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Background: Large databases provide an efficient way to analyze patient data. A challenge with 

these databases is the inconsistency of ICD codes and a potential for inaccurate ascertainment 

of cases. The purpose of this study was to develop and validate a reliable protocol to identify 

cases of acute ischemic stroke (AIS) from a large national database.

Methods: Using the national Veterans Affairs electronic health-record system, Center for 

Medicare and Medicaid Services, and National Death Index data, we developed an algorithm to 

identify cases of AIS. Using a combination of inpatient and outpatient ICD9 codes, we selected 

cases of AIS and controls from 1992 to 2014. Diagnoses determined after medical-chart review 

were considered the gold standard. We used a machine-learning algorithm and a neural network 

approach to identify AIS from ICD9 codes and electronic health-record information and com-

pared it with a previous rule-based stroke-classification algorithm.

Results: We reviewed administrative hospital data, ICD9 codes, and medical records of 268 

patients in detail. Compared with the gold standard, this AIS algorithm had a sensitivity of 

91%, specificity of 95%, and positive predictive value of 88%. A total of 80,508 highly likely 

cases of AIS were identified using the algorithm in the Veterans Affairs national cardiovascular 

disease-risk cohort (n=2,114,458).

Conclusion: Our algorithm had high specificity for identifying AIS in a nationwide electronic 

health-record system. This approach may be utilized in other electronic health databases to 

accurately identify patients with AIS.

Keywords: acute ischemic stroke, algorithm, large databases, big data, administrative health 

data, cerebrovascular accident

Introduction
Stroke is the second-most common cause of death worldwide and also a leading cause of 

significant morbidity.1 The major types of stroke – ischemic, intracerebral hemorrhage, 

and subarachnoid hemorrhage – differ in their risk factors and clinical presentation. 

Even within these major types of stroke, there are subtypes with different risk factors 

and prognosis.1 Therefore, studies with a large number of stroke cases are needed to 

examine associations with clinical outcomes and to characterize the phenotypes of 

these patients. Cohort studies have been used for such clinical research, but generally 

have relatively few outcome events and may lack the breadth of clinical data that is 

available in health-care databases.

The Veterans Health Administration (VHA) has one such health-care database, 

with over 15 years of electronic health records (EHRs) for millions of veterans. The 

records enable a multitude of observational research studies, but EHRs often lack the 
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precise and uniform diagnoses required for health research. 

In practice, this means many risk factors and health events 

must be inferred from the records’ structured elements, 

such as standardized codes (ICD9-CM) and drug prescrip-

tions, and unstructured elements, such as the narrative text 

contained in radiology and pathology reports. However, 

there are often inaccuracies in coding and limitations in the 

types of data elements available.2–6 This leads to challenges 

in reliably distinguishing among major subphenotypes 

of stroke based on ICD9-CM codes alone (specifically 

ischemic and hemorrhagic), which have very different risk 

factors and pathophysiologic mechanisms. As such, it is 

essential to develop algorithms to identify specific types of 

stroke accurately. Furthermore, highly accurate phenotyp-

ing algorithms are urgently needed in ongoing and future 

genomic and mechanistic studies in megabiobanks like the 

Million Veteran Program (MVP), the UK Biobank, and the 

All of Us Program.

In this paper, we present a machine-learning algorithm 

for identifying acute ischemic stroke (AIS) from struc-

tured elements of VHA patient records, ie, a “structured 

stroke algorithm”.1 The machine-learning algorithm can 

be used for both longitudinal and case–control studies 

to identify cases of AIS and to quantify uncertainty in 

stroke classification via predicted stroke probabilities. 

The predicted stroke probabilities are used to develop 

a specialized algorithm for case–control studies, and  

uncertain stroke cases are removed from the analysis. 

Finally, we provide suggestions for choosing among com-

peting algorithms and demonstrate that using health-care 

databases to ascertain stroke cases is practical, low-cost, 

and high-yield.

Methods
Data sources
Using the national Veterans Affairs (VA) EHR system, Cen-

ters for Medicare and Medicaid Services, and National Death 

Index data, we put together a cohort of patients with AIS. The 

VHA system is the largest single-payer health-care entity in 

the US, containing over 144 hospitals and 1,221 outpatient 

centers.8 Local hospital and clinic data, including inpatient, 

outpatient, laboratory values, and vital signs, are stored in a 

central VHA corporate data warehouse. Our current study 

includes creation and validation of cases of AIS from the 

national VHA cohort. We also present stroke characteristics 

of the patient population in a cardiovascular disease (CVD)-

risk cohort and the MVP cohort.

