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Abstract

A simple constitutive model for viscoelastic suspensions is discussed in this paper. The model can be used
to predict the rheological properties (relative viscosity and all stresses) for viscoelastic suspensions in shear
and elongational flow, and the constitutive equations combine a “viscoelastic” behaviour component and a
“Newtonian” behaviour component. As expected, the model gives a prediction of positive first normal stress
difference and negative second normal stress difference; the dimensionless first normal stress difference
strongly depends on the shear rate and decreases with the volume fraction of solid phase, but the dimen-
sionless second normal stress difference (in magnitude) is nearly independent of the shear rate and increases
with the volume fraction. The relative viscosities and all the stresses have been tested against available
experimental measurements.
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1. Suspension rheology

There are many experiments and many theories of sus-

pension and filled material behaviour; see for example

reviews by Metzner (1985) and Barnes (2003). However,

most of the experimental work is concentrated on sus-

pension viscosity behaviour and there is comparatively lit-

tle on normal stresses. In addition, theoretical work is

usually confined to low shear rates. However, recently

there have been proposals to use suspension theories (Tan-

ner, 2002; Tanner and Qi, 2005) for studies of flow of crys-

tallizing polymers and a general constitutive model of

suspensions useful for such purposes seems to be lacking.

Here we present a phenomenological model that should be

useful for these applications.

To study the constitutive relation of suspensions, several

models have been proposed to describe the behaviour of

concentrated suspensions in the recent years. Constitutive

equations have been given by using these models, for

example, a diffusive-flux model, which is developed in the

model proposed by Leighton and Acrivos (1987), was

given by Philips et al. (1992); a balance model, which is

phenomenologically similar to the model proposed by Jen-

kins and McTigue (1992) (there is no diffusive equation),

has been made by Nott and Brady (1994); and lubrication

models based on the lubrication approximation are given

by Phan-Thien (1995) and Phan-Thien et al. (1999). How-

ever, most of these models can be only used to describe the

behaviour for high concentrated suspensions with a New-

tonian matrix, but can not give the correct behaviour for

viscoelastic suspensions. For instance, the second normal

stress difference for viscoelastic suspensions is negative in

experimental measurements, but the lubrication models

give a positive second normal stress difference.

Therefore, the aim of this work is to find a model to

describe the behaviour for viscoelastic suspensions and

some comparisons have been made between the calculated

results by using the model with experimental measure-

ments. In future work, the model may be useful for

describing polymer crystallization in shear and elonga-

tional flows. 

2. Experimental data

We will concentrate to begin on suspensions of non-col-

loidal spherical particles, focusing on normal stress and

elongational effects.

It is clear that the simple rule for increasing viscosity (η)

with volume concentration of particles (ϕ) advocated by

Krieger (1972) and Metzner (1985) is generally adequate.

Krieger (1972) and Metzner (1985) proposed that the rel-

ative viscosity (µr) could be described by

(1)

here ηo is the (Newtonian) solvent viscosity, η is the sus-

pension viscosity, ϕ is the volume fraction of the solid
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phase and A is a constant (maximum value of allowable

volume fraction). For smooth spheres A~0.6, and for rough

spheres and non-spherical particles A can be adjusted to

lower values (Tanner, 2000). While more complex forms

than (1) are available, for example Frankel and Acrivos

(1967) and Zarraga et al. (2000; 2001), they present few

advantages; and so we shall use Eq. (1) here.

