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Abstract
Nonreciprocal responses in noncentrosymmetric systems contain a broad range of phenomena.
Especially, non-dissipative and coherent nonreciprocal transport in solids is an important
fundamental issue. The recent discovery of superconductor (SC) diodes under external magnetic
fields, where the magnitude of the critical current changes as the direction is reversed, significantly
boosted this research area. However, a theoretical understanding of such phenomena is lacking.
Here, we provide theoretical descriptions of SC diodes with a generalized Ginzburg–Landau
method. The theory is applied to Rashba spin–orbit coupled systems, where analytical relations
between the nonreciprocal critical currents and the system parameters are achieved. Numerical
calculations with mean-field theory are also obtained to study broader parameter regions. These
results offer a rather general description and design principles of SC diodes.

1. Introduction

Nonreciprocity in materials [1] refers to the phenomenon where physical quantities change as the system is
reversed spatially. It has been well studied in semiconductors and plays a key role in modern technologies
such as electrical diodes and solar cells. A new developing subject related to this topic is the contribution by
the Berry phase of the electronic states [2] such as shift currents [3].

Nonreciprocity in superconductors (SCs) has recently emerged as an active research topic [4–7]. When
both inversion and time-reversal symmetries are broken, magnetochiral anisotropy [1, 8] is induced and the
conductance near the superconducting transition temperature T�Tc, i.e. the paraconductivity, becomes
different if the current is reversed. The nonreciprocal part is greatly enhanced as the superconducting order
parameter Δsc develops, i.e. when T → Tc.

The research on the nonreciprocity in SCs has been further promoted by the recent discovery of the SC
diode effect [9], where the critical currents along opposite directions differ, i.e. Ic+ �= Ic−. As a result, a SC
diode has zero resistance along one direction but nonzero along the other if the current is set between Ic+

and Ic−. This discovery is followed by the observation of its Josephson-junction version [10], which shows a
stronger nonreciprocal signal. These experiments make great steps towards coherent superconducting
devices. However, a theoretical description of the SC diode effect is not well developed. Such a theory is
needed not only for fundamental understanding but also for further experimental developments.

Here, we show that the SC diode effect can emerge from magnetochiral anisotropy caused by a
combination of spin–orbit coupling (SOC) and external Zeeman fields. A description of SC diodes is given
with a generalized Ginzburg–Landau (GL) theory, in which the higher-order terms of the order parameter
ψ(r) or of its spatial gradient ∇rψ(r) must be present to induce nonzero SC diode effect. This is similar to
the importance of the third order term ∇3

rψ(r) to the nonreciprocal paraconductivity [4, 5]. Physically,
these terms correspond to the asymmetry in the energy of the Cooper pairs when they propagate in
opposite directions. We apply our theory to two-dimensional Rashba SCs [11, 12] and obtain the analytical
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relations between the strengths of the SC diode effects and the corresponding system parameters. Numerical
calculations are further done with Bogoliubov–de Gennes mean-field Hamiltonians, which can cover a
wider parameter range including lower temperatures and stronger Zeeman fields.

2. Results

2.1. Generalized GL theory
In presence of SOC and a Zeeman field, a generalized GL free energy of a SC can be written as

F =

∫
dq

{
(α+ γq2 + γ ′q4 + ηq)|ψq|2 +

1

2
(β + β2q2 + hβ1 · q)|ψq|4

}
, (1)

where ψq is the order parameter in the reciprocal space. The parameters α, β and γ are conventional GL
coefficients. The terms ηq = h

∑
lmnκlmnql

xqn
y qm

z (l + m + n being an odd integer) and hβ1 · q, originating
from SOC and external Zeeman field h, break both inversion (P) and time-reversal (T ) symmetries and
lead to magnetochiral anisotropy. It is assumed that h � Tc (we omit the Bohr magneton μB, the
Boltzmann constant kB and the reduced Planck constant � throughout this paper). The higher order terms
corresponding to γ′ and β2 are also included for reasons that will be clear later.

