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A Phenomenological Discrete Brittle
Damage-Mechanics Model for Fatigue of MEMS

Devices With Application to LIGA Ni
Trevor S. Slack, Farshid Sadeghi, Fellow, ASME, and Dimitrios Peroulis

Abstract—Fatigue initiation and failure of various microelectro-
mechanical systems (MEMS) is of significant importance as they
gain widespread acceptance in sensors and electronics. This paper
presents an approach for utilizing available experimental fatigue
data to evaluate the fatigue lives of MEMS components. The
approach is based on a phenomenological discrete material repre-
sentation in which a domain is represented by a collection of rigid
elements that interacts via springs along their boundaries. The
principles of continuum damage mechanics are used to degrade
the spring stiffnesses as brittle damage occurs when the domain
is subjected to fatigue loading. The model utilizes experimental
stress–life data for LIGA Ni to identify the material properties
used in the model. The proposed model captures the statistical
distribution of material properties and geometrical randomness
of the microstructure commonly observed in a wide variety of
MEMS. Consequently, simulations that account for the variability
in fatigue life can be readily performed. The model is applied to
a dog-bone-shaped specimen to evaluate the influence of material
heterogeneity and material flaws on fatigue crack initiation life
and scatter. The ability of the model to predict the fatigue life of
different types of MEMS devices and loading conditions is also
demonstrated by simulating the fatigue stress–life behavior of a
MEMS resonator support beam. [2008-0087]

Index Terms—Damage mechanics, discrete-element method,
fatigue, microelectromechanical systems (MEMS).

I. INTRODUCTION

THE APPLICATIONS of microelectromechanical systems

(MEMS) are continuously growing. The successful de-

velopment of a device requires both the experimental deter-

mination of relevant material properties as well as modeling

techniques that can capture heterogeneous effects caused by

the material microstructure. In many applications such as ac-

celerometers [1], angular rate sensors [2] and RF MEMS switch

and varactor [3] components are subjected to cyclically varying

loads and are expected to withstand billions or trillions of

loading cycles. In other applications, the MEMS device may
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be subjected to unwanted machine vibrations. For this reason,

it is important to understand the fatigue behavior of materials

used in MEMS devices.

The mechanical performance of materials used in MEMS

devices depends both on the fabrication process and post-

processing [4]. Thus, to accurately measure the mechanical

properties of MEMS devices, experiments have to be performed

on micrometer-scale specimens. Much of the work in fatigue

characterization has been conducted for polysilicon due to its

predominant use as a structural material for MEMS. Various

approaches have been attempted using both integrated and

external actuations of specimens in bending and tension [5]–[8].

A review of the test devices developed, as well as a comparison

of the experimental data obtained by different research groups

for polysilicon, has been compiled by Sharpe and Bagdahn [9].

The results presented by Sharpe and Bagdahn [9] show sig-

nificant discrepancy between the results from different groups

and a large amount of scatter in the results for each group.

Several fatigue mechanisms have been proposed, including

stress-assisted surface oxide dissolution, reaction layer fatigue,

and mechanically induced subcritical cracking [10].

Significant work has also been done to characterize the

fatigue behavior of LIGA Ni [11]–[14]. Yang et al. [13] per-

formed tensile testing of samples composed of both colum-

nar and nanoscale grains. Depending on the thickness of

the samples with columnar grains, fatigue behavior was ob-

served to be similar to either annealed Ni or wrought Ni.

A significant strengthening of fatigue resistance was found

for the samples with nanoscale grains. The samples with

columnar grains showed evidence of persistent slip bands at

which cracks were often found to nucleate. For the nanos-

tructured samples, cracks were found to nucleate from pre-

existing surface and corner defects. Aktaa et al. [12] also

performed direct tensile testing of LIGA Ni. By extending

their results to the fully reversed loading condition, they also

found a good comparison with fatigue properties of bulk Ni.

Boyce et al. [14] performed fully reversed fatigue testing on

coarse-grained LIGA Ni bending specimens. They also found

behavior similar to bulk Ni. They presented evidence of fatigue-

induced microcracking and cracks propagating intergranularly

from surface oxides. They discovered a fatigue-driven surface

oxidation mechanism wherein the growth of persistent slip

bands disrupts the native passivation oxide layer, allowing for

the growth of a brittle oxide layer hundreds of times thicker

than the native oxide layer which then acts as a site for crack

nucleation.