Some non-Newtonian effects have been seen, even in

suspensions with Newtonian solvents. Zarraga et al. (2000;

2001) suggested a mild power-law behaviour of the shear

stress (exponent n ≈ 0.8 − 1.0) showing shear-thinning,

even with a Newtonian solvent, while various writers have

seen not only shear-thinning but also shear-thickening at

high shear rates (for example, Nam et al., 2004). We shall

mainly be concerned with shear-thinning here. Zarraga et

al. (2000; 2001) reported normal stresses measurements

(N1 and N2) in Newtonian and viscoelastic matrix sus-

pensions. Mall-Gleissle et al. (2002) also made such nor-

mal stress measurements. The Mall-Gleissle et al. (2002)

paper covers a range of volume fraction ϕ = 0 − 0.25,

while Zarraga et al. (1999; 2001) used ϕ = 0.3 − 0.55. For

a Newtonian solvent Zarraga et al. (2000) found

(2)

(3)

where τ is the shear stress, N1 and N2 are the first and sec-

ond normal stress differences respectively. Also they found

experimentally that the parameter α is given by, over the

narrow range ϕ = 0.3 − 0.53,

(4)

Thus the relative magnitude of (N1/N2) is completely dif-

ferent from the usual case for polymeric fluids, where N1

>> |N2 |, and N1 is positive. For a second paper Zarraga et

al. (2001) used a Boger-type (PAA + corn syrup) fluid as

matrix, so that the matrix viscosity was nearly constant and

N2 (for the matrix) was very small. The range of ϕ used

was 0.3 − 0.53. Not much shear-thinning was observed, but

N1 was positive, and they wrote

(5)

where ψ1 and β are constants, and

(6)

where δ has the same value as in the Newtonian case,

approximately −1.17ϕ3 e2.34ϕ. In (5) and (6)  and 

are the values of N1 and N2 for the matrix material alone.

Mall-Gleissle et al. (2002) used silicone oils as matrices

and investigated the range ϕ = 0.05 − 0.25. Their results

show the usual viscosity increase with ϕ and also a positive

N1 and a negative N2. They found that N1 and N2 correlated

with a power of the shear stress, with exponents in the

range of around 1.63 − 1.66 (±0.66) for N1 and 1.7 ± 0.08

for N2, so that one may take a power of about 1.7 for both

functions. There is, however, a considerable variation in

the relative levels of N1 and N2; the investigators found that

|N2 |/N1, was only a function of ϕ.

In summary, Mall-Gleissle et al. (2002), following

Zarraga et al. (2001) suggested that, to a reasonable

approximation

(7)

(8)

where the suffixes m, s refer to the matrix and suspension

respectively, and N1 and N2 are multiples of τ
1.7; N1,s and

N2,s resemble Equation (2) and (3).

3. A simple phenomenological model

Many suspension models, of various degrees of com-

plexity, have been proposed, but many of them do not

accurately reflect the behaviour discussed above. Here, we

will simply take the suggestion of Zarraga et al. (2001) and

Mall-Gleissle et al. (2002) and propose the simple addition

of two kinds of stress term:

(9)

where the suffix N denotes “Newtonian” behaviour, and v

denotes ‘viscoelastic’ behaviour; the τ is the extra-stress

term; the complete stress . For τN we assume a

Reiner-Rivlin (Tanner, 2000) model:

(10)

where d is the rate of deformation tensor and the viscosity

ηN is given by

(11)

where µr is given by Eq. (1) above, and  is a suitable

(shear-thinning) function of where the shear rate is

now defined as 

(12)

Although the Reiner-Rivlin model does not describe poly-

mer rheology properly, it appears to be useful for the sus-

pensions studied here. In the case when τv is negligible, τN
should fall back to something like equations (2) to (3) in

simple shearing. In this case it is known that this model

shows, for the shear stress τ,

and it gives the results

N1

ατ
------ 0.15– 0.05±=

N2

ατ
------ 0.54– 0.03±=

α 2.17φ
3
e
2.34φ
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τ
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If we choose B appropriately, we can find

(13)

The response of this model gives the correct τ and N2, and

also N1 = 0, which does not agree with Eq. (2). The factor

 in the denominator leaves an approximately linear law

for stresses as a function of , as one would expect with a

Newtonian matrix. If we now add on a viscoelastic com-

ponent τv we can introduce a positive N1 while still retain-

ing a large negative N2. A wide set of choices is possible

for τv; we will use a single-mode PTT model of the form

(the exact form is not very important)

(14)

where λ is a time constant for a fixed value of ϕ, ∆/∆t is

the upper convected time derivative (Tanner, 2000), ηp is a

(possibly variable) viscosity, and F is a function of trτv. For

simple shearing, (14) gives the result (Tanner, 2000)

(15)

(16)

where τv is the shear stress in the matrix. From (15) and

(16) we find

(17)

Hence the complete response, following (9), is

 

4. Computed results

The model discussed above has been used to fit the rheo-

logical properties of some viscoelastic matrix suspensions.