The structure of the coupling constants κlmn and β1 is directly related to the symmetries of the system
and thus depends on the form of the SOC. For example, in a system with continuous rotational symmetry
C∞ (rotation axis along ẑ), the group representation leads to ηq = (a0 + a2|q|2)(h · q) + (b0 + b2|q|2)
(h × q) · ẑ, up to the linear order in h and the third order in q. The h · q term breaks all mirror symmetries,
while (h × q) · ẑ breaks Mz, the mirror symmetry in the z-direction. When C∞ is reduced to a discrete
rotation Cn, a form of ηq = (c1|q‖|+ c3|q‖|3)hz cos(nθq‖) is allowed, which preserves Mz.

In general, even if both P and T are broken, nonreciprocal effects are not necessarily expected. To see
that, let us define the inversion operators of each dimension, Px,Py and Pz, so that the corresponding
symmetry invariance requires Px/y/zH(kx/y/z)P−1

x/y/z = H(−kx/y/z) respectively, where H(k) is the
Hamiltonian of the system. Obviously P = PxPyPz is broken. However, since breaking Px is necessary for
any possible difference between the currents along the ±x directions, a term such as hq2

xqy, although
breaking P and T , would not cause such a nonreciprocity. This means that the direction of the magnetic
field to induce nonreciprocal effects (in ±x-directions) needs to be determined by symmetries—it should
break all possible Px of the Hamiltonian. This will be illustrated with the example discussed in the later part
of this paper.

Consider the case where the magnitude of the SC order parameter is uniform and it only varies in its
phase along the x-direction, i.e. ψ(r) = |ψ|eiφ(x). This assumption is valid as long as we are dealing with SCs
of thicknesses much less than the coherence length. In this simplified case, the free energy becomes

F =

∫
dq

{
[α+ γq2 + γ ′q4 + q(hκ1 + hκ3q2)]|ψq|2 +

1

2
(β + hβ1q + β2q2)|ψq|4

}
, (2)

with q = ∂xφ(x). The order parameter may be multi-component in general. In that case, ψ denotes a certain
linear combination of these components which minimizes the energy, and the internal structure of the
order parameter does not affect our discussion. Also note that the magnetic field appears as a scalar since it
is assumed in the proper direction to be determined by the specific form of the SOC in a concrete model.

The terms in equation (2) do not affect the coherence length since the spatial variation is assumed in the
phase φ only. As for the κ1 term, there should be a linear derivative term with respect to the magnitude |ψ|
correspondingly. However, it vanishes after integrated over space. Higher-order derivative terms of |ψ|
could modify the coherence length, but which is a small effect when we consider a weak magnetic field.

The supercurrent along the x-direction is

I = −2e

[
(2γq + 4γ ′q3 + hκ1 + 3hκ3q2)|ψq|2 +

1

2
(hβ1 + 2β2q)|ψq|4

]
, (3)

|ψq| is obtained by minimizing F, which leads to |ψq|2 = |α|
β

f (q̃), with

f (q̃) =
1 − q̃2 − γ̃′q̃4 − κ̃1q̃ − κ̃3q̃3

1 + β̃1q̃ + β̃2q̃2
. (4)

2
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Table 1. Symmetry operations on the Zeeman fields along the
three directions in Rashba systems. A plus (minus) sign means
that the Zeeman term is even (odd) under the symmetry
operation.

