Downloaded from genome.cshlip.org on August 4, 2022 - Published by Cold Spring Harbor Laboratory Press

Review

A Phenotype Map of the Mouse X Chromosome:
Models for Human X-linked Disease

Yvonne Boyd,'* Helen J. Blair,? Pamela Cunliffe,®> Walter K. Masson,’ and

Vivienne Reed

Medical Research Council (MRC) Mammalian Genetics Unit, Harwell, Oxon OX11 ORD UK

The identification of many of the transcribed genes in man and mouse is being achieved by large scale
sequencing of expressed sequence tags (ESTs). Attention is now being turned to elucidating gene function and
many laboratories are looking to the mouse as a model system for this phase of the genome project. Mouse
mutants have long been used as a means of investigating gene function and disease pathogenesis, and recently,
several large mutagenesis programs have been initiated to fulfill the burgeoning demand of functional genomics
research. Nevertheless, there is a substantial existing mouse mutant resource that can be used immediately. This
review summarizes the available information about the loci encoding X-linked phenotypic mutants and variants,
including 40 classical mutants and 40 that have arisen from gene targeting.

Mammalian X-linked traits are easily recognized by
their inheritance patterns and their mode of expres-
sion. Whereas hemizygous males carry one copy of X-
linked loci and suffer from the full effect of any muta-
tion, heterozygous females carry two copies and have a
phenotype that reflects the relative expression, as de-
termined by X-inactivation status, of the mutated and
normal copies of the gene (Lyon 1999). The X chro-
mosome is also unusual in that X linkage of genes is
almost totally conserved in eutherian mammals (Ohno
1973). Therefore, disorders that are X linked in man are
also X linked in the mouse, which leads to the ready
identification of mouse models of human X-linked dis-
ease. The existing mouse mutant resource, which com-
prises well over 1000 different stocks and strains, has
been exploited to investigate gene function and disease
pathogenesis associated with X-linked and autosomal
loci (Paigen 1995; Bedell et al. 1997)*. The past decade
has seen a revolution in the ability to deliberately in-
troduce mutations into mouse genes by homologous
recombination (Fisher 1997; Miiller 1999; Roths et al.
1999) and, as a result, the number of mouse X-linked
traits has doubled. Although there are earlier reviews
(Davisson 1987; Miller 1990), no comprehensive sum-
mary of existing mouse X-linked phenotypes has been
published recently. The primary aim of this review is to

Present addresses: Institute for Animal Health, Compton, Newbury RG20
7NN, UK; 2Department of Physiological Sciences, Medical School, Framlington
Place, University of Newcastle, Newcastle Upon Tyne NE2 4HH, UK; 3Depart-
ment of Medicine, Manchester Royal Infirmary, Oxford Road, Manchester M13
IWL, UK.

4 Corresponding author.

E-MAIL yvonne.boyd@bbsrc.ac.uk; FAX 00 44 1635 577237.

'A comprehensive list of international mouse strain resources,
developed jointly by the UK MRC laboratory at Harwell and the
USA Jackson Laboratory (Eppig and Strivens 1999), and a list of
strains available at the newly established European Mouse Mu-
tant Archive (EMMA) in Italy, can be accessed via the World Wide
Web at http://ismr.har.mrc.ac.uk; http://www.emma.cnr.it.

10:277-292 ©2000 by Cold Spring Harbor Laboratory Press ISSN 1088-9051/00 $5.00; www.genome.org

describe the current status of the phenotype map of
the mouse X chromosome for those working in the
field of genome research with an interest in X-linked
disease.

Analyzing mouse mutants at the molecular and
phenotypic level is one of the most powerful ways of
understanding gene function in mammals. Apart from
a few notable exceptions, in which mutations exist in
mouse genes whose homologs are known to be respon-
sible for human disease, there are considerable pheno-
typic similarities between the mouse and human dis-
orders, and the mutant mouse provides an animal
model for understanding disease pathogenesis and for
assessing therapeutic regimes. Therefore, it is likely
that most of the remaining mouse phenotypes will
provide a valuable resource for identifying the molecu-
lar basis of a homologous human disease.

Comparative Map of the Human and Mouse X
Chromosomes

The initial stage of assessing and identifying mouse
models for human disease from the existing mouse
mutant resources involves careful characterization of
the phenotype associated with the mutant locus and
predicting the position of its human homolog on the
man-mouse comparative map.

