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A phenotype centric benchmark of variant prioritisation tools
Denise Anderson 1 and Timo Lassmann1

Next generation sequencing is a standard tool used in clinical diagnostics. In Mendelian diseases the challenge is to discover the

single etiological variant among thousands of benign or functionally unrelated variants. After calling variants from aligned

sequencing reads, variant prioritisation tools are used to examine the conservation or potential functional consequences of

variants. We hypothesised that the performance of variant prioritisation tools may vary by disease phenotype. To test this we

created benchmark data sets for variants associated with different disease phenotypes. We found that performance of 24 tested

tools is highly variable and differs by disease phenotype. The task of identifying a causative variant amongst a large number of

benign variants is challenging for all tools, highlighting the need for further development in the field. Based on our observations,

we recommend use of five top performers found in this study (FATHMM, M-CAP, MetaLR, MetaSVM and VEST3). In addition we

provide tables indicating which analytical approach works best in which disease context. Variant prioritisation tools are best suited

to investigate variants associated with well-studied genetic diseases, as these variants are more readily available during algorithm

development than variants associated with rare diseases. We anticipate that further development into disease focussed tools will

lead to significant improvements.
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INTRODUCTION

Dramatic progress in next-generation sequencing technologies
has led to whole-genome sequencing (WGS) and whole-exome
sequencing (WES) becoming valuable tools when attempting to
diagnose patients with genetic diseases.1 Despite this progress,
many patients remain undiagnosed even after sequencing
efforts.2 WGS has many advantages over WES including coverage
of non-coding regions, better coverage of exonic regions and the
ability to detect copy number variation, all of which lead to
better diagnostic yield.3–6 Despite this, WES is more widely used
than WGS, due to WGS being cost prohibitive for some
applications, however a shift in this balance is expected as the
cost of WGS continues to fall.7 WES typically discovers between
60,000 and 100,000 variants per individual.8 The vast majority of
those are benign or unrelated to the observed disease
phenotype of the patient. Discovering causative variants from
this large background is extremely challenging, exacerbated by
the presence of around 100 loss of function variants unrelated to
the presented disease phenotype.9 Furthermore, variant detec-
tion pipelines require expert calibration to ensure optimal results
for each sequencing platform.10 Variant prioritisation tools assist
in the discovery of putative causal variants for follow-up. There
are many such tools available, making it difficult for the end user
to select the most appropriate tool for their particular study.
Previous work demonstrated that the performance of these tools
varies widely.11–17

Broadly speaking, variant prioritisation tools can be classified
into four categories: (1) tools exploiting the fact that evolutionarily
conserved regions are likely to be functional and (2) tools that
predict the effect of variants on protein sequence and structure
and (3) machine learning classifiers of variant pathogenicity that
incorporate conservation scores, protein functional prediction
scores and other functional genomic data as predictor variables

and (4) ensemble methods that are similar to machine learning
classifiers but additionally include functional predictions from a
number of variant prioritisation tools.
We hypothesise that the performance of tools varies by disease

phenotype. To test this hypothesis we created an automatic
pipeline to generate disease stratified benchmark data sets for
variant prioritisation tools. In a three step process, we used (a) the
Human Phenotype Ontology (HPO) resource to obtain terms for
human phenotypic abnormalities associated with disease,18 (b)
linked these to the associated genes using the Phenolyzer tool19

and finally retrieved all known pathogenic variants in these genes
from ClinVar.20 In total we tested 24 variant prioritisation tools
across 4026 disease phenotypes.

RESULTS

Categorisation of variant prioritisation tools

The latest publication of dbNSFP21 categorises variant prioritisation
tools as conservation scores, functional prediction scores, general
prediction scores and ensemble scores. We used six conservation
scores (GERP++, phastCons100way-vertebrate, phastCons20way-
mammalian, phyloP100way-vertebrate, phyloP20way-mammalian
and SiPhy), nine functional prediction scores (FATHMM, LRT,
MutationAssessor, MutationTaster, PolyPhen2-HDIV, PolyPhen2-
HVAR, PROVEAN, SIFT and VEST3), six general prediction scores
(CADD, DANN, Eigen-PC, fathmm-MKL, fitCons-i6 and GenoCanyon)
and three ensemble scores (M-CAP, MetaLR and MetaSVM).