Px1 Px2

hxσx + −
hyσy − −
hzσz − +

We have introduced the dimensionless variables q̃ ≡ q
√
γ/|α|, γ̃′ ≡ γ ′|α|/γ2, β̃1 ≡ hβ1β

−1
√
|α|/γ,

β̃2 ≡ β2β
−1|α|/γ, and κ̃n ≡ hκn|α|n/2−1γ−n/2. Substitution of |ψq| into equation (3) yields

I = −2e

√
|α|3γ
β

[
(2q̃ + 4γ̃′q̃3 + κ̃1 + 3κ̃3q̃2)f (q̃) +

1

2
(β̃1 + 2β̃2q̃)f (q̃)2

]
. (5)

The current I as a function of q̃ has a maximum Ic+ and a minimum −Ic−, Ic± being the critical currents
along the positive and negative directions respectively. It should be noted that the supercurrent I is nonzero
when q vanishes, as can be seen in equation (5). This indicates that the ground state is not with zero q.
Instead, the value of ground-state q is determined by I = 0 which leads to q = q0 �= 0. This kind of
finite-momentum pairing usually accompanies the SC diode effect. However, while a q-linear term in the
free energy, i.e. κ1 �= 0 in equation (2), is enough to induce finite-momentum pairing, the SC diode effect
requires more, as will be clear soon.

When h = 0, the maximum and minimum are readily found at q̃± →±1/
√

3, and thus
q± →

√
|α|/3γ ∼

√
ε, where ε ≡ 1 − T/Tc. With nonzero but small h, the variables γ̃′, κ̃3 and β̃1,2 are

much smaller than unity and the solutions q̃± are only slightly shifted. The extrema can be obtained by
expansion, which leads to the critical currents (up to the first order in h

√
ε)

Ic± ≈ 8e

3
√

3

√
|α|3γ
β

(
1 ± Q

2

)
, (6)

where we defined the diode quality parameter

Q ≡ Ic+ − Ic−
(Ic+ + Ic−)/2

=
1

2
√

3
(2β̃1 + 4κ̃1β̃2 − 4κ̃3 + 5κ̃1γ̃

′). (7)

To see whether a given term in equation (2) is important to the SC diode effect up to the lowest orders
in h and ε, one may count the exponent of ε in it. Since κ̃1 ∼ ε−1/2, κ̃3 ∼ ε1/2, γ̃′ ∼ ε, β̃1 ∼ ε1/2 and
β̃2 ∼ ε, all the terms in equation (7) are linear in h

√
ε. On the other hand, one can show that all terms

contributing to Q up to the order ∼ h
√
ε have been included in equations (1) and (2). Thus, all the terms in

equations (1) and (2) are important while other higher order terms can be neglected. From equation (7), it
is clear that the q-linear term in the kinetic energy of Cooper pairs, i.e., the κ̃1 term in ηq, would not change
the critical current alone, because it only shifts the positions of the maximum and the minimum of
equation (5) while keeping their values unchanged. (For this reason, the divergence of κ̃1 at ε→ 0 does not
cause problems.)

2.2. Application to Rashba SCs
For example of SC diode effects, let us consider two-dimensional SCs with Rashba SOC. The normal
Hamiltonian can be written as

HR(k) =

(
k2

2m
− μ

)
σ0 + λR(kxσy − kyσx) + h · σ, (8)

where λR is the Rashba SOC strength, k = (kx, ky) is the electron wave vector, h is the magnetic field, μ is
the chemical potential, and σx,y are Pauli matrices. Two x-inverting symmetries, Px1 = σx and Px2 = σz , are
preserved when h = 0. Their effects on magnetic fields in different directions are shown in table 1. To break
a symmetry, the Zeeman term must be odd under the symmetry operation. Table 1 shows that only a
Zeeman field along the y-direction breaks both Px1 and Px2. According to our previous symmetry analysis,
a nonreciprocity in the ±x-directions is expected only if hy �= 0.

The Rashba SOC and the Zeeman field result in the following term of the GL free energy (up to the
linear order in h),

δFR =

∫
dq(qxhy − qyhx)

(
κR

1 + κR
3 |q|2 +

βR
1

2
|ψq|2

)
|ψq|2. (9)

3



New J. Phys. 24 (2022) 053014 J J He et al

Figure 1. The Rashba SC diode quality parameter Q predicted by the generalized GL theory. The inset shows schematic band
structures and the spin momentum locking. A discontinuity shows up here because we ignored terms proportional to Tc/ER,
assuming the transition temperature Tc to be much smaller than the Rashba splitting energy ER.