The mapping of >130 conserved loci on the X
chromosomes of both mouse and man (Boyd et al.
1998, 1999) has confirmed the prediction that X link-
age of genes is preserved in mammals (Ohno 1973).
However, when the relative positions of loci on the
human and mouse X chromosomes are compared, it
can be seen that subchromosomal blocks of homolo-
gous loci have been rearranged with respect to each
other during the 80 million years of evolutionary time
that separate the two species. It is important to under-
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stand these rearrangements fully, because an identical
comparative map position is an important criterion for
identifying and confirming mouse models for human
genetic disease. More than a decade ago, five distinct
homologous blocks of loci or conserved segments were
acknowledged as sharing homology on both the hu-
man and mouse X chromosomes (Searle et al. 1987,
1989; Amar et al. 1988; see Fig.1 and Table 1 for the
current status of the comparative map). The human X
chromosome long arm (Xq) was recognized as being
split into two major blocks on the mouse X chromo-
some. There are only two minor modifications to this
Xq comparative map, the identification of a 600-kb
inversion around Xist (Rougelle and Avner 1996) and
the mapping of the synaptobrevin like locus (Sybl1) to
the proximal region of the mouse X chromosome
(D’Esposito et al. 1997). In contrast, it soon became
apparent that the three conserved segments thought to
comprise the human X chromosome short arm (Xp)
could be apportioned into five major and four minor
conserved segments on the mouse X chromosome
(Laval and Boyd 1993; Blair et al. 1994, 1995, 1998b;
Blaschke and Rappold 1997). Twelve conserved seg-
ments have now been identified on the man-mouse X
chromosome comparative map (Fig.1), and additional
regions of homology may be defined as conserved
genes are mapped to a higher resolution (Ehrmann et
al. 1998). Nevertheless, for most of the X chromosome,
once the position of a locus is known on the human X
chromosome, its position on the mouse X chromo-
some can be predicted with reasonable accuracy and
vice versa. The evolutionary breakpoint regions remain
the only areas of uncertainty and these, because they
have been subjected to multiple rearrangements dur-
ing evolution, can be expected to have a complex
structure and this has been borne out by recent map-
ping data (Dinulos et al. 1996; Blair et al. 1998b; Dis-
teche et al. 1998). Over 130 genes and conserved loci
have been regionally mapped on both the human and
mouse X chromosomes and form the framework for
constructing the comparative map (Table 1). This map
has been invaluable in identifying human diseases and
candidate gene loci for many of the classical mutants
that have been recovered from mouse colonies over the
years.

Spontaneous and Induced X-Linked Mouse
Mutants and Variant Traits

Thirty-eight X-linked mouse-independent visible phe-
notypes covering a wide range of traits are reported in
the literature (Table 2; Fig. 2). Most of these pheno-
types have arisen spontaneously in mouse colonies or
among the large numbers of mice used in mutagenesis
experiments (George et al. 1994). The paucity of in-
duced X-linked mutations is probably due to that fact
that most novel mutations have been sought in the F,
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Figure 1 The comparative phenotype map of the human and
mouse X chromosomes. Each conserved segment, in which the
order of loci is the same in mouse and man, is indicated by a
colored rectangle. The loci that define each segment are given in
Table 1; note that the order of segments 7, 2, and 3 has not been
established and is arbitrary. The segments are numbered from
1-12 from the centromere to the telomere on the mouse X chro-
mosome and the order of loci indicated by an arrow alongside
each block. The hatched region within segment 9 represents the
600-kb region that is inverted around the Xist locus (see text).
The centromeric regions are indicated by black and white
hatched rectangles; there is, as yet, no known evidence for evo-
lutionary conservation of centromeric sequences between mouse
and man. The Xp pseudoautosomal region, which has a complex
evolutionary history (Blaschke and Rappold 1997), is not included
because it is outside the scope of this review, as loci in this region
do not exhibit X-linked inheritance. Classical mutants carrrying
spontaneous and induced mutations and variants (Table 2) are
indicated on the mouse X chromosome, and targeted mutations
(Table 3) are positioned on the human X chromosome for clarity.
Names in black text are (1) known to have an X-linked inherit-
ance pattern but have not been positioned on the X (e.g., le, It),
or (2) have not been subjected to high-resolution mapping (e.g.,
Bw1, the black line indicates the probable region in which the
locus lies), or (3) have been mapped to evolutionary breakpoint
positions and therefore the position of the human homolog can-
not be defined (e.g., exma, Bhd, wf). For those traits marked with
an asterisk (*), the gene responsible is not known; for all other
traits the underlying lesion has been defined. ?(/r) Immune re-
sponse genes that are X linked (see Table 2 footnote).

progeny of mutagenized males and as a result, only
those X-linked mutations that have a phenotypic ef-
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Table 1.