Distribution of genes and pathogenic variants in disease stratified
gene panels

We analysed 11,722 HPO ‘Phenotypic abnormality’ terms and
found that 6627 of these had at least one gene returned by
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Phenolyzer. We refer to these gene lists as gene panels. Many of
the HPO terms had no gene panels because lower levels of the
ontology are very specific in regards to the ‘Phenotypic
abnormality’. For example, HP:3000079 is the term for ‘Abnorm-
ality of mandibular symphysis’ and this term had no genes
returned by Phenolyzer but the ancestor of HP:3000079
(HP:0000924 ‘Abnormality of the skeletal system’) had 2743 genes
returned by Phenolyzer. Table 1 shows the distribution of the
number of genes returned by Phenolyzer for the HPO terms,
based on the six gene panel types outlined in Methods
(Performance evaluation). The distribution of the number of
genes per HPO term shifts as expected, toward each term being
associated with fewer genes as the confidence threshold
(stringency) is increased. When using the expanded gene panels
with no score threshold, the number of genes returned for each
HPO term was very high, with 5727 terms associated with more
than 1000 genes. An example of this can be seen when querying
the Phenolyzer web server with ‘autism’, where the gene panel
contains 474 genes versus the expanded gene panel with 18,249
genes.
There were 6113 unique gene symbols across all the gene

panels returned by Phenolyzer, and 24,632 unique gene symbols
(82% of all protein-coding genes) across all the expanded gene
panels. These were used to query dbNSFP by HGNC symbol for
annotated variants within these genes. dbNSFP did not contain
variant annotation for 970 of the 6113 genes (16%) from the
gene panels, nor 7281 of the 24,632 genes (30%) from the
expanded gene panels. Using Entrez Gene annotation (down-
loaded from ftp://ftp.ncbi.nih.gov/gene/DATA/GENE_INFO/
Mammalia/Homo_sapiens.gene_info.gz on 16 August, 2016)
we found that the 970 genes without dbNSFP annotation were
primarily probable genes of unknown type (62.5%), pseudo-
genes (18.2%) and non-coding RNA (10.3%), and the 7281 genes
were primarily non-coding RNA (53.5%), pseudogenes (26.1%)
and probable genes of unknown type (9.7%). In summary, we
were able to retrieve dbNSFP variant annotation for 5143 genes
across the gene panels and 17,351 genes across the expanded
gene panels.
Next we filtered the dbNSFP variant annotation to retain ClinVar

pathogenic variants. Of the 5143 annotated genes for the gene
panels, only 2438 genes contained previously described patho-
genic variants (n = 22,941) and of the 17,351 annotated genes for

the expanded gene panels, only 2930 genes contained patho-
genic variants (n = 24,792). When restricting this to a complete
case analysis (i.e., where all tools are required to have a score for
each variant) the number of pathogenic variants reduces to 11,284
for the gene panels and 12,311 for the expanded gene panels
(Table 2). As expected, the number of pathogenic variants per
HPO term decreases as the confidence threshold is increased. The
expanded gene panel with no score threshold shows the same
outlying distribution seen in Table 1, due to the high number of
genes returned by Phenolyzer for each HPO term. Hence, to use
results from the expanded gene panel would involve choosing a
score threshold to increase the stringency of genes associated
with HPO terms, and for our purposes it would be difficult to
choose a single score threshold to apply to all terms. The same
reasoning applies to the gene panels, where we have chosen to
use results with no score threshold given the difficulty in choosing
a score threshold to use across all HPO terms.
Given that we aimed to assess performance using both the area

under the receiver operating characteristic curve (auROC) and the
area under the precision-recall curve (auPRC), we further filtered
the HPO terms to ensure each variant prioritisation tool had scores
for at least 25 ClinVar pathogenic variants. This number of variants
results in an acceptable 95% confidence interval width at an
auROC of 0.7 (95% CI: 0.58–0.82). Filtering reduced the number of
HPO terms we investigated from 6065 to 4026 for the complete
case analysis, and from 6421 to 4108 for the analysis using all
pathogenic variants. In summary, we chose to use Phenolyzer
gene panels with no score threshold when assigning disease
genes to each HPO term. Further to this, we required each HPO
term to have variant prioritisation tool scores for at least 25 ClinVar
pathogenic variants.