Thus, if a magnetic field along the y-direction, h = (0, hy, 0), is applied, the critical currents along the
±x-direction will be different, as previously obtained in equations (6) and (7) and consistent with the
symmetry analysis.

Assuming |h| � Tc � ER = 1
2 mλ2

R and treating the problem in the band basis, one may neglect the
inter-band terms and consider only the intra-band pairing Δ. With this simplification, the GL coefficients
in equation (2) can be obtained and the resulting Q-parameter is

QR =
2.7λR

|λR|
h
√
ε

Tc
×

⎧⎨
⎩

(1 + μ̃)−1/2, (μ̃ > 0)
8

7
+

16

21
μ̃+ (1 + μ̃)1/2, (−1 < μ̃ < 0)

, (10)

where μ̃ ≡ μ/ER. (Note that μ/ER = (2μ/λRkF)2 where αkF is the Rashba splitting energy at the Fermi
surface.) QR as a function of the chemical potential μ is shown in figure 1. The parameter QR has its
maximum at the band crossing point μ = 0 and decreases as the Fermi level moves away either towards the
band edge μ = −ER or towards the limit μ � ER. At μ = 0, there exists a discontinuity due to the flip of
the helicity of the spin-momentum locking. Note that the discontinuity appears also because we took the
limit Tc/ER → 0 and neglect the inter-band pairing. The calculation is done in the band basis assuming a
constant pairing breaking energy near the Fermi surface, which is true when both μ+ ER � Δ and
|μ| � Δ are satisfied. Near μ = 0, moreover, the smallness of the Fermi wave vector kF, compared to the
Cooper pair wave vector |q|, invalidates the series expansion over q/kF for the GL theory. Thus, the
discontinuity shall be smoothed out when Tc/ER is not infinitesimal. And our GL theory calculations do
not apply near μ = 0 or μ = −ER.

The quality parameter QR may also be obtained using a self-consistent Bogoliubov–de Gennes
mean-field Hamiltonian

ĤBdG =
∑

k

HR
ij (k)ψ†

i (k)ψi(k) +Δψ†
↑

(q

2
+ k

)
ψ†
↓

(q

2
− k

)
+ h.c., (11)

where i, j = ↑↓ are matrix indexes in the spin space. This method applies to wider parameter regions
although it is feasible only numerically. Note that the pairing gap Δ depends on the wave vector q since it is
determined by minimizing the free energy F(q) = −T

∑
n,k ln(1 + e−εn/T), where εn are the eigenvalues of

ĤBdG. For a given q, the corresponding supercurrent is Ix(q) = 2e∂F/∂qx. The critical currents Ic+ and
Ic− are obtained by finding the maximums of Ix(q) and −Ix(q) respectively. The diode quality parameter
QR, defined in equation (7), as a function of μ is shown in figure 2, which has qualitatively the same
features as those of figure 1 obtained with the generalized GL method. The discontinuity at μ = 0 becomes
smooth since Tc/ER is not so small. In the large μ limit, QR ∼ μ1/2, as shown by the log-scale plot in the
inset of figure 2.

The temperature dependence of QR is shown in figure 3. It gradually increases as T is lowered from Tc,
consistent with the prediction, QR ∼

√
Tc − T, by the generalized GL theory. However, as T further

decreases, QR starts to increase dramatically. (Results with temperatures near zero cannot be obtained here
due to a numerical convergence problem.)

4
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Figure 2. The SC diode quality parameter QR of Rashba spin–orbit coupled systems as a function of the chemical potential μ
calculated numerically with the microscopic self-consistent mean-field theory. The dots in the inset show the same numerical
data in the large-μ region, but in log scale. The solid line denotes the relation QR ∼ μ1/2. The parameters: the mass m = 0.5, the
Rashba strength λR = 1 (or ER = mλ2

R/2 = 0.25), the zero-field SC transition temperature Tc = 0.02, the temperature
T = 0.01, and the Zeeman energy hy = 0.004.