1057-7157/$25.00 © 2008 IEEE
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Fig. 1. Solid formed by a collection of discrete elements subjected to an
applied external boundary loading.

This paper presents a modeling approach which utilizes

available experimental results in a way that allows for the

stochastic fatigue modeling of MEMS devices. The model

is based on the theory of damage mechanics [15]–[17] and

explicitly takes into account the gradual material degradation

that occurs under cyclic loading. The methodology consists of

solving the coupled damage evolution and material constitutive

equations in a discrete material framework that accounts for the

stochastic nature of the material microstructure and properties.

The model is applied to a dog-bone-shaped tensile specimen

to evaluate the influence of various material parameters and

randomness of grain boundary structure on fatigue scatter.

Initial material flaws such as broken bonds and voids are then

randomly introduced into the dog-bone specimen to investigate

their effects on fatigue life and fatigue life scatter. Finally, the

model is used to predict the lifetime of a MEMS resonator

support bracket.

II. DISCRETE ELEMENT MATERIAL REPRESENTATION

The analysis presented in this investigation is based on

a discrete material representation. The method differs from

the standard numerical techniques such as the finite element

method where a domain is discretized into smaller subdomains

in order to integrate the governing equations derived from

continuum mechanics. In the discrete element method, a do-

main is composed of smaller subdomains that interact with one

another through contact at their boundaries. This is illustrated

in Fig. 1 which shows a material domain that is composed

of numerous interacting microelements that represent, in this

case, the grains of the material. Each element is a rigid body

with two translational degrees of freedom and one rotational

degree of freedom. The elements are connected along their lines

of intersection with a continuous set of fibers. As shown in

Fig. 2(a), as one element moves relative to another, the fibers

connecting the two elements are stretched. The stretching of the

fiber results in forces between the two elements. As shown in

Fig. 2(b), the forces are decomposed into normal and tangential

components and are given both elastic and viscous properties.

For the current study, only elastic effects are considered with

fiber stiffnesses, Kn in the normal direction and Kt in the

tangential direction, that are related to the macroscopic elastic

properties E (modulus of elasticity) and ν (Poisson’s ratio)

[18]. The interaction of an element with all of its neighbors

Fig. 2. (a) Interelement contact in the discrete model. (b) Fiber model.

results in an equivalent force F and moment M being applied

to the element’s center of mass. The solution of a given bound-

ary value problem consists of specifying the time-dependent

boundary conditions and the simultaneous integration of the

equations of motion for all the elements in the domain. Further

details of the element interaction and the method by which

stresses are extracted can be found in [18] and [19].

The grains of a polycrystalline material can be represented

to a good degree of accuracy through the process of Voronoi

tessellation [20], [21]. This process consists of using a set

of randomly placed points as nucleation points or seeds and

constructing regions around them such that all points enclosed

by the region are closer to the given nucleation point than any

other nucleation point. The process results in a set of convex

polygons known as Voronoi polygons. The randomly placed

nucleation points lead to a nonunique material domain for every

tessellation simulation. This produces topological randomness

in the simulated microstructures. In the present model, the

microelements are taken to be material grains that are generated

through such a Voronoi tessellation process. The size of the

grains is controlled by specifying the density of the nucleation

points. The generated element shapes have variable number of

sides and variable orientations. The most probable number of

sides is six, which also corresponds to the number of sides for

maximum thermodynamic stability of material grains. Care is

taken during the tessellation process to obtain uniformity of the

grain size by setting upper and lower limits on the distances

between the nucleation points.

III. FATIGUE DAMAGE MODELING

Damage mechanics is concerned with the progressive de-

terioration of a material due to the initiation and growth of



SLACK et al.: PHENOMENOLOGICAL DISCRETE DAMAGE-MECHANICS MODEL FOR FATIGUE OF MEMS DEVICES 121

microcracks and voids [15]–[17], [22]. The initiation and early

growth of damage is discontinuous and is strongly affected by

the heterogeneous nature of polycrystalline materials [23]. The

effects of damage on the mechanical response of a material are

captured through the introduction of a damage variable D into

the constitutive equations. In general, the damage variable is a

tensor, but under the assumption of isotropic damage, it reduces

to a scalar variable D. A 1-D damaged coupled elasticity law

takes the form

σ = (1 − D)Eε (1)

where the value of D ranges from zero for an undamaged

material to one for a completely damaged material. A value

of one corresponds to a complete loss of stiffness in tension

signifying crack initiation.