List of X-Linked Genes and Conserved Sequences

Seg. Mouse Mouse Locus name Human Human
location symbol symbol location
L1 [ (A1-A2) 0.2 DXHXF34 ___ DNA segment, Chr X, human DXF34 DXF34E____ Xp11.21 !
i 2 | 0.5 Sybi1 synaptobrevin like gene 1 SYBL1 Xq28 1
I 3 | (A-B) 0.7 Pkare cAMP-dependent protein kinase PRKX Xp22.3 |
0.8 Clens ch ide channel 5 Xpt1.2
1.7 Syp Kp11.23-p11.22
A2y 1.8 Tcofel Xpi1.23-pi1.22
1.9 Gaital i Xp11.23
1.95 Suv39h/ supressor of variegation 3-8 hur‘lar like Xp11.23
4 2.0 Wasp Wts!{o't Aldrich Sy =g Apt1.23
2.05 DXHXST7467e an '\XS?d TE Xp11.23
21 Rbm3 Xp11.23
2.1 Xpt11.23
2.1 DXST927E  Xp11.23
215 D DXST4B5E  Xp11.23
26 McLeod a}mdrome gene homologue HK Xp21 A-Kpt11.4
28 e b-245, be ypeptide CYBB Xp2tA1
A1y 3.0 ) dﬂscarbarr {s,cﬁ oTC 1
35 L D,\SE DKXSB76 1
4.0 D D)"b"-z
5. m A
5 53
5.5 ub X
(AZ2-A3) 5.7 ubi
6.2 El ogene family
{(AZ) 6.2 pr nent
6.2 raf d o..cogenc
(A1-A4) 8.2 synaps |
6.2 tissue inhibitor of metalioproieinase
12.5 Agtr2 angiotensin 1l receptor, type 2
12.5 Lamp2 lysosomal membrane glycoprotein-2
13.0 Ani2 adenine nucleotide translocator 2 {fibroblast) ANT2
(AB) 17.0 Hprt hypoxanthine-guanine phosphoribosyl transferase HPRT1
18.0 Cd40/ CD40 antigen ligand CD40LG
18.0 Fgf13 fibroblast growth factor 13 FHF-2
21.0 DXHXS144E DNA segment, Chr X, human DXS144E DXS144E Xq26.2
(AB-AT) 22.0 F9 coagulation factor X F9 Xq26.3-g27.1
(AB-AT) 22.5 Mecf2 mcf.2 transforming sequence MCF2 Xq26.3-q27.1
235 Cdr cerebellar degeneration-related antigen CDR1 Xq27.1-q27.2
24.5 DXHXS296 DNA segment, Chr X, human DXS296 DXS296 Xq27.3-q28
245 Fmrt fragile X mental retardation syndrome1 FMR1 Xq27.3
homologue
245 Sox3 SRY-box containing gene-3 SCX3 Xq26-q27
27.0 lds iduronate 2-sulfatase IDS Xq27.3-q28
(A7) 27.5 Brs3 bombesin receptor sub-type 3 BRS3 Xq26-q28
27.8 Mtm1 myotubular myopathy gene 1 MTM1 Xq28
28.5 Gabral gamma-aminobutyric acid (GABA-A) receptor, GABRA3 Xq28
subunit alpha-3
28.8 DXHXS7104 DNA segment, Chr X, human DXS1104 DXS1104 Xq28
28.82 Atp6st ATPase, H+ transporting,lysosomal (vpp)subunitt VATPS1 Xq28
28.85 Calf caltractin, 20 kD calcium-binding protein CALT Xq28
28.9 Nsdh! MNAD(P) dependent steroid dehydrogenase-like XAP104 Xq28
(Bpa/Str)
6 29.1 F8a factor 8-associated gene A F8A Xg28
29.25 DXHXS52 DMA segment, Chr X, human DXS52 DXs52 Xg28
29.3 Bgn biglycan BGN X028
29.5 Creat creatine transporter CREAT Xq28
29.5 [dh3g isocitrate dehydrogenase (NAD+),gamma subunit IDH3G Xq28
295 Ssr4 signal sequence receptor, delta SSR4 Xq28
{AB-B) 29.51 LTcam L1 cell adhesion molecule L1CAM Xq28
29.52 Avpr2 arginine vasopressin receptor 2 AVPR2 xq28
29.53 Renbp renin-binding protein RENBP Xq28
29.54 Hefel host cell factor C1 HCFC1 Xq28
296 Hrak interleukin 1 receptor associated kinase IRAK Xg28
296 Mecp2 methyl CpG binding protein 2 MECP2 xq28
29.7 Rsvp red sensitive visual pigment RCP Xq28
29.8 Fin1 filamin 1 FLN1 Xq28
29.81 Emd emerin EMD Xq28
29.83 Gdit GDP dissociation inhibitor 1 GD1 Xq28
29.86 Pln3 plexin 3 PLEX Xq28
30.01 DXHXS253E DNA segment, Chr X, human DXS253E DXS253E Xq28
(A2-3) 30.02 G6pdx glucose-6-phosphate dehydrogenase X-linked G6PD Xq28
30.48 Mppt membrane protein, palmitoylated (55kD) MPP1 Xq28
(A7-B) 30.5 Cf8 coeyglation fact_or VI F8C X928

Genome Research 279
www.genome.org


http://genome.cshlp.org/
http://www.cshlpress.com

Downloaded from genome.cshlp.org on August 4, 2022 - Published by Cold Spring Harbor Laboratory Press