Figure 3. The temperature dependence of the SC diode quality parameter QR of a two-dimensional Rashba SC. The dashed
curve shows a fitting by

√
1 − T/Tc near Tc. The chemical potential μ = 0.25 and the SC transition temperature Tc = 0.05. The

other parameters are the same as those in figure 2.

Both analytical and numerical calculations show that the SC diode effect in two-dimensional Rashba
systems reaches its maximum at the band crossing point. This suggests that stronger experimental signals
may be achieved by tuning the chemical potential closer to zero by, for example, gating, as well as by
increasing the magnetic field or decreasing the temperature.

3. Discussion

We have shown that the SC diode effects in single SCs can be understood with a generalized GL theory.
They originate from the magnetochiral anisotropy induced by the SOC and the Zeeman field, which breaks
the inversion and time-reversal symmetries respectively. Applying our theory to two-dimensional Rashba
SCs, we found that this effect is the strongest at the band crossing point, which may be approached by
gating.

The experiments [9] were done in multilayer SC thin films which break inversion symmetry strongly
due to the heterostructure. This shall induce a strong out-of-plane charge polarization which is compatible
with the Rashba model. Although the two-dimensional treatment is a simplification, we believe such a
model captures the essence of the experimental systems in reference [9].

On the other hand, the SC diode effect may be experimentally realized in (quasi-) two-dimensional
Rashba SOC systems such as a LaAlO3/SrTiO3 interface or a InAs quantum well. While the former is
intrinsically superconducting, the later may be put in proximity to a (quasi-) two-dimensional SC

5
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(a three-dimensional SC may totally bury the nonreciprocal signal) or it may form a Josephson junction
between two SCs. In an InAs quantum well, the parameters are λR ≈ 15 meV nm, m ≈ 0.02me (me is the
free electron mass), and μ ≈ 239 meV [10]. Thus, the Fermi wave vector kF ≈ 0.15 nm−1 and
μ̃ = (2μ/λRkF)2 = 4.5 × 104. The GL theory results equation (10) predicts a tiny QR ≈ 1.5 × 10−4

assuming hy/Tc = 0.1 and T/Tc = 0.9. If μ→ 0 by gating, one gets QR → 9%. To further increase the
nonreciprocal signal, one can lower the temperature.

While the phenomenological theory provides a rather general illustration of the origin of SC diode
effects, further studies on concrete models are to follow in order to reveal different features of this effect in
various spin–orbit coupled systems, such as Ising SCs [13–17]. SC diode effect was also obtained on
ferromagnet–SC interfaces [18], and in topological SCs where it may be used to manipulate Majorana
fermions [19]. Another way of generating SC diode effect may be parity mixing of the order parameters,
which has been shown to induce nonreciprocal paraconductivity [5].

Interestingly, it has been shown that SC diode effects appear in Josephson junctions [10, 20–38]. This
may also be understood in the GL framework, which will be a subject of further studies. Surprisingly, the
SC diode effect in time-reversal invariant Josephson junctions has recently been reported [39], which
probably originates from a totally different mechanism [40, 41]. A theory compatible with the experimental
observations is still absent.

When we were finalizing our manuscript, we noticed a recent work [42] on a related topic and were
informed that another group [43] had been working on a similar problem.

4. Methods

4.1. Derivation of the critical currents Ic±
The critical currents, or the extrema of equation (5), are calculated perturbatively. We first find the
zero-order solutions by assuming κ̃1 = κ̃3 = γ̃ ′ = β̃1 = β̃2 = 0. They are found at

q̃0± = ±1/
√

3. (12)

With nonzero κ̃1, κ̃3, γ̃ ′, β̃1 and β̃2, I(q̃) can be expanded around q̃0± up to the order of q̃2. Keeping only
the lowest-order terms in κ̃1, κ̃3, γ̃′, β̃1, β̃2, one find the extrema of I(q̃) near q̃0± as given in equations (6)
and (7).

