaborate

further on how the birth PHD can be constructed in a real

scenario.

A total of 100 Monte Carlo simulations were preformed for

each scenario, with a clutter rate of 10 clutter measurements

per time step. The results are presented in terms of the

multi-target measure optimal subpattern assignment metric

(OSPA) [29], cardinality and length of the estimated major and

minor axes of the extension matrices.

B. Crossing tracks

In this scenario, the target tracks cross at close distance,

see Figure 3a. The results are shown in Figure 4. The plots

clearly show that straight line motion can be readily handled

by the presented filter, even when the targets are spatially

close. Noteworthy are the estimates of the major and minor

axes, Ai and ai, respectively. The results show that extensions

which do not change over time (e.g. do not grow, shrink or

rotate) can be estimated with low error.

C. Parallel tracks

In the second scenario, the two targets move closer and

then move in parallel, before separating again, see Figure 3b.

While moving in parallel, the true target extensions’ three

standard deviation ellipses (corresponding to the 99% prob-

ability volume) are separated by 2.5m. The results are shown

in Figure 5. The mean sum of weights is close to the true

value, however there is a downward trend while the targets

are moving in parallel. This is caused mainly by missed

detections, which often causes the PHD filter to lose the target

estimate corresponding to the target that was not detected. In

the subsequent time steps, when the target is detected again,

the measurements from both targets are typically treated as

being caused by one target.

This can also be seen in the OSPA value, which increases

during parallel motion, and also has larger standard deviation.

The estimates of Ai and ai are slightly worse than in the

previous scenario. In the beginning and end of the simulation

this is caused by the rotation of the extension matrices Xk.

This result is intuitive – the turning makes the extension more

difficult to track since the prediction (23) does not account for

the rotation of the extension.

D. Separating tracks

In the third scenario, the two targets start such that their

respective three standard deviation ellipsoids, computed from

the true extensions Xk, are touching. First the targets move

in parallel, after about half the scenario they separate, see

Figure 3c. For this scenario, a birth PHD with Jb,k = 1
component was used. The results are shown in Figure 6. For

the first half of this scenario, when the target extents are

touching, the filter incorrectly estimates one large extended

target, instead of two smaller ones, in about 60% of the

Monte Carlo simulations. This is what causes the mean sum of

weights to be around 1.4. The targets start to separate at time

52, and from time 57 the cardinality is estimated correctly.

Because the cardinality is underestimated in about 60% of

the Monte Carlo simulations, the estimated major and minor

axes, Ai and ai, are difficult to interpret for the first half of the

scenario. When the GIW-PHD filter estimates only one target,

the major axis of the extracted target is estimated to be slightly

lower than A1 = 20m. We had expected the major axis to be

estimated as 20m or more when the targets are combined.

However, this “underestimation” appears to be a property of

the particular prediction and correction equations used for the

inverse Wishart parameters. The major axes of the targets are,

in a way, averaged to obtain a smaller estimate than 20m. For

the second half, when the targets are separated, the results are

better.

Furthermore, the results show that there is little need for a

specific model for target spawning. As soon as the two targets

are slightly separated, the partitioning algorithm (Distance

Partition) automatically starts to generate a partition that suits

the spawning event. This partition then dominates the other

partitions, which can be seen e.g. in terms of the partition

weights ωp. This process is evident also from the cardinality

estimates, which are corrected shortly after the targets sepa-

rate.

E. Closely spaced targets

In the fourth scenario, the targets move closer and then

move in parallel, both in straight lines and through a curve,

before separating again, see Figure 3d. Estimating cardinality

correctly becomes increasingly difficult as multiple targets

move close to each other. Early tests showed that Distance

Partition with Sub-Partition was insufficient to handle some

cases of spatially close extended targets modeled as random

matrices. To improve performance, Prediction Partition and

EM Partition was implemented.

