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Abstract. Graphene nanostructures exhibit an intrinsic advantage in rela-
tion to the gate delay in three-terminal devices and provide additional benefits
when operate in the quantum capacitance limit. In this paper, we developed a
simple model that captures the Fermi energy and temperature dependence of the
quantum capacitance for monolayer and bilayer graphene devices. Quantum ca-
pacitance is calculated from the broadened density of states taking into account
electron-hole puddles and possible finite lifetime of electronic states through a
Gaussian broadening distribution. The obtained results are in agreement with
many features recently observed in quantum capacitance measurements on both
gated monolayer and bilayer graphene devices. The temperature dependence of
the minimum quantum capacitance around the charge neutrality point is also
investigated.
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1. Introduction

Graphene, an atomic layer of carbon atoms arranged in a two dimensional (2D)
honeycomb lattice, are highly promising candidate for new semiconductor materials



A Model for the Quantum Capacitance of Graphene Devices 333

and devices [1]. In monolayer form, is gapless as its conical conduction and valence
bands touch at two inequivalent Dirac-points where the density of states vanishes. The
key property of graphene for electronic applications is the fast electronic transport
expressed by its high carrier mobility. Since monolayer graphene has no band-gap, it
is not directly suitable for digital electronics, but is very promising for analog, high
frequency applications [2—4].

A unique feature of both monolayer and bilayer graphene is that the density of
carriers can be tuned continuously by an external gate from electron-like carriers at
positive doping to hole-like at negative doping [5]. The behavior at the crossover
depends on the disorder which induces regions of inhomogeneous carrier density i.e.,
puddles of electrons and holes [6]. Tuning the carrier density by the gate voltage, the
ratio between electron puddles and hole puddles changes until at very high densities
there is one type of carriers. An important difference between monolayer and bilayer
graphene is the band structure near the Dirac point. Monolayer graphene has a
conical band structure and a density of states that vanishes linearly at the Dirac
point. Bilayer graphene has a hyperbolic band structure and a density of states rising
linearly with increasing energy from a finite value at zero energy.

Bilayer graphene has attracted great interest due to the fact that an energy gap
could be opened by chemical doping or by applying external perpendicular electric
field. Ones could exploit this property to use bilayer grapheme as a channel material
for FETSs, defining an energy gap when it is really needed, i.e. when the device must
be in the off state [7, 8]. Moreover, bilayer graphene patterned with a periodic array
of metallic gate electrodes could replace the existing semiconductor superlattices [9].

One of the main characteristics of FETs is the capacitance formed between the
channel and the gate. It is well known that the capacitance in these devices is dom-
inated by the capacitance of the oxide layer which makes difficult to extract the
quantum capacitance [10]. However, in order to decrease the operating voltage, it
is expected that the oxide layers will be much thinner and have higher values of di-
electric constant, which means that the quantum capacitance will be the dominant
source of capacitance [11]. As a consequence, quantum capacitance is important for
understanding the fundamental electronic properties of the material such as the den-
sity of states as well as device performance including the I — V' characteristics and
the device operation frequency.

Recently, graphene sheets have been subject to theoretical as well as experimental
studies of the quantum capacitance [12-15]. Measurements on the quantum capac-
itance of bilayer graphene have been shown similar behaviour to that of monolayer
graphene but, near the Dirac point, a finite capacitance value has been found. In
order to provide physical insight into the capacitance of graphene devices, it is im-
portant to develop intuitive analytical models capturing the essential physics of the
device at hand. In this paper, a simple analytical model for the quantum capacitance
of both monolayer and bilayer graphene devices, is presented. The model takes into
account the broadening of the density of states due to electron-hole puddles induced
by local potential fluctuations and possibly to finite lifetime of electronic states. The
temperature dependence of quantum capacitance is also investigated.
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2. Quantum Capacitance Modeling

Monolayer graphene is a zero-gap semiconductor because its conducting and va-
lence m-electron bands touch each other only at two isolated points in its two-dimensional
(2D) Brillouin zone. The dispersion relation of these bands in the vicinity of these
points is given by [1]

Ey(k) = s(hvpk), (1)

where s = +1 for the conduction band (CB) and s = —1 for the valence band (VB),
vp = \/gfyooz/ 2 is the Fermi velocity with intralayer coupling 7o = 3.16 ¢V and k is
the wave vector of carriers in the two-dimensional plane of the graphene sheet. The
point k£ = 0, referred to as the “Dirac point,” is a convenient choice for the reference
of energy; thus, E(k =0) =0 eV.