Missing data across variant prioritisation tools

Variant prioritisation tools do not always provide scores for every
variant contained in dbNSFP. To assess missing data we used the
HPO terms filtered to have at least 25 ClinVar pathogenic variants
(n = 4108). For each tool, the proportion of pathogenic variants
with missing scores across these HPO terms differs (Supplemen-
tary Figure 1). Many of the tools have complete variant scores
across most HPO terms but a number of tools (FATHMM, LRT,
M-CAP, MetaLR, MetaSVM, MutationAssessor, PolyPhen2-HDIV,

Table 1. Distribution of the number of genes returned by Phenolyzer

Phenolyzer gene list type 1–10 11–50 51–250 251–500 501–1000 >1000

Gene panels threshold = 0 3637 1450 1041 259 152 88

Gene panels threshold = 0.25 4807 1551 268 1 0 0

Gene panels threshold= 0.5 6108 515 4 0 0 0

Extended gene panels threshold= 0 214 63 204 182 237 5727

Extended gene panels threshold= 0.25 4696 1344 388 73 68 58

Extended gene panels threshold= 0.5 5874 683 70 0 0 0

Table 2. Distribution of the number of ClinVar pathogenic variants returned by dbNSFP for the 11,722 HPO Phenotypic abnormality terms

Phenolyzer gene list type 0 1–10 11–50 51–250 251–500 501–1000 >1000

Gene panels threshold= 0 5657 1219 1611 1680 617 445 493

Gene panels threshold= 0.25 5848 1556 1974 1746 413 148 37

Gene panels threshold= 0.5 6015 1957 2305 1354 85 6 0

Extended gene panels threshold= 0 5217 100 105 101 107 194 5898

Extended gene panels threshold = 0.25 5838 1536 1913 1637 385 189 224

Extended gene panels threshold= 0.5 6006 1898 2227 1370 156 62 3
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PolyPhen2-HVAR, PROVEAN, SIFT and VEST3) have missing scores
for a significant proportion of the variants (> 20%) for hundreds of
the terms. We also found that M-CAP had a much higher
percentage of missing data across the benign variants (38%) when
compared to all other variant prioritisation tools where the
percentage of missing data ranged between 0 and 11%. These
results show that tools do show large differences in the amount of
missing scores across HPO terms. Subsequent main results are
based on the complete case analysis so that assessment of tool
performance is unaffected by missing data. We used Variant Effect
Predictor (Ensembl release 90—August 2017)22 to annotate all
pathogenic variants included in the complete case analysis (n =
11,284) and found that almost all were classified as missense
variants (94.4%). The remaining variant classifications were splice
region (3.8%), stop gain (2.9%), synonymous (1.6%), stop lost
(0.9%), NMD transcript (0.2%) and stop retained (0.1%) [Note: a
single variant can receive more than one classification, therefore
percentages will not sum to 100%].

Characteristics of Phenolyzer genes

We investigated the dbNSFP gene annotations describing the
characteristics of gene panels returned by Phenolyzer. The first
measure we used was the predicted probability of gene
haploinsufficiency,23 where the higher the predicted probability
of haploinsufficiency, the less likely the gene will be functional
with only one working copy. Hence, dominant genetic disorders
tend to be associated with haploinsufficiency. Supplementary
Figure 2 shows the distribution of this measure for all genes (n =
17,082) and for the Phenolyzer genes (n = 4679). Phenolyzer
genes do show a shift toward higher probabilities of haploinsuf-
ficiency when compared to the distribution of probabilities for all
genes, reflecting the enrichment of dominant genetic disorders
amongst the HPO terms. The second measure we used was the
predicted probability of recessive disease causation9 and
Supplementary Figure 3 shows the distribution for all genes
(n = 14,142) and for the Phenolyzer genes (n = 4338). A shift
toward higher probabilities of recessive disease causation is
observed for the Phenolyzer genes due to enrichment of
recessive genetic disorders across the HPO terms. The third
measure we used was residual variation intolerance scores
(RVIS),24 where higher scores indicate greater tolerance of the
gene to mutational burden. Supplementary Figure 4 shows the
distribution of RVIS percentile ranks for all genes (n = 16,956) and
for the Phenolyzer genes (n = 4774). Phenolyzer genes show a
shift toward being less tolerant to mutational burden. This is due
to the enrichment of genes for Mendelian diseases and genes for
disease types that are intolerant to mutational burden. The fourth
measure we used was LoFtool gene intolerance scores,25 where
lower scores indicate greater gene intolerance to functional
change. Supplementary Figure 5 shows the distribution of these
scores for all genes (n = 14,515) and for Phenolyzer genes (n =
4285). Phenolyzer genes show a shift toward being more
intolerant to functional change due to the enrichment of genes
associated with disease. Hence, we find that the genes returned
by Phenolyzer are enriched in genes responsible for Mendelian
diseases, including dominant and recessive disorders. This is due
to Phenolyzer‘s use of Mendelian disease databases as the main
source of gene–disease associations.
We also assessed similarity of gene panels across the HPO

terms. Supplementary Figure 6 shows a heatmap of the Jacard
index for all pairs of gene panels across the HPO terms used in the
complete cases analysis (n = 4026). Overall similarity is low
(Jaccard index <0.2; >98% of all pairwise comparisons) with very
few comparisons showing moderate (Jaccard index 0.4–0.6; <1%
of all pairwise comparisons) or strong similarity (Jaccard index
>0.8; <1% of all pairwise comparisons).