Constitutive equations for the evolution of the damage vari-

able have been formulated within the framework of thermody-

namics for fatigue damage, ductile damage, and creep damage

[22]. For high-cycle fatigue, a commonly used form for the

evolution of D which assumes a brittle damage mechanism is

[24]–[27]

dD

dN
=

[

σa

σr(σm) × (1 − D)

]m

(2)

where N is the cycle number, σa is the stress amplitude, σm

is the mean stress, and σr and m are temperature-dependent

material parameters that have to be experimentally identified.

Note that the term σr(σm) is a function giving the dependence

of the material parameter on σr mean stress. This material

parameter is also referred to as the resistance stress [27], so

called because it is the parameter that controls an element’s

ability to resist damage accumulation. The damage variable is

implemented within the current modeling framework through

the reduction of the fiber stiffness components as

(Kn) = (Kn)0(1 − hD)

(Kt) = (Kt)
0(1 − hD) (3)

where (Kn)0 and (Kt)
0are the initial normal and tangential

stiffness components and h is a crack closure parameter. The

crack closure parameter is introduced to capture the effects of

the partial closing of microcracks that occur in compression.

The value of h is one in tension and, following Lemaitre [22],

is taken as 0.2 in compression. The effect of damage on the

normal stress–strain relationship for a particular joint, including

the crack closure effect, is shown in Fig. 3.

IV. NUMERICAL SOLUTION OF THE DAMAGED

COUPLED EQUATIONS

The fatigue simulation is carried out by applying (2) lo-

cally to every element-to-element fiber set within the material

domain. Solution of the resulting system of coupled first-

order differential equations requires knowledge of the stress

amplitude σa in every fiber set as a function of the fatigue

cycle N . Since high-cycle fatigue involves millions of cycles,

a fully coupled analysis using the material model is impossible

Fig. 3. Degradation of joint normal stiffness with damage accumulation.

and a compromise has to be made. The procedure adopted here

is referred to as the “jump-in-cycles” method and is outlined by

Lemaitre [22].

The method assumes a piecewise periodic loading that is

constant over a number of cycles N i during which the damage

of all the interelement joints is known to be Di
j , where j ranges

over the number of joints in the domain and i indicates a block

of cycles. The material model is used to determine the stress

amplitude (σa)i
j in the joints, and the damage evolution rate in

each joint is given by

(

dD

dN

)i

j

=

[

(σa)i
j

σr(σm) × (1 − Di
j)

]m

. (4)

The increment in damage ∆D is assumed to be constant over

the block of cycles, so the number of cycles in the current block

of cycles is computed as

∆N i =
∆D

(

dD
dN

)i

crit

(5)

where

(

dD

dN

)i

crit

= Max

∣

∣

∣

∣

∣

(

dD

dN

)i

j

∣

∣

∣

∣

∣

(6)

is the joint with the maximum damage evolution rate. The

number of cycles is updated as

N i+1 = N i + ∆N i (7)

and the damage at each joint is updated using

Di+1

j = Di
j +

(

dD

dN

)i

j

∆N i. (8)

The joint fiber stiffnesses are updated according to (3), and the

procedure is repeated for the next block of cycles. The value

of the damage increment ∆D has to be chosen large enough to

allow a reasonable computational time but small enough so that

the coupling between damage and stress is not violated. The

piecewise linear growth in damage produced by the procedure

is shown in Fig. 4.
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Fig. 4. Piecewise-linear approximation for damage evolution.

Fig. 5. S–N curve for LIGA Ni [11].

V. IDENTIFICATION OF MATERIAL FATIGUE PARAMETERS

As described earlier, the fatigue damage evolution equation

introduces two new material parameters that have to be ex-

perimentally determined. Direct measurement of the evolution

of the damage variable is a destructive process that would

require measurement of the total crack area on the surface

of specimens that have been fatigued at different numbers of

cycles. Indirect methods can also be used in which damage is

measured via its effect on some measurable quantity such as

stress amplitude, elastic modulus, or electrical resistance [22].