To test the PHD-filters capability of tracking multiple closely

spaced targets, the scenarios in Figure 3b and Figure 3d

were simulated when the targets’ extents were separated by

a distance d. The tracks in Figure 3b were simulated for

separating distances d = 0, 0.5, 1, . . . , 5 [m], and the mean

sum of weights is shown in Figure 7a. When rounded to the

nearest integer there is no cardinality error at any distance d,

however estimating cardinality correctly becomes increasingly

difficult at closer distances, which is shown by the lower

mean value for d < 2.5m. Without Prediction Partition
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Fig. 3. True target tracks used in simulations. (a) Crossing tracks. (b) Parallel tracks. (c) Separating tracks. (d) Turning tracks.
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Fig. 4. (a) Mean OSPA (solid line) ± one standard deviation (dashed lines). (b) Cardinality estimate, taken as the sum of weights (black), compared to true
cardinality (gray). (c) Estimates of the major and minor axes, Ai and ai, respectively. Mean estimates (black) compared to true value (gray).
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Fig. 5. (a) Mean OSPA (solid line) ± one standard deviation (dashed lines). (b) Cardinality estimate, taken as the sum of weights (black), compared to true
cardinality (gray). (c) Estimates of the major and minor axes, Ai and ai, respectively. Mean estimates (black) compared to true value (gray).
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Fig. 6. (a) Mean OSPA (solid line) ± one standard deviation (dashed lines). (b) Cardinality estimate, taken as the sum of weights (black), compared to true
cardinality (gray). (c) Estimates of the major and minor axes, Ai and ai, respectively. Mean estimates (black) compared to true value (gray).

and EM Partition, simulations show that the cardinality is

underestimated for distances d < 7m.

The tracks in Figure 3d contain a turn, making prediction

of the extended target estimates harder, because the dynamic

motion model is constant velocity and predicts target motion

in a straight line. This scenario was simulated at two differ-

ent speeds, 125m/s and 62.5m/s. The separating distances

were d = 0, 0.5, 1, . . . , 25 [m] for the faster speed and

d = 0, 0.5, 1, . . . , 5 [m] for the slower speed.

At the higher speed, target prediction is more difficult, es-

pecially during the turn, and subsequently Prediction Partition

and EM Partition fails to compute informative partitions more

often. This is a common cause of cardinality error. However, at

the lower speed, the true target motion per time step is smaller,

and the linear constant velocity prediction is good enough for

Prediction Partition and EM Partition to compute informative

partitions. The mean sum of weights at both speeds is shown

in Figure 7b and Figure 7c, respectively. The filter can handle
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the maneuver, i.e. there is no cardinality error when the mean

sum of weights is rounded to the nearest integer, when the

targets are separated by d ≥ 21m at the higher speed. At the

lower speed only d ≥ 2m separation is needed.

To conclude, the results show that when a constant velocity

motion model is used, the presented extended target tracking

filter can handle all scenarios except the ones where multiple

spatially close targets are maneuvering quickly. In scenarios

where the target maneuvers are dominant, the use of interact-

ing multiple models (IMM) [30] for motion prediction seems

to be a reasonable solution, e.g. this was done in Section V of

[21]. The presented tracking filter can easily be generalized to

use an IMM filter, however this was considered to be beyond

the scope of this paper.

VII. EXPERIMENT RESULTS

This section presents results from experiments based on

data from a laser range sensor. Measurements were collected

using a SICK LMS laser range sensor, which measures range

every 0.5◦ over a 180◦ surveillance area. Ranges shorter than

13m were converted to (x, y) measurements using a polar to

Cartesian transformation. The two data sets contain 411 and

400 laser range sweeps, respectively. Human targets entered

the surveillance area at different times, and were measured by

the sensor at waist level. There is no ground truth available

for the data, however by examining the measurements the true

cardinality can be observed.

These two data sets have previously been used in [17],

where only the kinematical part of the target state is tracked.

A comparison of the results for the presented GIW-PHD filter

to those for the ET-GM-PHD filter from [17] is performed.

A. Target tracking setup

The sensor’s sampling time is Ts = 0.2s. The motion model

parameters are set to θ = 1s, Σ = 2m/s2 and τ = 5s. For

the sensor used, new targets will appear somewhere along the

edge of the semi circular surveillance area. Therefore, the birth

PHD has Jb,k = 20 components located along the edge of the

surveillance area, the intensity Db
k ( · ) in the (x, y) dimension

is shown in Figure 8. The birth components’ weights are set

to w
(j)
b,k = 0.1/Jb,k and the inverse Wishart parameters are set

to ν
(j)
b,k = 7 and V

(j)
b,k = diag

(
[0.252 0.12]

)
.