Boyd et al.
Table 1. (Continued)
7 31.0 7D transducin beta like-1 TBL1 Xp22.3 1
(C) 32.0 Dmd dystrophin, muscular dystrophy (madx} DMD Xp21.3-p21.2
33.0 Ahch adrenal hypoplasia (AHC) gene homologue AHC .
8 | (C-D) 33.0 Gyk glycerol kinase GYK
(C-D) 34.0 Polat DMA polymerase alpha 1, 180-kDa POLA
(C-D) 345 Zfx zinc finger protein, X-linked ZFX
6.0 Ar gen receptor (Tfm)
3 Ef hrin B1
3 J splasin A (Ta)
38.0 e defect
38.0 human DXS3393
38.0
38.0
39.0
39.0
39.0
40.0
42.0
9 2.0
42.5
.’1.9
(C 13.
21.
21
(E A 21
| DXHXS101 122
| Pip 21,
DXHXS178 21.
(F1-F2) g21-
22
22
63.0 Alas2 aminolevulinic acid synthase-2, erythroid ALAS2 Xp11.21
63.0 DXHXS674 DNA segment, Chr X, human DXS674 DXsS674 Xpi1.22-p11.21
10 63.0 DXHXS6E79 DNA segment, Chr X, human DXS679 DXS679 Xp11.22-p11.21
{F) B4.0 DXHXS423 DNA segment, Chr X, human DXS423 DXsS423 Xp11.21
64.0 Fgd1 faciogenital dysplasia homologue FGDY Xp11.21
(F2-F4) 64.0 Smcx selected mouse cDNA on the X DXS1272E Xgﬂ _22-21 1.21
11 (F2-F3)865.0 Apxl apical protein Xenopus laevis like APXL Xp22.3
(F2-F3)85.0 Oaft ocular albinism 1 OA1 Xp22.3
65.2 Sat spermine/spermidine N(1) acetyl transferase SAT Xp22.1
65.4 Phex phosphate regulating neutral endopeptidase on ~ PHEX Xp22.1
the X chromosome(hyp, gy)
65.5 Sms spermine synthase(gy) SMS Xp22.1
65.6 Rps6ka3 ribosomal S6 kinase(Li, Stpy) RSK2 Xp22.1
(F3-F4)66.5 Pdhat pyruvate dehydrogenase E1alpha subunit{Stpy) PDHA1 Xp22.1
(F3-F4)67.0 Piga phosphatidylinositol glycan, class A PIGA Xp22.1
12 67.5 Ppef protein phosphatase, EF hand calcium binding PPEF Xp22.2
domain
70.0 Grpr gastrin releasing peptide receptor GRPR Xp22.2-p22.13
72.0 Gira2 glycine receptor, alpha 2 subunit GLRA2 Xp22.1-p21.3
(F2-F3) 72.0 Prps2 phosphoribosyl pyrophosphate synthetase-2 PRPS2 Xp22.3-p22.2
72.0 Phka2 phosphorylase kinase alpha-2 PHKA2 Xp22.2-p22.1
73.0 Amel amelogenin AMELX Xp22.31-p22.1
73.8 Mid1 midline defect, 1 (Paf?) MID1 Xp22.3
74.0 Clon4-1 chloride channel 4-1 CLCN4-1 Xp22.3

Included are only those loci that have been regionally mapped on both the human and mouse X chromosomes with sufficient resolution
to contribute to the man-mouse comparative map (see Fig. 1). This list is given in order of loci from the mouse centromere to the
telomere. The rectangles encase conserved segments, in which locus order is preserved in man and mouse, with the exception of a small
inversion around Xist (see text). Note that the relative order of segments 1-3 has not been established, and elF2y (Ehrman et al. 1998)
has not been sufficiently well positioned in the mouse to include here, although it might represent a novel conserved segment. The
location of each locus on the mouse X chromosome is given in column 1 and indicates the distance in ctM from the centromere. When
a locus also has been mapped by in situ hybridization, the cytogenetic location on the mouse X chromosome is given in brackets before
the genetic map position. Mapping data are taken from the literature (Boyd et al. 1998), except for the Sat locus (H.). Blair, unpubl.). The
cytogenetic position of each locus is given for its location on the human X chromosome as, because of the large number of translocation
breakpoints and rearrangements affecting the human X chromosome, this provides a more useful reference than a genetic map position.
For a visual appreciation of the relative physical size of the conserved segments and their locations on the human and mouse chromo-
somes, see Fig. 1.
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Figure 2 Examples of spontaneous and induced X-linked traits
in the mouse. (A,B) Males carrying the greasy (Gs) (A) and har-
lequin (Hg) (B) mutations; neither of the genes responsible has
been cloned. (C) A heterozygous female carrying the broad-
headed (Bhd) mutation, which is associated with a craniofacial
anomaly, note the unusually short and broad snout. Comparative
mapping has shown that Bhd cannot be a model for FGD1 or
ATRX, but it remains an interesting skeletal mutant in which
males have multiple ossification anomalies and die shortly after
birth (V. Reed and Y. Boyd, in prep.). (D) A heterozygous female
carrying a mutation at one of the mottled (Mo) alleles associated
with death between birth and weaning of affected males
(Atp7a™°- %" The mosaic coat can be clearly seen, in which
hypopigmented areas represent populations of cells carrying the
mutant allele and the normally pigmented (brown) areas repre-
sent areas of cells carrying the wild-type allele. Details of the
phenotypes and references describing each of these mutants are
given in Table 2.

fect in heterozygous females are identified. Some at-
tempts were made to obtain sex-linked recessive lethals
by identifying abnormal sex ratios in the offspring of
F, females produced in classical mutagenesis experi-
ments (Searle et al. 1964). Recessive mutations, such as
sex-linked fidget, arose in experiments like these (Lyon
et al. 1981b; Phippard et al. 2000).