Given the limited amount of currently available experimental

data, the method used here is to identify the parameters from

experimental stress–life data (S–N curve) available in the lit-

erature. Buchheit et al. [11] performed fully reversed, R = −1,

evaluation of LIGA Ni samples. Their experimental results are

shown in Fig. 5. Also shown is a power law fit of the data of

the form

σa = aN b (9)

Fig. 6. Fatigue specimen modeled using the discrete-element-based material
model. Dimensions are given in micrometers.

where σa is the stress amplitude. By using the least squares

method, the curve fit parameters to the experimental results are

determined to be

a = 1031 MPa b = −0.112. (10)

To identify the material fatigue parameters, the damage evo-

lution equation is integrated from the undamaged to the com-

pletely damaged states by assuming that there is no coupling

between the damage variable and stress level, giving

Nf
∫

0

dN =

1
∫

0

{

σ∗

r(1 − D)

σa

}m

dD ⇒ Nf =
1

(m + 1)

[

σ∗

r

σa

]m

(11)

where Nf is the number of cycles to failure at the stress

amplitude σa and σ∗

r is the value of the resistance stress under

the fully reversed stress condition. When a nonzero mean stress

is considered, an additional material parameter is introduced

through the function σr(σm) that would require additional

experimental data at a different mean stress level to identify

(for an example, see [25]). Rearranging (11) gives

σa = σ∗

r(m + 1)−
1

m N−
1

m . (12)

A comparison of (12) with (9) and (10) gives the fatigue

material parameters as

m = 8.93 σ∗

r = 1334 MPa. (13)

VI. APPLICATION OF THE MODEL

TO A FATIGUE SPECIMEN

The damage-mechanics-based fatigue model is applied to

a dog-bone-shaped fatigue specimen to predict the stress–life

behavior and to investigate the influence of various material

parameters and process-induced material flaws on fatigue scat-

ter. Fig. 6 shows the dimensions of the simulated specimen.

Specimens of similar shape and dimension have been produced

using micromachining techniques by several research groups

[28]–[31] for fatigue testing by external actuation. Table I

contains the parameters used in this investigation. Fifty material
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TABLE I
SIMULATION PARAMETERS

domains were generated using the Voronoi tessellation process

to evaluate the statistical nature of the fatigue phenomena. The

boundary conditions imposed on the specimen are that the

x displacement degrees of freedom on one end are fixed while

the x displacement degrees of freedom on the other end are

specified such that the desired stress amplitude is obtained in

the straight section of the specimen. It is assumed that the

fatigue behavior is governed by the normal stress component

acting on the element boundaries. To reduce the computational

effort for the statistical and stress–life investigations of the

tensile specimen, the simulations were performed only up to

the condition of crack initiation. This is warranted in light of

the fact that much of the scatter that occurs in fatigue data can

be attributed to the initiation and early growth of fatigue cracks

[23] and also due to the fact that, in the case of high-cycle fa-

tigue, much of the life is spent in the crack initiation stage [32].

Shown alongside the experimental data and curve fit in Fig. 5

are the analytical results obtained using the model under the

assumption of uniform material properties (E, ν, σr, and m).

At each stress level, simulations were performed using ten

domains. Under the assumption of uniform material properties,

the only source of randomness is topological randomness due

to the geometrical variations in the microstructures produced

using the Voronoi tessellation process. As can be seen from

Fig. 5, this source of randomness alone has very little effect on

the scatter in the fatigue data. Note, however, that there is good

agreement between the simulated and experimental results.

VII. EFFECT OF MATERIAL INHOMOGENEITY

ON FATIGUE LIFE

Inhomogeneous material behavior can result from geometri-

cal variations in the microstructure, grain anisotropy, and spa-

tially distributed material properties. To investigate the effects

of material inhomogeneity on fatigue life, three sources will be

considered independently. The conditions to be investigated are

geometrical variations, variable elastic modulus, and variable

resistance stress. For each condition, 50 domains are subjected

to a maximum stress of 200 MPa under completely reversed

loading conditions until a crack initiates.