Performance of variant prioritisation tools

The overall performance of tools varies across HPO terms (Fig. 1
and Supplementary Figures 7–11). For both the auROC and the
auPRC, the top performing cluster of tools includes the three
ensemble scores (M-CAP, MetaLR and MetaSVM) and two
functional prediction scores (FATHMM and VEST3). These five
tools have high auROC values across most of the HPO terms but
for the auPRC performance ranges from poor to strong. The six
conservation scores (GERP++, phastCons100way-vertebrate,
phastCons20way-mammalian, phyloP100way-vertebrate,
phyloP20way-mammalian and SiPhy) are in the lowest performing
clusters of tools for both the auROC and the auPRC.
Heatmaps of performance when analysing all variants show that

the aforementioned tools remain top performers, but two general
prediction scores (CADD and Eigen-PC) are also amongst the top
performing cluster of tools for the auPRC (Supplementary Figures
12–17). The conservation scores remain amongst the lowest
performers, but phastCons100way-vertebrate, phyloP100way-
vertebrate and SiPhy show stronger performance than GERP++,
phastCons20way-mammalian and phyloP20way-mammalian for
the auROC.

Performance of variant prioritisation tools by number of
pathogenic variants

Next, we investigated whether performance depends on the
number of available pathogenic variants. For all tools it is clear
that the auROC is variable when the number of pathogenic
variants is low (Supplementary Figure 18). The auROC stabilises to
a constant value as the number of pathogenic variants increases.
Strong performing tools based on the auROC versus number of
pathogenic variants are FATHMM, M-CAP, MetaLR, MetaSVM and
VEST3 where the bulk of auROC values are above 0.8.
The same trend can be observed for the auPRC (Supplementary

Figure 19). However, for most tools strong performance (auPRC
>0.8) is only achieved when there are many thousands of
pathogenic variants. The strongest performing tools based on
the auPRC versus number of pathogenic variants are FATHMM, M-
CAP and MetaLR, where there is more of a shift in the distribution
toward the top left of the plots when compared to other tools
(indicating better overall performance across varying numbers of
pathogenic variants).

Performance of top variant prioritisation tools across specific HPO
phenotypic abnormalities

Here we examined performance of the top performing tools in
different disease contexts. We focussed on the auPRC given that
this measure is more sensitive to the number of false positives
(FPs) and therefore more relevant to the clinical setting. We
considered six top level HPO terms and their descendant terms.
The six top level terms are Abnormality of metabolism/home-
ostasis (HP:0001939), Abnormality of the cardiovascular system
(HP:0001626), Abnormality of the immune system (HP:0002715),
Abnormality of the musculature (HP:0003011), Abnormality of the
nervous system (HP:0000707) and Abnormality of the respiratory
system (HP:0002086).
Despite being the top performers, all five tools showed weak to

moderate performance (0.2 < auPRC < 0.6) for most descendant
terms of the six top level HPO terms (Fig. 2). M-CAP shows the
strongest performance across all top level HPO terms and
descendants, except ‘Abnormality of metabolism/homeostasis’
where MetaLR is the best performer. For the five HPO terms and
descendants where M-CAP is the top performer, MetaLR mirrors
the performance of M-CAP albeit being slightly less accurate. For
all tools, best performance is seen for ‘Abnormality of the
cardiovascular system’ as evidenced by the shift towards higher
auPRC values when compared to the other HPO terms. Worst
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performance is seen for ‘Abnormality of the immune system’

where there is a shift towards lower auPRC values when compared
to the other HPO terms.
For the auROC most top tools perform strongly (auROC >0.8) for

most descendant terms of the six top level HPO terms, though
VEST3 shows weaker performance than the other tools (Supple-
mentary Figure 20). ‘Abnormality of the immune system’ shows
the widest interquartile range across tools when compared to the
other HPO terms.
Strikingly, we discovered that the performance of tools depends

on the disease phenotype, even when the broadest terms are

used. This suggests that depending on observed disease
phenotype, different tools should be used to discover causative

variants. To further explore this, we investigated HPO terms where
the top performing tools show discrepancies in performance.