For most of the recovered mutations, only a single
mutant allele is available for analysis, limiting the
value of the mouse as a model for X-linked human
disease, which is often associated with a high number
of different new mutations (Rossiter and Caskey 1991).
However, where several alleles exist, the mouse pro-
vides an ideal tool for studying the phenotypic effects
of different mutations in the same gene on an identical
genetic background. Over 20 alleles, associated with
differing phenotypes have been recovered at the
mouse mottled locus and these provide a useful para-
digm for using the mouse to study human disease
(Cunliffe 1999).

Mottled: A Paradigm for Mouse Models for
Human X-Linked Disease

For many years, the mottled mouse has been recog-
nized as a model for Menkes disease (MD), and in both
species, a range of mutations has been found in the
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gene encoding the copper transporter ATP7A (Cecchi
et al. 1997; Reed and Boyd 1997; Tuimer et al. 1997).
Affected mice and human patients show a similar and
variable course of disease with the main features being
growth retardation, neurological and connective tissue
abnormalities, peculiar hair and hypopigmentation
(Danks 1986; Timer and Horn 1997; Fig. 2D). Muta-
tions that have a mild phenotypic effect in the mouse,
such as the splice-site lesion leading to the production
of both normal and aberrant transcripts in mottled
blotchy, seem to be of a similar type to those associated
with occipital horn syndrome (OHS, a mild allele of
MD). In both man and mouse, this type of mutation is
associated mainly with connective tissue problems
(Das et al. 1995). However, there are significant differ-
ences between man and mice in the type of molecular
lesions associated with the more severe phenotypes.
The classical MD phenotype is mainly associated with
nonsense or frameshift mutations and there is also a
substantial proportion ([(20%) of patients with gross
deletions covering varying proportions of the ATP7A-
coding region. In the mouse, the largest known dele-
tion, which covers exons 11-14 (Cunliffe 1999), is in
frame, and no nonsense or frameshift mutations have
been reported to date. This fact demonstrates that cau-
tion must be taken when assessing potential therapies
with mottled mice as animal models. The most striking
phenotypic difference is that MD patients, with what
might be expected to be null mutations at ATP7A, sur-
vive until birth, whereas over half of the mottled alleles
are associated with prenatal lethality of males some-
time after mid gestation. It has long been thought that
the mottled mutations causing early postnatal death
are the most appropriate model for classical MD in
which affected boys die in the first few years of life.
However, recent evidence has shown that in the
mouse, Atp7a mutations most similar to those seen in
classical MD cause prenatal death (Cunliffe 1999; P.
Cunliffe, V. Reed, and Y. Boyd, in prep.). Therefore, at
the level of cellular copper processing, mottled alleles
associated with prenatal lethality may provide a better
model. This is particularly important in light of the
varied response of MD patients to copper histidine
treatment (Ttiimer and Horn 1997).

Using the Mouse to Identify the Genes
Responsible in X-Linked Dominants Associated
with Intrauterine Male Lethality

A further interesting picture has emerged from studies
on mouse mutants as possible models for X-linked
dominant disease, which, because they are associated
with prenatal lethality of males, are difficult to posi-
tion accurately on the human X chromosome. Disor-
ders associated with the lethality of males in utero are
probably caused by lesions in genes that have impor-
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tant developmental roles and that may be conserved in
man and mouse. In the mouse, the relative ease of
high-resolution mapping renders the genes responsible
amenable to positional cloning. Recently, an interest-
ing association between sterol biosynthesis and skel-
etal defects has been revealed by the identification of
the underlying molecular lesions in the Bpa, Str, and Td
mutants, which are all associated with skeletal and skin
anomalies in heterozygous females (Table 2). Muta-
tions in the 3B-hydroxysteroid dehydrogenase Nsdhl
were first found in several independently derived Bpa
and Str mutants, which were shown to be allelic, al-
though there are differences in the severity of the phe-
notype (Liu et al. 1999). The Bpa mouse was suggested
originally as a mouse homolog of CPDX2 as both dis-
play-striated hyperkeratosis and skeletal abnormalities
including short stature, rhizomelic shortening of the
limbs, epipyhseal stippling, and craniofacial anomalies
(Happle 1983). However, a more detailed phenotypic
analysis of Td has revealed that it also has many of
these features and Td was discovered to be a model for
CPDX2 when mutations in the sterol isomerase Ebp
were discovered in Td and CPDX2 patients (Braverman
et al. 1999; Derry et al. 1999). Thus, the Bpa/Str alleles
and Td mice provide tools to investigate the relation-
ship between sterol biosynthesis, intrauterine death of
males, and the skin and skeletal defects seen in hetero-
zygous females.

X-Linked Phenotypes Associated with Mutations
Introduced by Gene Targeting
There are now as many mouse X-linked phenotypes
introduced deliberately by gene targeting than have
been recovered over the years in mouse colonies. Ap-
proximately one-half of the targeted genes are impli-
cated in overt human disease and have been ablated to
create models for understanding gene function and
disease pathogenesis (Table 3). Some of these genes
have shown comparable phenotypes in the mouse,
such as the targeted disruption of genes encoding fac-
tor VIII and IX, which have provided excellent mouse
models for studies on haemophilia A and B (Bi et al.
1995; Wang et al. 1997). Others exhibit some, but not
all, aspects of the corresponding human disease; for
example, there is an impaired humoral immune re-
sponse in CD40 ligand-deficient mice, but they do not
develop full-blown hyperIgM syndrome (Renshaw et
al. 1994). In the future, mouse models carrying defined
molecular lesions identical to those found in human
disease can be provided by gene-targeting technology.
In conjunction with the production of a series of dif-
ferent mutations in the same target gene, as has been
done at the autosomal Fgf8 locus by Meyers et al.
(1998), the availability of engineered mouse models
relevant to human disease can only increase.