A. Geometrical Variations

In this case, the material elastic and damage properties

(E, ν, σr, and m) are held constant throughout the domain. This

condition isolates the variability between the domains to that of

the randomness of the microstructural boundaries that occurs as

Fig. 7. Weibull life plot for crack initiation in 50 different domains subjected
to different material property conditions.

a result of the Voronoi tessellation process. The results for this

condition are shown on a Weibull probability plot in Fig. 7. The

Weibull slope is 12.94, and the Weibull strength, indicating the

number of cycles for which the probability of failure is 63.2%,

is 2.6 (million cycles).

B. Variable Elastic Modulus

For the second condition, the elastic modulus is assumed

to vary spatially throughout the domain. This condition is

implemented by treating the elastic modulus as a random vari-

able and sampling each of the individual joint stiffnesses Kn

and Kt from a normal distribution centered at a mean mod-

ulus of 175 GPa and with a standard deviation of 5.83 GPa.

The other material properties (ν, σr, and m) are held con-

stant. This condition will create local stress concentrations in

the domain due to the interaction of elements with different

stiffnesses. The results are shown in Fig. 7. The data fall in a

straight line, indicating adherence to a Weibull distribution. The

Weibull slope of the data is 7.61, and the Weibull strength is

2.2 (million cycles). The lower values of the Weibull slope and

Weibull strength indicate an increase in scatter and a reduction

in the fatigue life as compared with the homogenous property

condition.

C. Variable Resistance Stress

For the final condition, a spatially distributed value of resis-

tance stress σr is considered. This condition is implemented

in the model by sampling the resistance stress term for each

interelement joint from a normal distribution with a mean of

1334 MPa and a standard deviation of 89 MPa. The other

material properties (E, ν, and m) are held constant. The results

for this condition are also shown in Fig. 7. Again, the data

follows a straight line. The Weibull slope of the data is 8.58,

and the Weibull strength is 1.8 (million cycles). This condition

leads to a nearly identical increase in scatter as was found for

the variable elastic modulus condition. As expected, a larger
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Fig. 8. (a) Von Mises stress distribution in a tensile specimen with one initially
broken bond for a stress amplitude of 300 MPa. (b) Close-up view of the stress
distribution around the initially broken bond represented by the black line.
The stress values are given in megapascals.

Fig. 9. Weibull life plot for crack initiation in 50 different domains with
initial flaws.

reduction in fatigue life results for this condition, because the

resistance stress variable relates directly to the fatigue strength

of the elements.

VIII. EFFECT OF MATERIAL FLAWS ON FATIGUE LIFE

Flaws in MEMS components can be produced both dur-

ing fabrication and postprocessing. During fabrication, voids

and/or weak bonds can form between neighboring grains. Dur-

ing etching processes, overetch can lead to undercuts and/or

surface flaws. For the case of polysilicon material, work has

been conducted to characterize the critical flaw size and lo-

cation in the context of brittle failure [33]–[36]. These same

flaw populations can act as sites of stress concentration where

fatigue crack initiation is likely to occur. In this section, the

effects of three types of initial material flaws on fatigue life are

considered. For each type of flaw, life data were obtained for

50 domains under the loading conditions considered previously.

Fig. 10. (a) Von Mises stress distribution in a tensile specimen with one initial
internal void for a stress amplitude of 300 MPa. (b) Close-up view of the stress
distribution around the void. The stress values are given in megapascals.

Fig. 11. (a) Von Mises stress distribution for a tensile specimen with one
initial surface void for a stress amplitude of 300 MPa. (b) Close-up view of the
stress distribution around the initial surface void. The stress values are given in
megapascals.

A. Initially Broken Intergranular Bond

The first type of flaw considered was an initially broken

intergranular bond. This flaw is implemented in the model by

randomly selecting a joint within the straight section of the

dog bone and assigning it an initial damage value of one. A

joint with a damage value of one will have no stiffness in

tension and a reduced stiffness in compression over that of the

surrounding material. Uniform material properties are assumed.

The distribution of Von Mises stress around an initially broken

bond, represented by a black line, for one of the specimens is

shown in Fig. 8. The stress concentration caused by the flaw can

be clearly seen in Fig. 8. The crack initiation lives are shown on

a Weibull probability plot in Fig. 9. The Weibull slope of the

data is 3.21, and the Weibull strength is 2.1 (million cycles).