4.2. Derivation of GL coefficients
The GL coefficients are obtained in a standard way by applying perturbation method to the Bogoliubov–de
Gennes mean-field Hamiltonian,

HBdG(k) =

(
HR(q/2 + k) Δ̂q

Δ̂†
q −HR(q/2 − k)∗

)
, (13)

where HR(k) is the normal Hamiltonian defined in equation (8) and Δ̂q = Δqiσy is the SC pairing term.
The free energy (q-integrand) up to Δ2

q is calculated by

f (2)(q) =
|Δq|2

g
− T

4π2

∑
k,n

Tr[G(ωn, q/2 + k)ΔqGT(−ωn, q/2 − k)Δ†
q], (14)

and the fourth order term is

f (4)(q) = − T

8π2

∑
k,n

Tr[(G(ωn, q/2 + k)ΔqGT(−ωn, q/2 − k)Δ†
q)2]. (15)

g > 0 is the on-site attractive interaction strength, which is to be determined self-consistently for a given Tc.
In a Rashba SC, we neglect the inter-band pairing and get

f (2)(q) =
|Δq|2

g
− T|Δq|2

4π2

∑
n,k,±

1

iωn − ξ±(k) − δ±(k)

1

iωn + ξ±(k) − δ±(k)
,

=
|Δq|2

g
− T|Δq|2

4π2

∑
n,±

∫
dξ±ν±

1

iωn − ξ± − δ±

1

iωn + ξ± − δ±
, (16)

where ξ±(k) = 1
2 (ξe

± − ξh
±) and δ±(k) = 1

2 (ξe
± + ξh

±), with ξe
±(k) and ξh

±(k) being the eigen-values of
HR(q/2 + k) and −HR(q/2 − k)∗ respectively. The pair-breaking energies δ±(k) contains contributions

6
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from both the Cooper pair wave vector q and the Zeeman field h = hyŷ. In the second line, we changed the
summation over k into the integral over the energy ξ± by introducing the densities of states ν±. Assuming
Δq is small, δ± and ν± may be treated as a constants, and thus

f (2)(q) =
|Δq|2

g
− T|Δq|2

4π2

∑
±
R

[ ∞∑
n=0

2π

ωn + iδ

]

=
|Δq|2

g
− T|Δq|2

4π2

∑
±
R

[ ∞∑
n=0

2π

ωn

∞∑
l=0

(
−iδ±
ωn

)l
]

(17)

=
|Δq|2

g
− T|Δq|2

4π2

∑
±

∞∑
n=0

2π

ωn

∞∑
l=0

(−1)l

(
δ±
ωn

)2l

=
|Δq|2

g
− T|Δq|2

4π2

∑
±

[
Tc − T

T2
c

− δ2
±

7ζ(3)

4π2T3
+ δ4

±
31ζ(5)

16π4T5

]
+ O(δ5

±). (18)

The calculation of f (4)(q) follows a similar procedure.
Keeping the terms in f (2)(q) and f (4)(q) up to the fourth order in q and to the first order in hy, we obtain

the GL coefficients as follows.
When μ > 0,

αR
+ =

m(T − Tc)

πTc
, (19)

γR
+ =

7ζ(3)

16π3

ER + μ

T2
c

, (20)

κR
1+ = −7ζ(3)

4π3

hymλR

(
1 + 1

2μ/ER

)
T2

c

, (21)

κR
3+ =

93ζ(5)

64π5

hyλRER

T4
c

(
1 +

1

2
μ/ER

)
(1 + μ/ER), (22)

γ ′R
+ = −93ζ(5)

512π5

(ER + μ)2

mT4
c

, (23)

βR
+ =

7ζ(3)

16π3

m

T2
c

, (24)

βR
1+ =

93ζ(5)hy

32π5

2ER + μ

T4
cλR

, (25)

βR
2+ = −93ζ(5)