Other mutants have been created to investigate

the potential functions and the phenotypic conse-
quence of a deficiency in the targeted gene. Some of
these studies have revealed interesting clinical effects
in mice with potential applications for studying com-
plex human disorders, for example the demonstration
that a lack of biglycan leads to osteoporosis (Xu et al.
1998). Other gene disruptions have also proven to be
highly informative in understanding gene function,
for example, the targeting of the Xist locus demon-
strated its vital role in the X-inactivation process
(Penny et al. 1996; Marahens et al. 1997).

Until stable female embryonic stem cell lines are
widely available and can be transmitted to the germ
line with a high frequency, one problem that remains
with the targeted disruption of X-linked genes is the
study of those genes that are potentially lethal in
males. Genes may be dispensable in stem cells but es-
sential for embryonic development, as is the case with
the methyl-CpG-binding protein Mecp2 (Tate et al.
1996). The Mecp2 knockout mice are particularly in-
teresting in light of the recent revelation that the X-
linked dominant neurological disorder Rett syndrome
is associated with MECP2 mutations (Amir et al. 1999).
The problem of early lethality preventing the recovery
of mice carrying targeted mutations of X-linked genes
can be partially circumvented by the production of
conditional knockouts, in which ablation or modifica-
tion of the gene of interest is engineered on a temporal
or tissue-specific basis (for review, see Miiller 1999;
Roths et al. 1999). Tarutani et al. (1997) used this ap-
proach to demonstrate that the X-linked Piga gene
plays an important role in skin development.

X Inactivation and Analysis of the Phenotypic

Variation Associated with Heterozygous Females
Mice carrying X-linked mutations can also be used as
tools to investigate the influence of cellular mosaicism
associated with X-inactivation patterns in different tis-
sues on the phenotype. X inactivation occurs early in
mammalian female development and results in the
transcriptional silencing of one of the two X chromo-
somes, at random, in every somatic cell (Lyon 1999).
As a consequence, females heterozygous for X-linked
coat mutations such as mottled have a variegated coat
pattern resulting from the two cell populations, one
expressing the mutant allele and the other expressing
the wild-type allele (Fig. 2D). Because the number of
cells at the time of X inactivation is small, and the
choice of which X chromosome is inactivated is usu-
ally random, considerable differences are seen between
females in the relative sizes of the two cell populations;
this manifests as a variation in the severity of the phe-
notype between female mice carrying the same muta-
tion. For some X-linked mutations, cellular mosaicism
is a benefit with the population of cells expressing the
normal allele, providing enough of the normal gene
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Table 3. Targeted Mutations at Mouse X-Linked Loci