Bilayer graphene is composed of a pair of honeycomb lattices of carbon atoms,
which include A; and B; atoms on layer 1 and As and Bs on layer 2. As shown in
Fig. 1(a), the two layers are arranged in Bernal stacking, where A5 atoms are located
directly below Bjatoms. The lattice constant within a layer is given by a = 0.246 nm
and the layer spacing by d = 0.334 nm. In the absence of disorder, the bandstructure
of clean bilayer graphene can be written [16]:

71 V;
E,(k)=s (“2 + Zl + (h vpk)2> : (2)

where p = +1, s =+ 1, v3 = 0.39 €V is the interlayer coupling. The index p = (—)
gives a pair of bands closer to zero energies, and 1 = (+) another pair repelled away by
approximately +v;. In each pair, s = (+1) and (—1) represent the electron (CB) and
hole (VB) branches, respectively. Thus, as shown in Fig. 1(b), the band structure of
bilayer graphene is quadratic at small momenta, like a two-dimensional electron gas,
and becomes linear with increasing momentum like monolayer graphene. However,
recent experimental data have revealed a hyperbolic and asymmetric band structure
without a constant density of states expected for a quadratic dispersion [15].
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Fig. 1. Schematic view of bilayer graphene in Bernal stacking (a)
and low energy bands of perfect bilayer grapheme (b).
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The density of states of pure and perfect monolayer graphene is given by:

9s Gv
E)=—F—"—|F 3
gurc(E) 57 op)? |E], (3)
where g, g, is the spin and valley degeneracy respectively. For the energy range
|E| < 71, the density of states of the pure and perfect bilayer graphene can be well

approximated by a linear relation as a function of energy [17]:

9s Jv 71

Oy (P ’
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where g5, g, is the spin and valley degeneracy respectively. The above equation is

accurate enough for low to moderate doping levels such that the chemical potential

is less than 1 eV and is only incurs a relative error of up to a few percents when is
between 1 eV and 2 eV. Near the Dirac point, the density of states is given by:

gs Gv M m*

EYy=—""—""—FS— =9 o0, 5

gp16(E) on(hop)2 2 P9 onp2 (5)

which is the formula for the density of states of two-dimensional electron gas with an

effective mass, m* = ~; /(2v%), that is, proportional to interlayer coupling.

Generic to both monolayer and bilayer graphene samples on a substrate are the
so-called ‘electron-hole’ puddles induced by charged impurities which lead to inhomo-
geneous variations in the carrier density across the sample over a typical scale of tens
of nm [6]. To take into account the electron-hole puddles and possible finite lifetime
of electronic states, we introduce a Gaussian broadened density of states D(FE) as
follows:

D(E) = o +/Ooexp <(2FE)) g(e) de, (©)

— 00

where I' is an energy broadening parameter which is the only phenomenological pa-
rameter of our model. After the integration in (6), we obtain

s Yo 21" E? E
Dusa(B) = 5 8 x| Tz (~ra) + Bt () + 3] @

where erf(x) is the Gaussian error function. Near the Dirac point, the density of

states becomes:
m* 2T
Dpra(0) =gs go—— [ 142¢/2— |, 8
BLG(0) 99277712<+ W’Yl) (8)

which increases linearly with the broadening parameter I'. For v; = 0 equation (7)
leads to the broadened density of states for the monolayer graphene:
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The quantum capacitance is defined as the derivative of the total net charge of the
monolayer or bilayer graphene device with respect to applied electrostatic potential.
The total charge is proportional to the weighted average of the density of states at
the Fermi level Er. When the density of states as a function of energy is known,
the quantum capacitance Cg of the channel at finite temperature can be calculated
as [18]:

/D ( af(EaEEF)>dE, (10)

where f(F) is the Fermi-Dirac distribution. The above relation is strictly valid only
when the electrostatic potential is position independent.

The quantum capacitance describes the response of the charge inside the graphene-
channel to the conduction and valence band movement and is a strong function of
Fermi energy Er which can be changed experimentally by the gate voltage V. This
distinguishes graphene from conventional two-dimensional electron systems in which
the quantum capacitance is usually a small and constant contribution that is difficult
to be extracted from the experimental data. In the following section we present our
numerical results for the quantum capacitance of both monolayer and bilayer graphene
devices based on the Eqgs. (7), (9) and (10).