For the sensor used here, the expected number of target

generated measurements γ varies rapidly with the distance

between the target and the sensor. We have found that the

correction weight update (34) is not sensitive to setting the

corresponding filter parameter constant, however Sub-Partition

needs a reasonable estimate of γ in order to compute a

maximum likelihood estimate K of the number of targets

that generated the measurements in a cell W . To facilitate

this, in the Sub-Partition algorithm we have estimated γ by

assuming that a 50cm wide target is located at the particular

cell’s centroid z̄Wk . A width of 50cm roughly corresponds

to the size of an average person, who is facing the sensor.

This simple heuristic works well for the particular experiments

presented here, however it remains within future work to

design a method which does not rely on a priori information
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Fig. 8. Birth PHD used in experiments. The dark areas are locations which
the birth PHD models as likely locations for new targets to appear. The edge
of the surveillance area is shown as a dashed white line.

of the tracking scenario. A study of the extended target PHD

filter’s performance for incorrect values of the filter parameter

corresponding to γ is given in [17].

B. Experiment with close targets

This data set contains 411 laser range scans. Two humans

walked through the surveillance area, repeatedly moving to-

wards and away from each other, both in the same direction

and in the opposite direction. Thus, the data set contains

situations where the targets are spatially close for both longer

and shorter periods of time. The positions of the extracted

targets are shown in Figure 9a, the number of extracted targets

are compared to the ground truth in Figure 9b and the sum

of weights is shown in Figure 9c. There is no cardinality

error for the entire length of the experiment, however at time

164 there is an unexpected increase in the sum of weights

to 2.4. The sum of weights increases because the target

generated measurements for one of the targets, at that time

step, resemble two small clusters rather than one larger cluster.

The GIW-PHD filter interprets this as an increased likelihood

of an additional target being present. These results are a small

improvement over the results in [17], where the ET-GM-PHD

filter underestimates the cardinality for three consecutive time

steps when the targets are close and moving in the same

direction.

C. Experiment with occlusion

This data set contains 400 laser range scans. Four humans

walked through the surveillance area, however at most three

humans were present at any one time. The first target stands

still at the position (x, y) ≈ (0.4, 6) for most of the experiment.

The second target walks behind the first target, causing the

second target to be fully occluded (i.e. the second target is

not measured), and also walks in front of the first target,

causing the first target to be partially occluded (i.e. only parts

of the first target are measured). With a constant probability

of detection, the occlusion would cause target loss. To handle

the occlusion without target loss, a state dependent probability

of detection is implemented. The variable probability is based

on a simple understanding of the sensor – objects that are

located behind other objects cannot be measured by the sensor,

therefore the probability of detection behind a target should
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Fig. 7. Mean sum of weights for closely spaced targets, at various separating distance. The true cardinality is 2 for all three plots. (a) Tracks in Figure 3b,
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Fig. 9. Results from experiments, the top row shows results for the experiment with close targets (Section VII-B), the bottom row shows results for the
experiment with occlusion (Section VII-C). (a) and (d) show the positions of the extracted targets’ kinematical states. Light gray points corresponds to earlier
time steps, dark gray corresponds to later time steps. (b) and (e) show the number of extracted targets in black, compared to the true cardinality in gray. (c)
and (f) show the sum of weights over time for the two experiments.

be (close to) zero. The details of the variable probability of

detection are given in Appendix B.

The positions of the extracted targets are shown in Fig-

ure 9d, the number of extracted targets are compared to the

ground truth in Figure 9e and the sum of weights is shown in

Figure 9f. At time 345, the time step when the fourth target

enters the surveillance area, the cardinality is underestimated

by 1. At this time step, the fourth target only generates one

measurement, which the GIW-PHD filter interprets as clutter.