Cardiovascular disease and risk factors: the CVD in 

veterans study

The purpose of the CVD in veterans study is to determine 

risk for CVD, including heart disease and stroke, in veter-

ans by examining existing EHR data. The VA CVD-risk 

cohort includes any veteran who has received care and had 

a cholesterol measurement at the VA from 2002 onwards. 

Prediction equations will be developed from the experience 

of the veterans who receive care across the US. The three 

specific aims of the CVD events in veterans study are to 

estimate risk for first CVD events in veterans, estimate risk 

for first CVD in veterans with diabetes mellitus, and estimate 

risk for recurrent CVD events in veterans who have already 

developed CVD. Implementation of this strategy should lead 

to veteran-specific health care that is individualized in terms 

of total CVD-risk management.

Million Veteran Program

The MVP was launched to establish a national, representative, 

and longitudinal study of veterans for genomic and nongenomic 

research that combines data from self-reported surveys, EHRs, 

and biospecimens. Details of this VA-based megabiobank 

have been published.9 Briefly, the VHA population consists 

of approximately 21 million veterans, of whom 8.9 million 

are users of the VHA. The MVP is an ongoing study that is 

recruiting at a steady state at approximately 50 VA medical 

facilities throughout the country. The source population consists 

of those who are active users of the VHA with a valid mailing 

address and able to provide informed consent (∼6.9 million 

veterans). The target number of study participants for the MVP 

is at least 1 million veterans from the eligible pool. As of May 

2017, 570,946 veterans have enrolled in MVP (359,149 with a 

baseline survey). Among those with genotyping data (352,708), 

240,230 had a baseline survey with self-reported demographics. 

Of these, 92% are men with a mean age of 64.5±12.4 years, 

57.9% are aged 50–69 years, 74.9% are White, and 19.1% 

African-American (based on self-reported race). Ultimately, the 

goal is to link clinical data in the VA EHR in the computerized 

patient-record system with MVP questionnaires and a MVP 

genome-wide association study (GWAS), to allow integration 

of genetic testing in the future, thus contributing to precision 

medicine. The Institutional Review Board at the VA Boston 

Healthcare System approved this study.

Selection of cases for review
A total of 300 veterans were sampled from a random subset 

of 1 million veterans who came to the VA for an outpatient or 
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inpatient visit (labeled “data mart” in Figure 1). The sample 

size was selected based on the average time per chart review 

and limit of 40 hours per chart reviewer (30 minutes/chart 

× 300 charts × two reviewers per chart/seven reviewers = 42 

hours per reviewer). The data mart was used to reduce the 

computation and memory burden. The first 100 veterans were 

randomly sampled from the data mart. The 100 veterans had 

comparable demographics, comorbidity profiles, and visit 

histories compared to general VA users. Of these 100 vet-

erans, chart reviewers found four veterans with AIS (cases) 

and 96 veterans without AIS or other strokes (controls). ICD9 

codes 430 and 433–437 were completely absent in controls. 

To gather enough cases of AIS, we randomly selected 200 

veterans from the data mart for stroke ICD9 codes 430 and 

433–437 (labeled “stroke mart” in Figure 1), resulting in 81 

controls (including two transient ischemic attacks [TIAs] 

and five hemorrhagic strokes), 87 definite AIS cases, and 32 

possible AIS cases. We tried several selection criteria to yield 

the most AIS cases: an inpatient or outpatient ICD9 code, an 

inpatient ICD9 code and multiple outpatient codes, or other 

combinations thereof (Table S1). Each chart was reviewed by 

two of seven reviewers (six physicians and one nurse), with 

disagreements settled by a third reviewer when necessary. 

Because charts were sometimes reviewed by more than two 

reviewers, we assessed interrater reliability with the Fleiss–

Cuzick (κ-like) measure of agreement,10 which is comparable 

to Cohen’s κ19 and measures interrater agreement in excess 

of agreement between completely random ratings. Fleiss’s 

κ was computed from three categories: non-AIS (including 

hemorrhagic strokes and TIAs), possible AIS, and definite 

AIS. Agreement was somewhat low (κ=0.612), due to missing 

primary data in possible AIS cases, ie, no documentation of 

initial presentation of stroke and/or imaging data available to 

be certain whether the patient had truly had a stroke.

Chart-review validation
We used a Microsoft Access database on the Vinci platform to 

perform chart reviews. The records included both structured 

and unstructured elements. This database included a list of 

charts with patient demographics, including date of birth, date 

of death, sex, and race; ICD9 codes for stroke diagnosis, date 

of the ICD9 code, code description, and visit type (outpatient 

or inpatient); text-integration utility or unstructured notes 

or clinician notes extracted from the medical record (these 

included mainly admission notes, discharge summaries, notes 

by neurologists or cardiologists, and some progress notes), 

note title, and the number of notes in view; underlying cause 

of death from the National Death Index (data collected by the 

Centers for Disease Control from death certificates); ICD9 

codes from Centers for Medicare and Medicaid Services 

billing records for non-VA providers; and radiology notes 

(which included radiology-procedure name and description 

of findings).