2. Results and discussion

Figure 2 shows the quantum capacitance of monolayer (a) and bilayer (b) graphene
as a function of Fermi energy at room temperature 300 K, for different broadening
parameters I'. This energy broadening range corresponds to a carrier density variation
dn ~ 3.5 x 10" ecm~2 which is consistent with the literature value attributed to
electron-hole puddles in graphene on SiOy [19].

Several important features are worth noting which are in good agreement with
recent experimental results, but we do not make an attempt to obtain quantitative
agreement since the experimental results show substantial sample-to-sample variation.
Instead we discuss the qualitative features of our numerical results: First, the quan-
tum capacitance has a minimum value at the Dirac point which increases with the
broadening parameter I'. Second, the capacitance minimum regime becomes increas-
ingly round and far from this regime the capacitance becomes linear with decreasing
slope as I' increases. Finally, the capacitance curve is symmetric with respect to the
Dirac point.
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Fig. 2. Calculated quantum capacitance versus Fermi energy for broadening parameters
I’ = 15, 35, 55 and 75 meV in monolayer (a) and bilayer (b) graphene device.

The temperature dependence of the quantum capacitance is shown in Fig. 3 for
monolayer (a) and bilayer (b) graphene, where a value for I' = 35 meV is adopted. The
minimum of quantum capacitance is round and increases as temperature increases.
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For Fermi energies Er >> I, the capacitance becomes approximately temperature
independent. It is worth noting that the quantum capacitance of pure and perfect
bilayer graphene, at very low temperatures, has finite value of about 4.3 uF/cm?.
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Fig. 3. Temperature dependence of the simulated quantum capacitance
versus Fermi energy for monolayer (a) and bilayer (b) graphene device.
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Understanding the temperature dependence of the minimum quantum capacitance
is complicated due to the activation of carriers at finite temperatures as well as to the
formation of electron-hole puddles. Figure 4 shows the minimum quantum capacitance
scaled by the zero-temperature minimum capacitance as a function of temperature.
As temperature increases, we observe an enhanced temperature dependence of the
minimum capacitance of monolayer graphene compared to that of bilayer graphene.
On the other hand, in the low temperature regime it seems that the effect of carrier
density fluctuations and the associated electron-hole puddle structure is very similar
to both monolayer and bilayer graphene devices.
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Fig.4. Temperature dependence of the minimum quantum capacitance
of graphenes using a broadening parameter I' = 35 meV.

4. Conclusions

In conclusion, we have presented a simple phenomenological model for the quan-
tum capacitance of both monolayer and bilayer graphene devices. Quantum capaci-
tance is calculated from the broadened density of states taking into account electron-
hole puddles and possible finite lifetime of electronic states through a Gaussian broad-
ening distribution. Adopting a range of values for the broadening parameter I" be-
tween 15 meV and 75 meV, the obtained results are in agreement with many features
recently observed in quantum capacitance measurements on gated monolayer or bi-
layer graphene.

The quantum capacitance of both monolayer and bilayer graphene has a finite
minimum value at the Dirac point which increases with the broadening parameter I'.
The minimum-value regime becomes increasingly round and far from this regime the
capacitance becomes linear with decreasing slope as the energy broadening increases.
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The capacitance curve Cg(Ep) for monolayer and bilayer graphene devices becomes
temperature independent at Fermi energies Er >> I'. The temperature dependence
of the minimum quantum capacitance is also studied. As temperature increases, the
minimum quantum capacitance increases dramatically for bilayer graphene, while it is
nearly unchanged for monolayer graphene. Moreover, in the low temperature regime
it seems that the effect of the electron-hole puddle formation is very similar to both
monolayer and bilayer graphene devices.

We hope that our model is a step for understanding the gate voltage and temper-
ature dependence of the quantum capacitance of graphene devices. The phenomeno-
logical parameter I' can be treated as a fitting parameter and as a consequence of this
parametrization, our results do not depend on the microscopic details of the impurity
potential provided this parametrization describes correctly the properties of the im-
purity potential. However, a self-consistent effective medium theory is needed for a
rigorous treatment of the broadening effects including the screening of the impurity
field by the carriers.
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