The Weibull slope indicates a much larger increase in scatter

than resulted for each of the variable material property cases.

However, the Weibull strength falls between those that resulted

for the conditions of variable elastic modulus and variable

resistance stress.
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TABLE II
WEIBULL PROBABILITY STATISTICS

B. Internal Void

The second type of flaw considered was an internal void

within the domain. This is implemented in the model by

randomly removing one element from the interior of straight

section of each domain. The distribution of Von Mises stress

around the internal void for one of the domains is shown in

Fig. 10. The crack initiation lives are shown on a Weibull

probability plot in Fig. 9. The Weibull slope of the data is 1.12,

and the Weibull strength is 133 000 (cycles). This condition

leads to a large increase in scatter and to a large decrease in

the Weibull strength.

C. Surface Void

The final type of material flaw that will be considered is an

initial surface void as might result from nonperfect wet or dry

etching [37]. This is implemented in the model by randomly

removing one element from the surface of the straight section

of each specimen. The distribution of Von Mises stress around

a surface void for one of the domains is shown in Fig. 11. The

crack initiation lives are shown on a Weibull probability plot in

Fig. 9. The Weibull slope of the data is 0.71, and the Weibull

strength is 11 266 (cycles). This condition leads to the largest

increase in scatter and largest decrease in Weibull strength of

all the conditions considered.

The Weibull statistics for all of the material property and flaw

cases are summarized in Table II. Material property variation

led to a slight increase in scatter and also to a slight decrease

in the Weibull strength. The results were similar for both the

variable elastic modulus and variable resistance stress condi-

tions. The initially broken intergranular bond condition led to a

larger increase in scatter but to a decrease in Weibull strength

that was similar to the variable material property conditions.

The most critical effects were seen for the initial internal and

surface voids which both led to a large reduction in the Weibull

strength indicating a significantly lower fatigue life. Please note

that for the material flaw cases, particularly the initial surface

void case, the results do not follow a straight line, indicating

that the two-parameter Weibull distribution is not the best fit

and perhaps another distribution should be considered.

IX. EFFECT OF MATERIAL FLAWS ON

STRESS–LIFE BEHAVIOR

The previous simulations have all been performed at a single

stress level so that some characteristics of the statistical behav-

Fig. 12. S–N curve for crack initiation in a tensile specimen with one initially
broken bond.

ior could be described. Also of interest to the MEMS designer

is the fatigue behavior of a component over a range of stresses.

To capture this behavior, simulations are performed at five

different stress levels so that a stress–life curve can be obtained.

Three stress–life results are produced corresponding to each

of the three types of initial flaws considered previously. For

each initial flaw condition, ten domains with uniform material

properties were used at each stress level. As was shown in

Figs. 8, 10, and 11, each type of initial flaw led to a stress

concentration in the domain. Depending upon the stress level

and the severity of the stress concentration, static failure could

occur. To check for static failure, the normal stress in each joint

is first compared against the static strength of the material, listed

in Table I, before the damage evolution equation is applied.

If the stress in any joint exceeds the tensile strength of the

material, the joint is assumed to break under static conditions.

The stress–life results corresponding to each of the initial

flaw conditions are shown in Figs. 12–14. Also shown for

comparison purposes are the stress–life results for the ten

domains used for each condition in the absence of the flaw

considered. Fig. 12 shows the stress–life curve for the initially

broken intergranular bond. The data follow very closely the

flaw-free condition with some overlap in the data occurring

at each stress level. At the highest stress level, 400 MPa, two

of the domains failed statically. Fig. 13 shows the stress–life

results for the case of an initial internal void. Much more scatter

can be seen in the data compared to the initially broken bond
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Fig. 13. S–N curve for crack initiation in a tensile specimen with one initial
internal void.

Fig. 14. S–N curve for crack initiation in a tensile specimen with one initial
surface void.

case. At the highest stress level, seven of the domains failed

statically. Fig. 14 shows the stress–life results corresponding

to the condition of an initial surface void. This condition led to

the largest increase in scatter, the largest decrease in life, and to

the most domains failing statically. At the highest stress level,

all ten domains failed statically. At a stress of 300 MPa, six of

the domains failed statically, and at a stress of 200 MPa, one

domain failed statically.