Discrepancies in performance across top variant prioritisation
tools

To explore the performance differences amongst the five best
tools, we plotted the 83 HPO terms where the range in auPRC
values across the top tools is greater than 0.5 (Fig. 3). The terms

Fig. 1 Heatmaps showing auROC (a) and auPRC (b) values for the 4026 HPO ‘Phenotypic abnormality’ terms when using Phenolyzer gene
panels with no score threshold. Right-hand plots show the top level ontology (HP:0000118 ‘Phenotypic abnormality’) and broad child terms of
‘Phenotypic abnormality’. Left-hand plots show the remaining HPO terms not plotted in the right-hand plots. Colour coding of columns
represents the score type for each variant prioritisation tool where black= conservation scores, red= ensemble scores, blue= functional
prediction scores and yellow=general prediction scores. The heatmap colour scale of the auROC (a) values has been adjusted to highlight
moderate to strong performance by only colour coding auROC values greater than or equal to 0.7
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are grouped under their parent term, and it can be seen that in
most cases FATHMM, M-CAP and MetaLR show superior perfor-
mance to MetaSVM and VEST3 for ‘Neoplasm’ and ‘Abnormality of

metabolism/homeostasis’ terms. For ‘Abnormality of the cardio-
vascular system’ terms, VEST3 shows poor to weak performance
whereas the other four tools show moderate to strong perfor-
mance. Similarly for ‘Abnormality of the skeletal system’ terms,

MetaSVMs weak performance contrasts the moderate to strong
performance of the other four tools. There is variable performance
across the five tools when considering ‘Abnormality of the

nervous system’ terms, with M-CAP being the strongest performer
for most terms, but also being one of the weakest performers for
one term.
For the auROC, top performing tools do not generally show

large discrepancies across the HPO terms. There are 23 terms
where the range in auROC values across the top tools is greater

than 0.2 (Supplementary Figure 21). Most of these terms are due
to FATHMM, M-CAP, MetaLR and MetaSVM showing stronger
performance than VEST3 in identifying a small number of
pathogenic variants from a small number of genes. This is likely

due to the FATHMM algorithm where the weighting scheme leads
to ‘type 2 circularity’. This occurs when a variant is more likely to
be predicted as pathogenic if other variants in the same protein

are also predicted to be pathogenic14 (M-CAP, MetaLR and
MetaSVM use FATHMM scores in their algorithms).

Top performing tools show discrepancies in the auPRC, and the
pattern of discrepancies differs by HPO broad phenotype terms.
We found that discrepancies in the auROC is primarily due to the
FATHMM weighting scheme. Expanded results for discrepancies in
performance can be found in Supplementary Tables 1 and 2.
Supplementary Table 1 lists the 549 HPO terms where the range in
auPRC values is greater than 0.3 and Supplementary Table 2 lists
the 191 terms where the range in auROC values is greater
than 0.15.

HPO phenotypic abnormality terms where all top performing
variant prioritisation tools perform strongly or poorly

In addition to the tables provided for discrepancies in perfor-
mance across the top variant prioritisation tools, we also provide
tables where all top tools perform strongly or poorly. These tables
identify HPO terms where top tools can be used interchangeably.
Supplementary Table 3 lists the 389 HPO terms where all top tools
have strong auROC values (>0.9). Supplementary Table 4 lists the
515 HPO terms where all top tools have moderate to strong auPRC
values (>0.7) and this tends to occur for terms which are
associated with thousands of pathogenic variants (Supplementary
Figure 19). There are no HPO terms where all top tools perform
poorly for the auROC (<0.5). Supplementary Table 5 lists the 387
HPO terms where all top tools perform poorly for the auPRC (<0.2)
and this is primarily for terms with a small number of pathogenic
variants (<200).

Abnormality of the nervous system Abnormality of the respiratory system

Abnormality of the immune system Abnormality of the musculature

Abnormality of metabolism/homeostasis Abnormality of the cardiovascular system
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Fig. 2 Boxplots showing the auPRC values across the top performing variant prioritisation tools for selected HPO ‘phenotypic abnormality’
terms. The vertical red line indicates a strong performance value of 0.8
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Recommended use of the performance results for the top variant
prioritisation tools

We produced easily searchable and filterable HTML tables of the

performance results for the top five tools (Supplementary Files 1
and 2). In practice, we would recommend firstly querying the
tables for a HPO term of interest and considering whether any of
the top tools perform adequately. Good performance would

require an auROC of at least 0.8, while the auPRC should be
greater than the ratio of pathogenic to benign variants. If
performance is found to be adequate then the best performing
tool of the five should be used for variant annotation. For users

who would prefer to implement a consensus strategy for variant
annotation, we would suggest using the top two or three
performing tools of the five.