Figure 2 illustrates the flowchart of the chart-review pro-

cess, and Figure S1 depicts the organization of the database 

platform. In addition to the ICD codes, chart review for AIS 

was validated using the American Heart Association/Ameri-

can Stroke Association definition of AIS. AIS is defined as 

Figure 1 Stroke-classification flowchart for chart reviews.
Abbreviations: EHR, electronic health record; P(stroke), probability of stroke.
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an episode of neurological dysfunction that is due to a focal 

cerebral, spinal, or retinal infarction. This can be based on 

pathological evidence, radiographic evidence, or other objec-

tive evidence of focal ischemia in a vascular territory or clini-

cal evidence of focal ischemic injury based on symptoms that 

last >24 hours, with other etiologies excluded. Silent stroke 

or “historical stroke” was defined as central nervous system 

infarction with imaging evidence of infarction, but without 

a clear history of acute neurological symptoms.20

Below these data elements, a reviewer’s comments sec-

tion was provided. For instance, if it was not clear whether 

the patient had had a stroke from the data provided or if the 

patient was ruled out for a stroke, these comments would be 

listed in this section. The next section included classification 

(stroke event, historical stroke, family history of stroke, no 

event, relevant medication for stroke prevention, or “unable 

to decide” if it was not clear whether the patient had had an 

acute stroke from the data provided). If the chart reviewer 

selected stroke event, he/she would then be prompted to enter 

the classification type of the stroke event: AIS, hemorrhagic 

stroke, stroke unspecified, or TIA. In addition to stroke event, 

the reviewer was asked to specify the date of the event in the 

format of month, day, and year. If the date was unknown, 

this field was left blank. The reviewer also noted whether 

the stroke was a first or second event. Differing reviews for 

the same patient were resolved through discussion, which 

produced a single consensus label.

After the date, a field titled “source of decision” appeared, 

which prompted the reviewer to select which data sources 

were used from the aforementioned sources. Multiple sources 

could be selected here. In order to improve this database 

platform for subsequent chart reviews, the reviewer was 

asked to list supportive text or keywords that were helpful 

in making his/her decision.

Algorithm development and statistical 
analysis
The 300 charts were assigned a label of “no AIS” (n=177), 

“possible AIS” (n=32), or “definite AIS” (n=91), where “no 

AIS” included hemorrhagic strokes (n=5) and TIAs (n=2). 

Figure 2 Development of structured acute ischemic stroke algorithm.

Abbreviations: CMS, Centers for Medicare and Medicaid Services; CVA, cerebrovascular accident; NDI, National Death Index; TIA, transient ischemic attack; VA, Veterans 
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Charts labeled “possible AIS” had insufficient evidence of 

AIS, ie, relevant physician notes were present, but primary 

imaging data or a clinical exam at diagnosis absent. We 

treated possible AIS charts as missing data, excluded them 

from training the algorithm, and later compared them against 

other stroke categories using algorithm-predicted stroke 

probabilities (Figure 3).

Covariates considered for the algorithm are presented in 

Table 1. Only stroke-specific (or CVD-related) procedure 

codes, medication, such clinical parameters as blood pres-

sure, and cause of death were included. Categorical covari-

ates, such as individual ICD9 codes, were summarized with 

counts (number of recorded codes) and indicators (0, absence; 

1, presence of a comorbid condition). Each medication was 

coded as three covariates: indication of use, total dosage, 

and mean daily dosage. Maximum and mean systolic blood 

pressure (mmHg) were also included.

Algorithm development is presented in Figure 1. First, the 

data (n=268) were randomly split into a training set (n=134, 

46 cases and 88 controls) and validation set (n=134, 45 

cases, 89 controls). Several adaptive least absolute shrinkage 

and selection operator (LASSO)11,12 models, ie, regularized 

logistic regressions, were trained over 50 repetitions of ten-

fold cross-validation, where regularization parameter λ and 

adaptive parameter γ (0.5, 1, or 2) were tuned to minimize 

cross-validated binomial deviance. Adaptive LASSO was 

chosen over other machine-learning algorithms because of 

its feature selection and transparency. Cross-validation was 

also used to choose the most informative set of predictors. In 

total, four sets of predictors were considered: the Tirschwell 

and Longstreth7 classifier and all accompanying ICD9 codes 

that occurred in at least ten training observations, two sets 

with additional variables added to the baseline set, and a 

final set with all predictors (Table 1). The algorithm with the 

lowest deviance was then used to predict the probability of 

AIS and no AIS in the validation data. R version 3.4.3 was 

used for all analyses.13

Classification metrics (sensitivity, specificity, positive 

predictive value [PPV], area under the curve) were evaluated 

Table 1 List of predictors and variable importance in the acute ischemic stroke algorithm