These results are a considerable improvement over the

results in [17], where the ET-GM-PHD filter underestimated the

cardinality in two situations where two targets are spatially

close, such that one target is partially occluded. In [17],

a variable probability of detection was also used. However

with the target centroid occluded, the probability of detection

of the partially occluded target is incorrectly set close to

zero, causing cardinality error. With an estimate of the target

extension, the partially occluded target can still be found to

be detectable using the variable probability of detection in

Appendix B. Thus, the experiment shows that for the data

used, the GIW-PHD filter can handle occlusion and spatially

close targets simultaneously. The experiment also shows the

benefit of estimating both the kinematical and extent states,

compared to only estimating the kinematical state.

D. Discussion

The two experiments above are not an exhaustive evaluation

of the GIW-PHD filter, but they serve as a proof of concept and

a potential application (e.g. person tracking for mobile robots).

The comparison to the results in [17], in which the target extent

is not explicitly estimated, support the intuitive hypothesis

that estimating the size of the extended targets improves the

tracking performance. Initial steps have been taken toward

including extension parameters in the target state in the ET-

GM-PHD filter [7]. Thus, more experiments that compare the

ET-GM-PHD filter and the GIW-PHD filter are needed, e.g. for

data that contains more clutter than typical laser data does.

VIII. CONCLUSIONS AND FUTURE WORK

This paper presented a PHD filter for multiple extended

target tracking, in the presence of clutter and missed detection.

The target extensions are modeled as random matrices [19],

and a suitable likelihood function is derived. The PHD is
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approximated using Gaussian inverse Wishart distributions,

and the assumptions necessary to obtain a computationally

tractable PHD filter are presented. Two methods for measure-

ment set partitioning are suggested to be added to the methods

presented in [17]. The first method is based on the predicted

Gaussian inverse Wishart PHD components and the second

method is based on the well known EM algorithm. Adding

the two partitioning methods improves tracking of multiple

targets of different sizes when they are spatially close. A sim-

ulation study confirms that the presented PHD filter can handle

spatially close targets, with the exception of when the targets

maneuver quickly. It is further shown that target spawning can

be handled without the use of a specific spawning model. The

spawning is instead implicitly handled by the measurement

partitioning. A potential application, person tracking using

laser range sensors, is presented. Two experiments show the

benefit of estimating the size of the target extents, compared

to only tracking the kinematical states of the target centroid,

as is performed in [17].

The presented target tracking filter estimates the target

extent as a random matrix, giving an elliptical extended target

shape. Alternatively, the target ellipse could be explicitly

parametrized, included in the state vector, and estimated with

the kinematical states. Such an example is given in [7], where

elliptical shapes are tracked using a laser range sensor and

a ET-GM-PHD filter. Ellipse tracking is also performed using

random hypersurface models in [5], a comparison between

random matrices and random hypersurface models for the

single target case is given in [23]. A comparison of the

presented GIW-PHD filter, and elliptic random hypersurface

models using the ET-GM-PHD filter, could be interesting for

the multiple target case.

The importance of measurement set partitioning was high-

lighted in the paper, and the case of close targets maneuvering

quickly was shown to be difficult to handle. This could

possibly be improved through the use of additional partitioning

methods, or via modeling different type of motions using an

IMM type filter. A prediction model that allows transformations

of the extension, e.g. rotations, would possibly improve the

filter performance.

Target spawning is not explicitly modeled in this work,

however, it could be handled implicitly via the partitioning

methods used. The targets must be separated sufficiently for

the spawning to be detected, and the spawning event is

therefore detected with a small time delay. It is not obvious

how a Gaussian inverse Wishart distribution can be split into

two Gaussian inverse Wishart distributions, however devising

such a method could possibly improve performance for target

spawning events.

A heuristic for determining the parameter γ in the Sub-

Partition algorithm was suggested. A method which does

not rely on either assumptions or a priori knowledge of

the tracking scenario would be useful in the general case.

Finally, an improved method for merging of GIW components

is needed.

APPENDIX A

DERIVATION OF THE CORRECTION

Under the measurement model (5), the likelihood of n
measurements zj is

n∏

j=1

N (zj ; (H ⊗ Id)x, X) =
n∏

j=1

N
(

zj ; H̃x, X
)

=(2π)
−nd/2 |X|−n/2

× etr



−
1

2





n∑

j=1

(

zj − H̃x
)(

zj − H̃x
)T



X−1



 ,

(40)

where etr ( · ) = exp (Tr ( · )) is exponential trace. Define

the centroid measurement as z̄ , 1
n

∑n
j=1 zj and the scatter

matrix as Z ,
∑n

j=1 (zj − z̄) (zj − z̄)
T

, and rewrite the

summation as

n∑

j=1

(

zj − H̃x
)(

zj − H̃x
)T

= Z + n
(

z̄− H̃x
)(

z̄− H̃x
)T

.