Discussion

We found that performance of variant prioritisation tools does
differ by disease phenotype. An example of this is seen in Fig. 2
where tools perform better for HPO terms associated with
‘Abnormality of the cardiovascular system’ versus ‘Abnormality
of the immune system’. Differences are due to the number of
pathogenic variants associated with each HPO term, as perfor-
mance is dependent on the ratio of pathogenic to benign variants
(Supplementary Figures 18 and 19). Current state of knowledge
regarding genetic causes of particular disease phenotypes also
contributes to differences in performance. Diseases where causal
gene variants are well characterised will be overrepresented in the
set of pathogenic variants used for tool training in comparison to
less understood diseases. Hence variant prioritisation using

Fig. 3 Heatmap showing auPRC for HPO ‘Phenotypic abnormality’ terms where top performing variant prioritisation tools differ by greater
than 0.5. Colour coding of rows is by the parent HPO term. Row annotation includes term and [Number of ClinVar pathogenic variants
(number of genes returned by Phenolyzer)]
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prediction tools alone is best suited to well-studied genetic
diseases involving a large number of causal variants. Other
scenarios will require supplementation of tool scores with clinical
knowledge, additional data and filtering strategies to better
prioritise variants.
Variant prioritisation tools vary in their ability to discriminate

between pathogenic and benign variants. This is primarily due to
differing methodologies used by the tools to score variant
pathogenicity. We find that the best performing tools (FATHMM,
M-CAP, MetaLR, MetaSVM and VEST3) employ machine learning
techniques and have markedly superior performance when
compared to conservation-based scores (Fig. 1). Conservation
scores consider a single factor contributing to the potential for
variant pathogenicity (i.e., conservation of the genomic region),
whereas machine learning algorithms incorporate a greater range
of predictor variables. This additional information adds to the
sensitivity of the classifier because region conservation alone does
not fully explain variant pathogenicity. It is important to note that
tools assessed in this study may have been trained on the
pathogenic variants used in our analyses. This will result in
optimistic auROC and auPRC values. We made the pragmatic
decision to include all variants regardless of whether they may
have been used for training. This is warranted given that our aim is
to assess performance of tools ‘out of the box’ across phenotypes
so we can provide advice to the end user. All tools show poor
performance in identifying a small number of pathogenic variants
from a large number of benign variants (Supplementary Figure 19),
highlighting the need for further development in the field.
Advances will occur through dynamic incorporation of increasing
amounts of publicly available data and by building classifiers that
are disease specific.26

It is important to be aware that some variant prioritisation tools
will not have scored all variants of interest. This is due to some
tools focussing on well characterised transcripts, rather than
attempting to score all possible non-synonymous single-nucleo-
tide variants (nsSNVs) in the genome.12 We conducted a complete
case analysis so that comparisons between tools were unaffected
by missing data. However, when attempting to prioritise variants,
more complete data is obviously preferred. For some HPO
‘Phenotypic abnormality’ terms, the amount of missing data is
quite high (> 20%) for some tools, including our top performers
(Supplementary Figure 1), and in these cases it would be advisable
to compare results to tools with negligible missing data. In
particular, we would recommend CADD be included by default in
variant prioritisation pipelines as it performed well when assessed
on all variants (Supplementary Figure 12).
It is clear that recommendations made by the American College

of Medical Genetics and Genomics (ACMG)27 are well founded,
whereby in silico prediction tools are not sophisticated enough to
be used in isolation for clinical diagnoses. Nevertheless, we find
utility in the inclusion of such tools in variant prioritisation
pipelines and would recommend the top performers found in this
study (FATHMM, M-CAP, MetaLR, MetaSVM and VEST3). This aligns
with ACMG advice, where consultation of predictions from more
than one tool is generally preferred given the often found
discrepancies in prediction between tools. Looking forward,
performance of such tools can only improve given the rapidly
increasing amount of data available for training classifiers and
active development in the field. We are confident that major
advances are now achievable and foresee a time where variant
prioritisation tools will be elevated to use in clinical settings,
contributing to the model of precision medicine.