Symbol Targeted gene Phenotype details References
Ags a-galactosidase, mutated in phenotypically normal at 10 weeks, liver and kidney Ohshima et al. (1997)
Fabry disease # pathophysiology similar to human Fabry disease
Agtr2 angiotensin Il receptor, type 2 blood pressure increase, increased sensitivity to pressor Hein et al. (1995);
action of angiotensin II, lowered body temperature, Ichiki et al. (1995);
reduced exploratory behavior, anxiety-like behavior Okuyama et al. (1999)
Abcd1 ATP-binding cassette, subfamily reduced B-oxidation of very long chain fatty acids ForssPetter et al. (1997);
D, member 1, mutated in (VLCFAs) with consequent elevation of saturated Lu et al. (1997)
adrenoleukodystrophy # VLCFAEs in total lipids of all tissues and cholesterol
esters in adrenocortical cells, no neurological
involvement seen in mice up to 6 months
Bgn biglycan skeletal phenotype marked by progressive lowering of ~ Xu et al. (1998)
bone mass, suggested model for role of ECM
proteins in osteoporosis
Brs3 Bombesin receptor subtype-3 mild obesity, hypertension, impaired glucose Ohki-Hamazaki et al.
metabolism, reduced metabolic rate, increased (1997)
feeding efficiency and subsequent hyperphagia
Btk Bruton agammaglobulinemia mild X-linked immunodeficiency, with additional Kerner et al. (1995);
tyrosine kinase # compromise of B cell precursor expansion Khan et al. (1997)
CD40l  CDA40 antigen ligand, mutated failure to undergo isotype switching to T-cell- Renshaw et al. (1994);
in hyper-IgM syndrome # dependent antigens, normal response to Xu et al. (1994);
T-cell-independent antigens Castigli et al. (1995)
Cf8 coagulation factor VIII, mutated <1% factor VIII clotting activity, significant bleeding Bi et al. (1995)
in hemophilia A # after tail biopsy, which may be lethal, no
spontaneous bleeding
Cf9 coagulation factor IX, mutated absence of factor IX antigen in plasma, <5% factor IX ~ Wang et al. (1997)
in hemophilia B # clotting activity
Cybb subunit of NADPH-oxidase chronic granulomatous disease, lack of phagocyte Pollock et al. (1995);
complex, mutated in chronic superoxide production, increased susceptibility to Morgenstern et al.
granulomatous disease # infection and altered inflammatory response to (1997)
thioglycollate peritonitis
Dmd dystrophin, mutated in hypertrophic skeletal muscles, fibre size variations Araki et al. (1997)
Duchenne muscular with necrosis and regeneration
dystrophy #
Fmr1 fragile X mental retardation macro-orchidism, learning deficits Bakker et al. (1994);
syndrome 1 homolog # Oostra and Hoogeveen
et al. (1997)
Gépdx  glucose-6-phosphate at ES cell level only, clones with undetectable levels Pandolfi et al. (1995)
dehydrogenase of the enzyme are extremely sensitive to hydrogen
peroxide and diamide
Gatal GATA-binding protein 1 male neonatal lethal, mid-gestation embryos pallid Pevny et al. (1991);
with arrest of erythroid development Fujiwara et al. (1996);
Takahashi et al. (1997)
Gjb1 gap junction protein connexin32, from 3 months progressive demyelinating neuropathy,  Scherer et al. (1998)
mutated in X-linked Charcot- motor fibers more affected than sensory fibers
Marie-Tooth disease #
Gpc3 glypican 3, mutated in, Simpson—  overgrowth, cystic kidneys Li et al. (1998)
Golabi-Behmel syndrome #
Grpr gastrin releasing peptide receptor no gross phenotypic abnormalities, loss of bombesin- Hampton et al. (1998)
induced feeding suppression
Gyk glycerol kinase # males normal at birth but exhibit growth retardation, Hug et al. (1997)
altered fat metabolism with profound
hypoglycerolemia and elevated free fatty acids,
autonomous glucocorticoid synthesis and death by
3-4 days; heterozygous females are healthy and
biochemically normal
Hprt hypoxanthine phosphoribosyl overgrooming in older mice, increased locomotor Hooper et al. (1987);
transferase # activity after amphetamine administration; self- Kuehn et al. (1987);
injurious behavior only when inhibitor of Aprt also Nehls et al. (1994);
present (Wu and Melton 1993), model for Tsuda et al. (1997)
Lesch-Nyhan disease
Htr2c 5-hydroxytryptamine (serotonin)  overweight because of abnormal feeding behavior, Tecott et al. (1995)
receptor 2C spontaneous death from seizures
112rg interleukin 2 receptor, vy chain, similar phenotype to human XSCID, decrease in Leonard et al. (1995);

mutated in X-linked severe
combined immunodeficiency #
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lymphocyte numbers but increase in monocytes,
few T cells in young mice and no natural killer cells

Ohbo et al. (1996);
Sugamura et al. (1996)
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Table 3. (Continued)
Symbol Targeted gene Phenotype details References
LTcam L1 cell adhesion molecule, smaller than wild type animals, uncoordinated hind Dahme et al. (1997);

Maoa monoamine oxidase a # pups have elevated serotonin levels, trembling, Cases et al. (1995)
difficulty in righting, fearfulness; adults have distinct
behavioral syndrome with enhanced aggression in
males
Maob monoamine oxidase b increased reactivity to stress, increased levels of beta- Grimsby et al. (1997)
phenylethylamine, resistance to neurodegenerative
effects of MPTP toxin (which induces a Parkinson'’s-
like condition)
Mecp2  methyl CpG binding protein 2, chimeric embryos exhibit developmental defects with Tate et al. (1996); Amir
mutated in Rett syndrome # severity proportional to mutant cell contributions et al. (1999)
Ndph Norrie disease homolog # development of retrolental structures in vitreous body,  Berger et al. (1996)
disorganization of retinal ganglion cell layer,
occasional loss of outer plexiform layer with
resultant interchange of inner/outer nuclear layer,
absence of outer segments of photoreceptor cell
layer
Ocrl oculocerebrorenal syndrome of no abnormal phenotype, with postulated Janne et al. (1998)
Lowe # compensation by the autosomal gene inositol
polyphosphate 5-phosphatase (Inpp5b) as
explanation
Piga phosphatidylinositol glycan, wrinkled and scaly skin, death a few days after birth Tarutani et al. (1997)
class A
Plp myelin proteolipid protein, no gross effect, assembly and maintenance of normal Boison and Stoffel
mutated in Pelizaeus- amounts of myelin, progressive tract-specific (1994); Griffiths et al.
Merzbacher disease # axonopathy (1995); Klugmann et
al. (1997); Griffiths et
al. (1998)
Pou3f4  Pou domain, class 3, transcription vertical head bobbing and hearing loss, dysplastic Minowa et al. (1999);
factor 4, mutated in DFN3 # bony compartment of the inner ear Phippard et al. (1999)
Pou4f2  POU domain, class 4, selective loss of 70% of retinal ganglion cells, other Erkman et al. (1996);
transcription factor 2 neurons in the retina and brain essentially Gan et al. (1996)
unaffected
Rep1 Rab escort protein 1, mutated in ~ embryonic male lethal; heterozygous females and van den Hurk et al.
choroideremia # chimeras have a variable number of photoreceptor (1997)
cells
Synl synapsin 2 no gross abnormalities, mossy fibre giant terminals Rosahl et al. (1993);
reduced, fewer synaptic vesicles, presynaptic Takei et al (1995)
structures altered
Syp synaptophysin indistinguishable from normal littermates, predendritic ~ Chin et al. (1995);
neurites and axon outgrowth retarded in Erhkind and Leube
hippocampal neurons, with delayed synapse (1995); Arrandale et al.
formation; homozygotes die prior to 10.5 dpc (1996); McMahon et
al. (1996)
Timp tissue inhibitor of no effect on steroidogenesis, reduced ovarian TIMP2 Alexander and Werb
metalloproteinase and TIMP3, at ES cell level only, more invasive than (1992); Nothnick et al.
normal cells (1997)
Wasp Wiskott-Aldrich syndrome decreased peripheral blood lymphocyte and platelet Snapper et al. (1998)
protein # numbers, chronic colitis
Xist inactive X specific transcripts mutant males unaffected, females inheriting mutant Penny et al. (1996);
paternal X chromosome severely retarded and die Marahens et al. (1997)
in utero
Xnp X-linked nuclear protein, mutated  at cellular level, increased sensitivity to ionizing Essers et al. (1997)
in a-thalassemia mental radiation, mitomycin C, and MMS
retardation syndrome #
Zfx X-linked zinc finger protein male and female mutants smaller, with lower viability Luoh et al. (1997)