(41)

Inserting (41) into (40) gives

n∏

j=1

N
(

zj ; H̃x, X
)

(42a)

=(2π)
−nd/2 |X|−n/2etr

(

−
1

2
ZX−1

)

× etr

(

−
1

2

(

z̄− H̃x
)(

z̄− H̃x
)T
(
X

n

)−1
)

(42b)

=(2π)
−(n−1)d/2 |X|−(n−1)/2n−d/2

× etr

(

−
1

2
ZX−1

)

N

(

z̄ ; H̃x,
X

n

)

(42c)

=LauxN

(

z̄ ; H̃x,
X

n

)

. (42d)

Now, let the predicted target distribution be

N (x ; m,P ⊗X) IW (X ; ν, V ) . (43)

The product of the measurement likelihood (42) and the

predicted distribution (43) is

LauxN

(

z̄ ; H̃x,
X

n

)

N (x ; m,P ⊗X) IW (X ; ν, V )

=N (x ; m+, P+ ⊗X)N
(

z̄ ; H̃m, SX
)

IW (X ; ν, V )Laux

(44)

where we have

m+ = m+ (K ⊗ Id)
(

z̄− H̃m
)

, (45a)

P+ = P −KSKT. (45b)

with innovation factor S = HPHT + 1/n and gain matrix

K = PHTS−1.

This result is easy to derive using the product formula for

Gaussians, and using some basic properties of the Kronecker
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product. We thus have the corrected Gaussian distribution with

mean and covariance (45), multiplied with

N
(

z̄ ; H̃m, SX
)

IW (X ; ν, V )Laux (46a)

=(2π)
−d/2 |SX|−1/2 |V |ν/2 |X|−(ν+d+1)/2

2νd/2Γd (ν/2)

× etr

(

−
1

2

(

z̄− H̃m
)(

z̄− H̃m
)T

(SX)
−1

)

× etr

(

−
1

2
V X−1

)

etr

(

−
1

2
ZX−1

)

× (2π)
−(n−1)d/2 |X|−(n−1)/2n−d/2 (46b)

=(2π)
−nd/2

(nS)
−d/2 |V |ν/2

2νd/2Γd (ν/2)

×
2(ν+n)d/2Γd ((ν + n)/2)

|V +N + Z|(ν+n)/2

×
|V +N + Z|(ν+n)/2 |X|−(ν+n+d+1)/2

2(ν+n)d/2Γd ((ν + n)/2)

× etr

(

−
1

2
(V +N + Z)X−1

)

(46c)

=(πnnS)
−d/2 |V |ν/2

|V +N + Z|(ν+n)/2

Γd ((ν + n)/2)

Γd (ν/2)

× IW (X ; ν+, V+) (46d)

=L × IW (X ; ν+, V+) (46e)

where we have N = S−1
(

z̄− H̃m
)(

z̄− H̃m
)T

and

ν+ = ν + n, (47a)

V+ = V +N + Z, (47b)

and the likelihood function L is defined as

L = (πnnS)
−d/2 |V |ν/2

|V+|
ν+/2

Γd (ν+/2)

Γd (ν/2)
. (48)

The likelihood function can be shown to be proportional to a

generalized matrix variate beta type II distribution [31]. We

have thus shown how the likelihood of n measurements zj
multiplied with a predicted GIW distribution can be rewritten

as a corrected GIW distribution multiplied with a likelihood

function.

APPENDIX B

VARIABLE PROBABILITY OF DETECTION FOR THE LASER

RANGE SENSOR

The variable probability of detection used here is similar to

the one presented in [17], however it relies on less assump-

tions, and instead utilizes the estimated target extensions. The

idea is to decrease the probability of detection behind (i.e. at

larger range from the sensor) each GIW component. In doing

so, the function considers the component weight, the size of

the estimated extension and the uncertainty in bearing (i.e. the

polar angle from the sensor to the component).