128π5

ER + μ

T4
c

. (26)

When μ < 0,

αR
− =

αR
+√

1 + μ/ER

, (27)

γR
− =

7ζ(3)

16π3

√
ER

√
ER + μ

T2
c

, (28)

κR
1− = −7ζ(3)

4π3

hymλR

√
1 + μ/ER

T2
c

, (29)

κR
3− =

93ζ(5)

64π5

hyλRER

T4
c

(1 + μ/ER)3/2, (30)

γ ′R
− =

γ ′R
+√

1 + μ/ER

, (31)
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βR
− =

βR
+√

1 + μ/ER

, (32)

βR
1− =

93ζ(5)hy

32π5

(
√

ER +
√

ER + μ)2

T4
cλR

, (33)

βR
2− = −93ζ(5)

128π5

√
ER + μ

(√
ER + μ+

√
ER

)
T4

c

. (34)

ζ(x) is the Riemann zeta function and ER = mλ2
R/2.

The expression of QR in equation (10) is obtained by substituting the above results into equation (7).
The contributions of the four terms are of the same order of magnitude (see supplementary
(https://stacks.iop.org/NJP/24/053014/mmedia)) and thus none of them can be neglected. It is also found
that the discontinuity of QR at μ = 0 comes from β1 and β2, i.e. from the terms quartic in Δq.
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[15] Xi X, Wang Z, Zhao W, Park J-H, Law K T, Berger H, Forró L, Shan J and Mak K F 2016 Ising pairing in superconducting NbSe2

atomic layers Nat. Phys. 12 139
[16] Yuan N F Q, Zhou B T, He W-Y and Law K T 2016 Ising superconductivity in transition metal dichalcogenides AAPPS Bull. 26

12–9
[17] Liu G-B, Shan W-Y, Yao Y, Yao W and Xiao D 2013 Three-band tight-binding model for monolayers of group-VIB transition

metal dichalcogenides Phys. Rev. B 88 085433

8

https://stacks.iop.org/NJP/24/053014/mmedia
https://orcid.org/0000-0002-6245-1021
https://orcid.org/0000-0002-6245-1021
https://doi.org/10.1038/s41467-018-05759-4
https://doi.org/10.1038/s41467-018-05759-4
https://doi.org/10.1103/revmodphys.82.1959
https://doi.org/10.1103/revmodphys.82.1959
https://doi.org/10.1002/adma.201603345
https://doi.org/10.1002/adma.201603345
https://doi.org/10.1126/sciadv.1602390
https://doi.org/10.1126/sciadv.1602390
https://doi.org/10.1103/physrevlett.121.026601
https://doi.org/10.1103/physrevlett.121.026601
https://doi.org/10.1103/physrevb.98.054510
https://doi.org/10.1103/physrevb.98.054510
https://doi.org/10.1038/s41467-019-10658-3
https://doi.org/10.1038/s41467-019-10658-3
https://doi.org/10.1103/physrevlett.87.236602
https://doi.org/10.1103/physrevlett.87.236602
https://doi.org/10.1038/s41586-020-2590-4
https://doi.org/10.1038/s41586-020-2590-4
https://doi.org/10.1038/s41565-021-01009-9
https://doi.org/10.1038/s41565-021-01009-9
https://doi.org/10.1088/0953-8984/8/3/012
https://doi.org/10.1088/0953-8984/8/3/012
https://doi.org/10.1126/science.aab2277
https://doi.org/10.1126/science.aab2277
https://doi.org/10.1038/nphys3580
https://doi.org/10.1038/nphys3580
https://doi.org/10.1038/nphys3538
https://doi.org/10.1038/nphys3538
https://doi.org/10.22661/AAPPSBL.2016.26.3.12
https://doi.org/10.22661/AAPPSBL.2016.26.3.12
https://doi.org/10.22661/AAPPSBL.2016.26.3.12
https://doi.org/10.22661/AAPPSBL.2016.26.3.12
https://doi.org/10.1103/physrevb.88.085433
https://doi.org/10.1103/physrevb.88.085433