Here we use this model to compute the viscosity and

stresses (N1, N2 and τ) for viscoelastic suspensions of non-

colloidal spherical particles in shear and elongational flow.

These computed results are shown against experimental

measurements given by Mall-Gleissle et al. (2002) for

shear flow at lower volume fraction (ϕ = 0 − 0.25), Zarraga

et al. (2001) for shear flow at higher volume fraction

(ϕ = 0.3 − 0.55) and Le Meins et al. (2003) for elonga-

tional flow. The matrix properties adopted in the calcu-

lations are taken to be the same as those used in the

corresponding experiment.

4.1. Relative viscosity
Relative viscosities have been calculated for the sus-

pensions used in experiments by Zarraga et al. (2001) in

shear flow and Le Meins et al. (2003) in elongational flow.

The relative viscosity of a suspension in shear flow is

defined as

(18)

where τ is the shear stress,  is the shear rate and η0 is the

viscosity of the matrix (at zero shear rate); and the relative

viscosity in elongational flow is defined as

(19)

in which σ11 and σ22 are the normal stresses,  is the strain

rate and ηs is the viscosity of the solvent. It is clear, for vis-

coelastic suspensions, that the relaxation time λ should no

longer be a constant, but a function of the volume fraction

ϕ same as the coefficient α* (Eq. 13). It is a constant only

when the volume fraction is a constant. For the suspension

used by Zarraga et al. (2001), we found suitable values of

λ and α* have the form in terms of the volume fraction ϕ as

(20)

In shear flow, the calculated relative viscosity depen-

dence on the volume fraction ϕ is shown in Fig. 1 and

compared to the experimental measurements given by

Zarraga et al. (2001). Clearly, this fit is adequate. In the

calculations for this set of data, the constant in Eq. (1)

A = 0.58 and the parameter in Eq. (14) F = 1 (PTT model

parameter ε = 0), are adopted.

For suspensions used in elongational flow by Le Meins

et al. (2003), in which the diameter of the particle D =

N1 0= , N2 B– γ·
2

=

τN 2η0 µr 1–( ) d
α

*
d
2
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----------–⎝ ⎠
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Fig. 1. Relative viscosities dependence on volume fraction at

. ─ calculated results; • and - - - Zarraga’s

data.

γ· 10 s
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1.4 µm, we found that a step function could be used for the

coefficient α*. The relaxation time λ and α* for these sus-

pensions are given by

(21)

In these calculations, A = 0.65 (constant) and PTT model

parameter ε = 1.0 were used, and F is therefore given by

(22)

Relative elongational viscosities as a function of volume

fraction are plotted in Fig. 2 at various strain rates. Close

agreement with the experimental measurements can be

observed at a strain rate . These results show that

the relative elongational viscosity not only increases as the

volume fraction increases, but increases as the strain rate

increases as well. Fig. 3 shows that relative elongational

viscosities versus Weissenberg number at different volume

fractions.

4.2. First normal stress difference, N1
As we discussed in the previous section, this model

always gives a positive first normal stress difference. At

higher volume fractions of the solid phase (ϕ = 0.3 − 0.5),

the dimensionless first normal stress differences (made

dimensionless by dividing the shear stress τ) have been

calculated for the suspensions used in the experiment by

Zarraga et al. (2001). The relaxation time λ and the param-

eter α* of these suspensions are given by Eq. (20). The cal-

culated result is plotted as a function of shear rate and

shown in Fig. 4. At lower volume fractions (ϕ = 0 − 0.25),

the first normal stress differences have been calculated for

suspensions used in the experiment by Mall-Gleissle et al.