METHODS

To assess performance of variant prioritisation tools by disease phenotype
we developed an automated pipeline to integrate phenotypes with
annotated variants. This pipeline allows us to update the benchmark data

set with ease when new causative variants are discovered. Each
component of the pipeline is fully described below:

Human phenotype ontology

The HPO provides standardised terms to describe disease phenotypes.18

For our study the HPO allows us to separate diseases into a fixed number
of classes based on phenotype. We used package ontologyIndex28 within R
3.2.029 to read in the HPO obo file which was downloaded from http://
human-phenotype-ontology.github.io/downloads.html on the 13th of
January 2017. The HPO contains disease phenotypes under the umbrella
term ‘Phenotypic abnormality’ (HP:0000118). We retrieved all 11,722
descendant terms of the ‘Phenotypic abnormality’ term using the
get_descendants() function of the ontologyIndex package. Two examples
of child terms of ‘Phenotypic abnormality’ include ‘Abnormality of the
skeletal system’ and ‘Abnormality of the immune system’.

Linking disease phenotypes to genes using Phenolyzer

Phenolyzer is a tool linking individual (or multiple) phenotypic terms to
candidate genes.19 Here we use this tool to generate gene lists for all
11,722 HPO terms obtained above. We used the command line version
available at https://github.com/WGLab/phenolyzer ensuring that we
generated the same result as the Phenolyzer web server with default
settings (i.e., options –p -ph -logistic -addon DB_DISGENET_GENE_DISEA-
SE_SCORE,DB_GAD_GENE_DISEASE_SCORE -addon_weight 0.25). Phenoly-
zer matches each term to disease databases (Disease Ontology,30 CTD
Medic vocabulary,31 HPO,32 OMIM synonyms,33 OMIM descriptors and
Phenolyzer’s compiled disease vocabulary) and generates gene lists by
using the resultant disease name(s) to query databases describing
gene–disease associations (OMIM,33 Orphanet,34 ClinVar,35 Gene Reviews36

and GWAS Catalog.37) A score is assigned to each gene in the list reflecting
the evidence for the gene–disease association. Gene scores in each list are
normalised by dividing all scores by the maximum score. This results in
scores ranging between 0 and 1 where higher scores indicate greater
confidence. We refer to these lists as gene panels.
Phenolyzer can expand the aforementioned gene panels by including

additional genes that are related to genes in the panel. Gene-gene
relationships are determined from four databases (Human Protein
Reference Database,38 NCBI’s BioSystems,39 HGNC Gene Family40 and
Human Transcriptional Regulation Interactions database.41) A confidence
score is assigned to each additional gene, combining the strength of
association with genes in the panel and their confidence score. This
ensures that related genes associated with top scoring panel genes have
higher scores than related genes associated with lower scoring panel
genes. Panel genes and related genes are renormalised as described above
to produce the final prioritised gene panel for each disease. We refer to
these lists as extended gene panels.
We assessed similarity between pairs of gene panels across HPO terms

using the Bioconductor ‘GeneOverlap’ package.42 Similarity is based on the
Jacard index which is calculated by dividing the number of intersections by
the number of unions:

J GeneSetA;GeneSetBð Þ ¼
GeneSetA \GeneSetBj j

GeneSetA

\

GeneSetBj j

The index ranges between 0 and 1, where 0 would indicate no similarity
and 1 would indicate that the two lists are identical.

Linking candidate genes to causative variants using dbNSFP
annotations

The database for non-synonymous SNPs’ functional predictions (dbNSFP)
contains annotation for genes and 83,422,341 potential nsSNVs in the
human genome.21,43 We used dbNSFP version 3.3a (release 30 November,
2016) which is based on Gencode release 22/Ensembl version 79.44,45 We
selected all variants occurring in any of the candidate gene lists generated
by Phenolyzer.
dbNSFP includes ClinVar20 annotation (version 20161101) describing the

pathogenicity of variants implicated in Mendelian disorders. ClinVar uses
the five clinical significance categories recommended by the ACMG27

(benign, likely benign, uncertain significance, likely pathogenic and
pathogenic). We restricted our analysis to the “pathogenic” category. In
total, we obtained 24,792 pathogenic variants linked to genes associated
with human disease phenotypes.
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We used dbNSFP gene annotation to investigate properties of the genes
returned by Phenolyzer. Specifically, we used predicted haploinsufficiency
of genes,23 predicted probability of recessive disease causation,9 RVIS24

and LoFtool gene intolerance scores.25

Benign variants

We selected a set of 5756 benign variants from the ‘VariBenchSelected’
data set made available by Grimm et al.14 (downloaded from http://
structure.bmc.lu.se/VariBench/GrimmDatasets.php on the 11th of March
2016) and annotated these variants using dbNSFP.