New J. Phys. 24 (2022) 053014 J J He et al

[18] Silaev M A, Aladyshkin A Y, Silaeva M V and Aladyshkina A S 2014 The diode effect induced by domain-wall superconductivity J.
Phys.: Condens. Matter 26 095702

[19] Liu X-J and Lobos A M 2013 Manipulating Majorana fermions in quantum nanowires with broken inversion symmetry Phys. Rev.
B 87 060504(R)

[20] Reynoso A A, Usaj G, Balseiro C A, Feinberg D and Avignon M 2008 Anomalous Josephson current in junctions with spin
polarizing quantum point contacts Phys. Rev. Lett. 101 107001

[21] Zazunov A, Egger R, Jonckheere T and Martin T 2009 Anomalous Josephson current through a spin–orbit coupled quantum dot
Phys. Rev. Lett. 103 147004

[22] Margaris I, Paltoglou V and Flytzanis N 2010 Zero phase difference supercurrent in ferromagnetic Josephson junctions J. Phys.:
Condens. Matter 22 445701

[23] Yokoyama T, Eto M and Nazarov Y V 2014 Anomalous Josephson effect induced by spin–orbit interaction and Zeeman effect in
semiconductor nanowires Phys. Rev. B 89 195407

[24] Dolcini F, Houzet M and Meyer J S 2015 Topological Josephson φ0 junctions Phys. Rev. B 92 035428
[25] Chen C-Z, He J J, Ali M N, Lee G-H, Fong K C and Law K T 2018 Asymmetric Josephson effect in inversion symmetry breaking

topological materials Phys. Rev. B 98 075430
[26] Pal S and Benjamin C 2019 Quantized Josephson phase battery Europhys. Lett. 126 57002
[27] Kopasov A A, Kutlin A G and Mel’nikov A S 2021 Geometry controlled superconducting diode and anomalous Josephson effect

triggered by the topological phase transition in curved proximitized nanowires Phys. Rev. B 103 144520
[28] Dell’Anna L, Zazunov A, Egger R and Martin T 2007 Josephson current through a quantum dot with spin–orbit coupling Phys.

Rev. B 75 085305
[29] Tanaka Y, Yokoyama T and Nagaosa N 2009 Manipulation of the Majorana fermion, Andreev reflection, and Josephson current

on topological insulators Phys. Rev. Lett. 103 107002
[30] Liu J-F and Chan K S 2010 Anomalous Josephson current through a ferromagnetic trilayer junction Phys. Rev. B 82 184533
[31] Alidoust M and Linder J 2013 ϕ-state and inverted Fraunhofer pattern in nonaligned Josephson junctions Phys. Rev. B 87 060503
[32] Brunetti A, Zazunov A, Kundu A and Egger R 2013 Anomalous Josephson current, incipient time-reversal symmetry breaking,

and Majorana bound states in interacting multilevel dots Phys. Rev. B 88 144515
[33] Lu B, Yada K, Golubov A A and Tanaka Y 2015 Anomalous Josephson effect in d-wave superconductor junctions on a topological

insulator surface Phys. Rev. B 92 100503
[34] Bergeret F S and Tokatly I V 2015 Theory of diffusive ϕ0 Josephson junctions in the presence of spin–orbit coupling Europhys.

Lett. 110 57005
[35] Campagnano G, Lucignano P, Giuliano D and Tagliacozzo A 2015 Spin–orbit coupling and anomalous Josephson effect in

nanowires J. Phys.: Condens. Matter 27 205301
[36] Szombati D B, Nadj-Perge S, Car D, Plissard S R, Bakkers E P A M and Kouwenhoven L P 2016 Josephson φ0-junction in

nanowire quantum dots Nat. Phys. 12 568
[37] Alidoust M 2020 Critical supercurrent and ϕ0 state for probing a persistent spin helix Phys. Rev. B 101 155123
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