(2002). For these suspensions (Silicone-oil DOW3105 used

as the matrix), we found that the relaxation time λ and the

parameter α* as a function of the volume fraction have the

form as

(23)

Calculated results of the first normal stress differences

dependence on the shear stress are shown in Fig. 5, Fig. 6

shows the dimensionless first normal stress differences as

a function of shear rate for these suspensions.

As shown in Fig. 4 and Fig. 5, calculated results of the

first normal stress difference are a reasonably good fit to

the experimental measurements given by Zarraga et al.

λ 7.9 44800ϕ
2
ϕ 0.05–( )4+=

α
* 0.25     ϕ 0.13≤( )

0.29     ϕ 0.13>( )⎩
⎨


=

F e

λ σ
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σ
22

σ
33

+ +( )

η
0

-------------------------------------------
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λ 0.09 36ϕ ϕ 0.15–( )2+=

α
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0.29     ϕ 0.13>( )⎩
⎨


=

Fig. 2. Relative elongational viscosities (REV) as a function of

the volume fraction ϕ. • experimental measurements (

= 0.025 D = 1.4 µm); curves represent the computed results.
ε·

Fig. 3. Relative elongational viscosities (REV) as a function of

Weissenberg number.

Fig. 4. Dimensionless first normal stress difference (FNSD)

dependence on shear rate for suspensions at various vol-

ume fractions. Scatter plots and dash-dot lines are

Zarraga’s data; solid lines are calculated results.
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(2001) and Mall-Gleissle et al. (2002). Clearly, the model

shows that the dimensionless first normal stress difference

decreases as the volume fraction of the solid phase

increases. This behaviour can be seen in Fig. 4 and Fig. 6.

This is consistent with experimental measurements (Zarraga

et al., 2001; Mall-Gleissle et al., 2002), and also the obser-

vations of Ohl and Gleissle (1993) for suspensions of

crushed limestone in a viscoelastic shear-thinning fluid.

4.3. Second normal stress difference, N2
Similar to the result obtained in experiments, the model

always gives a negative second normal stress difference.

The calculated result for the dimensionless second normal

stress difference at volume fraction (ϕ = 0.3 − 0.55) is plot-

ted as a function of shear rate and shown in Fig. 7, and the

second normal stress difference dependence on the shear

stress at the volume fractions (ϕ = 0 − 0.25) is shown in

Fig. 8. The calculated results are tested against experi-

mental measurements given by Zarraga et al. (2001) and

Mall-Gleissle et al. (2002) and show reasonably good fits.

Fig. 9 shows that the dimensionless second normal stress

difference versus the shear rate for suspensions used by

Mall-Gleissle et al. (2002) and Fig. 10 shows the average

of dimensionless second normal stress differences over the

shear rate range in the calculations as a function of the vol-

ume fraction for the suspensions used by Zarraga et al.

(2001).

As shown in Fig. 7 and Fig. 9, the behaviour of dimen-

sionless second normal stress difference (in magnitude) is,

unlike the dimensionless first normal stress difference,

which is strongly dependent on the shear rate and

decreases as the volume fraction increases, independent of

Fig. 5. The first normal stress difference (FNSD) as a function of

shear stress for suspensions used in Mall-Gleissle’s exper-

iments at various volume fractions. Scatter plots are Mall-

Gleissle’s data; solid lines are calculated results.

Fig. 6. Calculated results of dimensionless first normal stress dif-

ference (FNSD) as a function of shear rate for suspensions

used in Mall-Gleissle’s experiments at various volume

fractions.

Fig. 7. Dimensionless second normal stress difference (SNSD)

dependence on shear rate for suspensions at different vol-

ume fractions. Scatter plots and dash-dot lines are

Zarraga’s data; solid lines are calculated results.