For a given point (x, y) in the surveillance area, the proba-

bility of detection is computed as

pD (x, y) = max (pD,min , pD,0 − p̃D) , (49a)

p̃D =
∑

i:r>r(i)

w(i) max (G1,G2,A) , (49b)

Gg = exp

(

−

(
ϕ− ϕ(i) + (−1)g2σϕ,e

)2

0.01σϕ,p

)

, (49c)

A =
∣
∣
∣ϕ− ϕ(i)

∣
∣
∣ < 2σϕ,e, (49d)

where

• pD,min is the minimum probability of detection value

allowed;

• pD,0 is the nominal probability of detection of targets

which are not occluded;

• r =
√

x2 + y2 and ϕ = tan−1 (y/x) is the range and

bearing to the point (x, y);
• w(i), r(i) and ϕ(i) is the weight, range and bearing to the

i:th GIW component’s kinematical state;

• σϕ,e is the cross range size of the i:th component,

computed by Cartesian to polar conversion of the extent

matrix estimated as in (15);

• σϕ,p is the bearing standard deviation of the i:th compo-

nents kinematical state, computed by Cartesian to polar

conversion of the position uncertainty estimated as in

(14).

To obtain the probability of detection for a GIW component

ξ
(i)
k|k−1, the ellipsoid corresponding to two standard deviations

of the estimated extent (15) is discretized into points (x, y),
and for each discrete point along the extent a probability of

detection is computed. The probability of detection for the

GIW component pD

(

ξ
(i)
k|k−1

)

is then given as the maximum

of the probabilities computed along the discretized extent. In

comparison, the variable probability of detection is computed

only for the kinematical state position in [17]. Taking the

maximum probability along the extent is what enables the

GIW-PHD filter to handle partial target occlusion.

ACKNOWLEDGMENT

The authors would like to thank the Linnaeus research

environment CADICS and the frame project grant Extended

Target Tracking (621-2010-4301), both funded by the Swedish

Research Council, as well as the project Collaborative Un-

manned Aircraft Systems (CUAS), funded by the Swedish

Foundation for Strategic Research (SSF), for financial support.

REFERENCES

[1] Y. Bar-Shalom and T. E. Fortmann, Tracking and data association,
ser. Mathematics in Science and Engineering. San Diego, CA, USA:
Academic Press Professional, Inc., 1987, vol. 179.

[2] K. Gilholm and D. Salmond, “Spatial distribution model for tracking
extended objects,” IEE Proceedings Radar, Sonar and Navigation, vol.
152, no. 5, pp. 364–371, Oct. 2005.

[3] K. Gilholm, S. Godsill, S. Maskell, and D. Salmond, “Poisson models
for extended target and group tracking,” in Proceedings of Signal and

Data Processing of Small Targets, vol. 5913. San Diego, CA, USA:
SPIE, Aug. 2005, pp. 230–241.



15

[4] M. Baum and U. D. Hanebeck, “Random hypersurface models for
extended object tracking,” in IEEE International Symposium on Signal

Processing and Information Technology (ISSPIT), Ajman, United Arab
Emirates, Dec. 2009, pp. 178–183.

[5] M. Baum, B. Noack, and U. D. Hanebeck, “Extended Object and Group
Tracking with Elliptic Random Hypersurface Models,” in Proceedings

of the International Conference on Information Fusion, Edinburgh, UK,
Jul. 2010.

[6] D. J. Salmond and M. C. Parr, “Track maintenance using measurements
of target extent,” IEE Proceedings - Radar, Sonar and Navigation, vol.
150, no. 6, pp. 389–395, Dec. 2003.

[7] K. Granström, C. Lundquist, and U. Orguner, “Tracking Rectangular and
Elliptical Extended Targets Using Laser Measurements,” in Proceedings

of the International Conference on Information Fusion, Chicago, IL,
USA, Jul. 2011, pp. 592–599.

[8] C. Lundquist, K. Granström, and U. Orguner, “Estimating the Shape
of Targets with a PHD Filter,” in Proceedings of the International

Conference on Information Fusion, Chicago, IL, USA, Jul. 2011, pp.
49–56.