For each of the stress–life results developed, a power law

fit is made through the mean of the life data that did not fail

statically at each stress level. For each condition, the slope of

the power law curve was within 5% of that of that given for the

experimental data in (10). The results indicate the deleterious

effects caused by the initial flows which lead to both a reduction

in the overall life and to an increase in scatter in the data. For

the surface void condition, the fatigue life at the lower stress

levels is spread out over more than two orders of magnitude of

cycles.

Fig. 15. MEMS resonator.

Fig. 16. Von Mises stress distribution in a MEMS resonator support beam
subjected to δy = 1.0 µm displacement. Dimensions are in micrometers.
The stress values are given in megapascals.

X. PREDICTING THE LIFE OF A MEMS RESONATOR

The previous simulations were performed for the simple

stress state of cyclic uniform tension/compression. MEMS

structures are varied and are subjected to many different states

of stress. One common structure, as shown in Fig. 15, con-

sists of a membrane suspended above a substrate by support-

ing beams. Such a structure might be found in application

as a MEMS resonator, variable capacitor, or accelerometer

[38]–[40]. Simulations were performed to determine the life

of one of the supporting beams as it is subjected to cycli-

cally varying loads due to the motion of the membrane. The

material properties listed in Table I will again be used. The

dimensions of the supporting beam are shown in Fig. 16.

The boundary conditions imposed on the beam are that one end

is fixed while, at the other end, all of the elements are given

an equivalent displacement in the y-direction. The distribution

of Von Mises stress that is developed in the beam due to these

boundary conditions is shown in Fig. 16. Bending stresses are

developed in both the horizontal and vertical sections of the

beam with the maximum stresses occurring at the fixed end.

To produce a stress–life curve, simulations were performed at

four different displacement amplitudes from 1.0 to 0.25 (µm).
The simulations are performed through both the crack initiation

and crack propagation stages so that the total life of the beam

is obtained. The life of a particular beam versus the number

of broken joints in the domain is shown in Fig. 17. It can be

seen in the figure that, at a certain number of cycles, a large

number of joints break at once. This is the point at which
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Fig. 17. Fatigue life versus the number of cracks in the beam supporting
structure for a particular domain.

Fig. 18. Crack propagation pattern in MEMS resonator support beam.

catastrophic failure occurs and determines the total life of the

component. The final crack pattern for the beam whose life is

depicted in Fig. 17 is shown in Fig. 18. For this and many of

the domains generated, the first crack to develop often occurs

at the corner where the vertical and horizontal sections meet

due to the stress concentration that this union creates. For all

of the cases considered, the crack that propagated to failure

occurred close to the fixed end. The lives of ten beams are found

at each displacement amplitude. The stress versus life result is

shown in Fig. 19. The stress values given along the ordinate

are the maximum stresses that occur in the domain at each

displacement amplitude. Note that, although the simulations

were performed until the final fracture of the beam, the effective

life of such a resonating component may be limited by an

unacceptable shift in resonance frequency or by an inability to

control the device caused by degradation of the material before

it actually fractures [40].

XI. SUMMARY AND CONCLUSION

This paper has presented a phenomenological discrete brittle

damage-mechanics-based model that can be used to evaluate

the fatigue life of MEMS devices. A discrete material repre-

sentation is used in which a material domain is represented

by a collection of rigid elements connected by springs. The

Fig. 19. S–N curve for the total life of a MEMS resonator support beam.

stiffnesses of the springs are degraded according to a continuum

damage-mechanics model as the domain is subjected to fatigue

loading. The material properties of the damage model can be

identified from experimental stress–life results. The model can

simulate the lifetime of a component from crack initiation

until final fracture. Statistical variations in material properties

are included by randomly assigning spring properties from a

normal distribution. Through simulations of a LIGA NI fatigue

specimen, it was shown how variable material properties can

lead to fatigue scatter and a reduction in life. The same speci-

men was used to demonstrate the ability of the model to account

for material flaws caused by imperfect fabrication techniques.

The presence of an initial surface void was found to be the most

detrimental condition. Stress–life curves generated using the

model showed fatigue lives scattered over more than two orders

of magnitudes of cycles for some conditions. The ability of the

model to predict the lives of different types of devices and load-

ing conditions was demonstrated by generating the stress–life

curve for a LIGA-Ni-based MEMS resonator support beam.
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