Fig. 8. Second normal stress difference (SNSD) dependence on

the shear stress for suspensions at different volume frac-

tions. Scatter plots are Mall-Gleissle’s data and the solid

lines are the calculated results.
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the shear rate and increases as the volume fraction

increases. This behaviour of viscoelatic suspensions has

been observed in experimental measurements given by

Zarraga et al. (2001).

For suspensions used in experiments by Zarraga et al.

(2001), Mall-Gleissle et al. (2002) and Le Meins et al.

(2003), the relaxation time λ as a function of the volume

fraction ϕ is plotted in Fig. 11(a), and Fig. 11(b) shows the

coefficient α* dependence on the volume fraction for the

suspension used by Zarraga et al. (2001).

4.4. Stopping and restarting shear flow
For Newtonian matrix suspensions, the behaviour of

stopping and restarting shear flow has been discussed by

Phan-Thien (1995) and in the experimental observations

made by Gadala-Maria and Acrivos (1980). Our model can

be used to describe this behaviour for viscoelastic sus-

pensions. When the flow is stopped, the behaviour of the

first normal stress difference and shear stress are, accord-

ing to Phan-Thien (1995) and experimental measurements

given by Gadala-Maria and Acrivos (1980), such that all

the stresses or torques instantaneously decay to zero. In our

model, there is a rapid, but not instantaneous, reduction to

zero. A short relaxation period appears here. This obvious

difference of the behaviour is due to the matrix being vis-

coelastic fluid (non-Newtonian) in the calculations, but it is

a Newtonian fluid in the work of Phan-Thien (1995) and in

the experiments of Gadala-Maria and Acrivos (1980). But

the second normal stress difference shows no relaxation

period here; and gives a behaviour which instantaneously

goes down to zero when the shear rate vanishes, as given

by Phan-Thien (1995). This is because the second normal

Fig. 9. Dimensionless second normal stress difference (SNSD)

dependence on the shear rate for suspensions used in

experiments by Mall-Gleissle et al. (2002) at different

volume fractions.

Fig. 11. (a), The relaxation time λ as a function of the volume fraction ϕ. Solid line is for the suspension used by Zarraga et al. (2001),

dash line is for the suspension used by Mall-Gleissle et al. (2002) and dash-dot line is for the one used by Le Meins et al.

(2003). (b), The coefficient α* dependence on the volume fraction ϕ for the suspension used by Zarraga et al. (2001).

Fig. 10. The average of dimensionless second normal stress dif-

ference (DSNSD) over the shear rate range in calcu-

lations dependence on the volume fraction for

suspensions used in experiments by Zarraga et al.

(2001). ○ and - - - Zarraga’s data; • calculated results.
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stress difference is given by the component of “Newto-

nian” behaviour in our model.

When the flow is restarted in the same direction, the first

normal stress difference and the shear stress undergo a

transient period similar to the starting flow and then go to

the steady state. But the second normal stress difference

will recover from where it was left. The corresponding

steady state value of the shear stress will be almost instan-

taneously attained.

When the flow is restarted in the opposite direction, the

model gives the same behaviour, but the shear stress is also

in the opposite direction, for all the normal stresses are the

same as these obtained when the flow is restarted in the

same direction. A summary of the predictions is shown in

Fig. 12. This calculated result is for the suspension used by

Zarraga et al. (2001) at the volume fraction ϕ = 0.4 and

shear rate 

5. Summary

The focus of this work is to discuss a new constitutive

model for the description of viscoelastic suspensions. In

summary, the constitutive model discussed above is quite

simple and gives reasonably good predictions of the rheo-

logical properties for viscoelastic suspensions in shear and

elongational flow. Features of predictions given by the

model include:

• The positive first normal stress difference

• The negative second normal stress difference

• The dimensionless first normal stress difference

strongly dependent on the shear rate and decreasing

with volume fraction

• The dimensionless second normal stress difference is

nearly independent of the shear rate and increases with

the volume fraction

• Gives an approximate prediction for the viscoelastic

suspension in stopping and restarting flow

For calculated results of relative viscosities and stresses,

reasonably good agreements can be observed by compar-

ing with the corresponding experimental measurements.
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