mutated in CRASH syndrome #

legs, hypoplasia of corticospinal tract, abnormal
brain pathology, and impaired exploratory behavior

and fewer germ cells, hemizygotes had reduced
sperm count and homozygotes a reduced number
of oocytes

Fransen et al. (1998)

Genes associated with known human disease are indicated by a pound sign (#) after the gene name; where the disease has a different
name, it is given in the same column. Targeted genes are given in alphabetical order of gene symbol. Note that a meeting abstract
also mentions the targeting of the mouse p55 gene Mpp1 (A.C. Kim, C.D. Southgate, B.). Mitchell, and A.H. Chistiti, unpubl.), but as
no details of the resulting phenotype are provided this locus is not included in the table.
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product to permit a normal phenotype to develop, for
example, in the sf or spf mutations (DeMars et al. 1976;
Lyon et al. 1990). Another possibility is that growth
competition between the two cell populations may re-
sult in the virtual elimination of the cells expressing
the mutant allele (Ogura et al. 1998). In this situation,
the resultant skewed X-inactivation pattern provides
heterozygous females with a normal, or mild, pheno-
type.

Traditionally, X-inactivation patterns in mice
have been investigated in the coat by the observation
of doubly heterozygous female mice produced when
the mutation is bred to well-characterized coat mu-
tants, such as the mottled blotchy or tabby mutants. In
humans, approaches that exploit the differences in
DNA methylation between the inactive and active X
chromosomes are most widely used to study X-
inactivation patterns in heterozygous females (Bel-
mont 1996). In the mouse, extensive studies of the
X-inactivation patterns can be achieved because of the
availability of tissues from several replica heterozy-
gotes at a range of times in development on a constant
genetic background. Techniques such as the single
nucleotide primer extension (SNuPE) assay have been
used to quantitatively measure the relative expression
from the two X chromosomes in females heterozygous
for X-linked mutations (Greenwood et al. 1997; Ogura
et al. 1998). Further, the X-linked LacZ transgenic mice
created by Tam and Tan (1992) have great potential for
the study of X-inactivation patterns in heterozygous
females as the transgene is subject to the inactivation
process. When the lacZ reporter is present on only one
of the X chromosomes of a female heterozygous for an
X-linked mutation, the B-galactosidase activity is lim-
ited to cells with only that X chromosome active.
Therefore, the distribution of cells expressing the mu-
tant allele in a heterozygous female can be studied and
insights into the mode of action of the normal X-
linked gene product can be provided by the analysis of
the phenotype and the X-inactivation pattern of het-
erozygous females. In our laboratory, such studies are
under way on the Li, Stpy, and Td mutants.

Future Progress

The 80 X-linked phenotypes that have been reported
in the laboratory mouse correspond to mutations in
approximately half of the cloned X chromosomal
genes. Most of these traits are associated with muta-
tions in known genes and are of immediate value as
animal models for human X-linked diseases. However,
they represent <5% of the probable number of X-
linked genes and the phenotype map of the mouse X
chromosome is still sparse. Alternative methods will be
needed to provide the detailed phenotype maps wor-
thy of complementing the encyclopedias of mouse
genes that are being developed (Marra et al. 1999). Al-
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though several laboratories are attempting to increase
the size of the mouse mutant resource (Justice et al.
1997; You et al. 1997; deAngelis and Balling 1998;
Schimenti and Bucan 1998; Zheng et al. 1999), no
plans appear to have been made to screen systemati-
cally the progeny of F, females carrying mutagenized X
chromosomes for X-linked traits. Without such a spe-
cific effort, it will be interesting to see whether the
number of X-linked mutant stocks will increase to
meet the needs and interests of groups trying to un-
derstand the roles of X-linked genes in health and dis-
ease.
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