[9] M. Baum and U. D. Hanebeck, “Shape Tracking of Extended Objects
and Group Targets with Star-Convex RHMs,” in Proceedings of the

International Conference on Information Fusion, Chicago, IL, USA, Jul.
2011, pp. 338–345.

[10] H. Zhu, C. Han, and C. Li, “An extended target tracking method with
random finite set observations,” in Proceedings of the International

Conference on Information Fusion, Chicago, IL, USA, Jul. 2011, pp.
73–78.

[11] R. Mahler, Statistical Multisource-Multitarget Information Fusion. Nor-
wood, MA, USA: Artech House, 2007.

[12] ——, “Multitarget Bayes filtering via first-order multi target moments,”
IEEE Transactions on Aerospace and Electronic Systems, vol. 39, no. 4,
pp. 1152–1178, Oct. 2003.

[13] B.-N. Vo and W.-K. Ma, “The Gaussian mixture probability hypothesis
density filter,” IEEE Transactions on Signal Processing, vol. 54, no. 11,
pp. 4091–4104, Nov. 2006.

[14] R. Mahler, “PHD filters for nonstandard targets, I: Extended targets,”
in Proceedings of the International Conference on Information Fusion,
Seattle, WA, USA, Jul. 2009, pp. 915–921.

[15] D. Clark and S. Godsill, “Group target tracking with the gaussian
mixture probability hypothesis density filter,” in International Confer-

ence on Intelligent Sensors, Sensor Networks and Information (ISSNIP),
Melbourne, Australia, Dec. 2007, pp. 149–154.

[16] B.-T. Vo, B.-N. Vo, and A. Cantoni, “Bayesian filtering with random
finite set observations,” IEEE Transactions on Signal Processing, vol. 56,
no. 4, pp. 1313–1326, Apr. 2008.

[17] K. Granström, C. Lundquist, and U. Orguner, “Extended Target Tracking
using a Gaussian Mixture PHD filter,” IEEE Transactions on Aerospace

and Electronic Systems.
[18] ——, “A Gaussian mixture PHD filter for extended target tracking,”

in Proceedings of the International Conference on Information Fusion,
Edinburgh, UK, Jul. 2010.

[19] J. W. Koch, “Bayesian approach to extended object and cluster tracking
using random matrices,” IEEE Transactions on Aerospace and Electronic

Systems, vol. 44, no. 3, pp. 1042–1059, Jul. 2008.
[20] J. W. Koch and M. Feldmann, “Cluster tracking under kinematical

constraints using random matrices,” Robotics and Autonomous Systems,
vol. 57, no. 3, pp. 296–309, Mar. 2009.

[21] M. Feldmann, D. Fränken, and J. W. Koch, “Tracking of extended
objects and group targets using random matrices,” IEEE Transactions

on Signal Processing, vol. 59, no. 4, pp. 1409–1420, Apr. 2011.
[22] W. Wieneke and J. W. Koch, “Probabilistic tracking of multiple extended

targets using random matrices,” in Proceedings of SPIE Signal and Data

Processing of Small Targets, Orlando, FL, USA, Apr. 2010.
[23] M. Baum, M. Feldmann, D. Fränken, U. D. Hanebeck, and J. W.

Koch, “Extended object and group tracking: A comparison of random
matrices and random hypersurface models,” in Proceedings of the IEEE

ISIF Workshop on Sensor Data Fusion: Trends, Solutions, Applications

(SDF), Leipzig, Germany, Oct. 2010.
[24] D. Salmond and N. Gordon, “Group and extended object tracking,” in

IEE Colloquium on Target Tracking: Algorithms and Applications, 1999,
pp. 16/1–16/4.

[25] M. Ulmke, O. Erdinc, and P. Willett, “Gaussian Mixture Cardinalized
PHD Filter for Ground Moving Target Tracking,” in Proceedings of the

International Conference on Information Fusion, Quebec City, Canada,
Jul. 2007, pp. 1–8.

[26] K. Granström and U. Orguner, “Implementation of the GIW-PHD filter,”
Department of Electrical Engineering, Linköping University, SE-581 83
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