Performance evaluation

We evaluated the performance of variant prioritisation tools by assessing
their ability to discriminate ClinVar pathogenic variants from benign
variants. Assessments were performed for each HPO term, based on
dbNSFP annotated variants from different types of Phenolyzer gene
panels. In total we used six such panels for each term using normalised
confidence score thresholds of 0, 0.25 or 0.5 for both gene panels and
extended gene panels. Furthermore, we assessed performance using all
variants or the subset of variants with no missing scores for the tools
tested here (i.e., a complete case analysis). The same set of 5756 benign
variants was used for each test.
We included 18 functional prediction tools in our study: SIFT,46

PROVEAN,47 PolyPhen2 (HDIV and HVAR),48 LRT,49 MutationTaster,50

MutationAssessor,51 FATHMM,52 fathmm-MKL,53 CADD,54 VEST3,55 fit-
Cons-i6,56 DANN,57 MetaSVM,12 MetaLR,12 GenoCanyon,58 Eigen-PC59 and
M-CAP60 and 6 conservation based tools: phyloP (100way_vertebrate and
20way_mammalian),61 phastCons (100way_vertebrate and 20way_mam-
malian),62 GERP++63 and SiPhy.64 We used the dbNSFP converted rank
scores for each tool. The rank score is a transformation applied to the
prediction scores for each tool, where firstly, scores were reverse coded as
necessary so that increasing values of the score indicate increasing
evidence of pathogenicity. Secondly, scores are ranked and divided by the
total number of scores for that particular tool. This means that the rank
score is restricted to be within the range of 0–1. Almost all genes have
multiple transcript isoforms and variants can therefore have an effect on
several transcripts. In such cases the highest score (i.e., most pathogenic) is
assigned to the nsSNV.
We used R package PRROC65 to calculate the auROC and the auPRC

based on the interpolation of Davis and Goadrich.66 These measures
quantify the classification ability of each variant prioritisation tool. The
aucpr.conf.int.expit() function available at https://github.com/kboyd/
raucpr/blob/master/precision_recall.r was used to calculate 95% logit
confidence intervals for each auROC and auPRC estimate.67 A true positive
(TP) is considered to be a correctly predicted pathogenic variant, a false
negative (FN) is a pathogenic variant predicted to be benign, a FP is a
benign variant predicted to be pathogenic and a true negative (TN) is a
correctly predicted benign variant. The auROC plots the TP rate (TPR)
versus the FP rate (FPR) for differing cut points of the variant prioritisation
tool score, whereas the auPRC plots precision (positive predictive value)
versus recall (TPR). The TPR is TP/(TP + FN), the FPR is FP/(FP + TN) and
precision is TP/(TP + FP). Perfect classification of variants would result in an
auROC and an auPRC of 1, whereas random classification of variants would
result in an auROC of 0.5 and an auPRC equal to the ratio of pathogenic to
benign variants. The aheatmap() function of the R NMF package68 was
used to produce heatmaps of auROC and auPRC values.
In diagnostic labs, variant prioritisation generally involves identifying a

small number of pathogenic variants from a larger number of benign
variants. Our data set mimics this situation for most HPO terms because we
assign the same set of 5756 benign variants to each term (this number
reduced to 2910 for the complete case analysis). For this task, the auPRC is
a more informative measure of performance than the auROC,69 because it
better quantifies the number of FPs. The auROC plots the TPR versus the
FPR and the FPR remains low even when there are many FPs, due to the
majority of benign variants being correctly classified. The auPRC plots
precision versus the TPR and precision gives a more accurate picture of the
number of FPs when compared to the FPR, because precision only
considers variants that are predicted to be pathogenic. A hypothetical
example can illustrate this point; if we have 100 pathogenic variants and
5000 benign variants and consider a particular cut point resulting in 85 TPs,
15 FNs, 500 FPs and 4500 TNs then the TPR is 0.85 (85/100) and the FPR is
0.1 (500/5000). Though the FPR appears to be quite low, the ratio of FPs
to TPs is large (500:85), meaning that we will be following up ~6

non-informative variants for every pathogenic variant. For this hypothetical
example, precision is 0.15 (85/585) which means that only 15% of the
variants predicted to be pathogenic actually are pathogenic. Reducing the
number of variants to follow up is important for clinical decision making.
We produced HTML tables of the performance results using the R

package DT.70 These tables can be easily searched and filtered for HPO
terms of interest.

Code availability

Code used to generate results for this study is available as Supplementary
Files 3 and 4.

Data availability

The data that support the findings of this study are available from the
corresponding author upon reasonable request.
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