Predictors Description b (log odds)

Intercept Baseline risk (without predictors) –3.288

Tirschwell and Longstreth classifier AIS if 433.x1, 434, or 436* 2.286

Tirschwell and Longstreth ICD9 436 1.496

Log (number of 434.91) 1

433.x1 0

Other AIS ICD9 codes Log (number of 433, 434, 436, 437.0, and 437.6) 0.586

ICD9, ICD10 codes All CVD-related,# excluding above 0+

CPT codes$ MRI or CT brain/neck angiography 0+

CMS codes‡ All CVD and stroke-related 0+

Medication All stroke-related 0+

Vitals Systolic blood pressure 0+

Cause of death Stroke, CVD-related, other 0+

Notes: *Excluding 434.x0, 430 (subarachnoid hemorrhage), and 431 (intracerebral hemorrhage). Counts of 433.x1 were unimportant after inclusion of the Tirschwell and 

Longstreth7 classifier. +Not included in the optimal predictor set or estimated 0 by adaptive LASSO. #Diabetes (250), CHD-related (410–415, 427), cerebrovascular disease 

(430-438), hypotension (458), syncope (780.2), TIA Hx (V12.54), fall Hx (V15.88), aortocoronary bypass (V45.81), coronary angioplasty (V45.82). $Current procedural 

terminology (CPT) codes are used in the VHA for reporting medical services and procedures. ‡Procedure codes used by the Centers for Medicare and Medicaid Services 

(CMS).

Abbreviations: AIS, acute ischemic stroke; CVD, cardiovascular disease; MRI, magnetic resonance imaging; CT, computed tomography; LASSO, least absolute shrinkage 

and selection operator.

Figure  3 Predicted probabilities of stroke based on charts reviewed.

Notes: Thresholds optimized for largest n (excluding P
control

<P<P
case

) with Cohen’s 

k>0.9 between algorithm labels and review labels.

Abbreviation: AIS, acute ischemic stroke.
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on the validation set for three models: the Tirschwell and 

Longstreth rule-based algorithm,7 the best machine-learning 

model with default probability threshold (ie, longitudinal 

algorithm), and the best machine-learning model with opti-

mal probability thresholds (ie, case–control algorithm). The 

default probability threshold assigned AIS to subjects with 

predicted probabilities >0.5 and no AIS to subjects with 

predicted probabilities <0.5. Optimal probability thresholds 

included a case threshold, above which subjects were pre-

dicted cases, and a control threshold, below which subjects 

were predicted controls. A subject between the case and 

control thresholds was considered “uncertain” and excluded 

when assessing the model’s classification performance. The 

case and control thresholds were optimized in the training 

data to yield the largest sample size (excluding “uncertain” 

cases), with high agreement between algorithm and reviewer 

labels (Cohen’s κ>0.9).

Clinical characteristics of patients with 
acute ischemic stroke in the nationwide 
VA cohort
Demographic characteristics

Age and race were extracted from the VHA electronic data-

base, noted at the time of diagnosis of AIS. We categorized 

race according to standard categories already present in the 

VHA system: White, American Indian/Alaska native, Asian, 

Black/African-American, native Hawaiian or other Pacific 

Islander and other.

Cardiovascular risk factors and comorbid conditions

Smoking status was predicted from VHA lifestyle surveys 

and EHRs. Each subject was assigned one of three catego-

ries: current, past, or present smoker. To report smoking 

accurately, we used a probabilistic model to predict smoking 

status using structured data from the EHR, which included 

smoking-related health factors, diagnosis codes, medications, 

and outpatient-clinic specialty.9 The MVP’s self-reported 

smoking categories of never, former, and current from the 

baseline and lifestyle surveys were used as the gold standard. 

LASSO regression with tenfold cross validation was used 

to select the most meaningful predictors of smoking status 

and to apply a penalty to prevent overfitting. β-Coefficients 

were used to calculate the predicted probability of being a 

never, former, or current smoker. Subjects were assigned to 

the smoking group for which they had the highest predicted 

probability.

Body-mass index was calculated from weight in kilo-

grams divided by height in meters squared, extracted from 

medical records at the time of AIS diagnosis. Hypertension, 

hyperlipidemia, diabetes mellitus, atrial fibrillation, COPD, 

coronary artery disease, peripheral vascular disease, con-

gestive heart failure, chronic kidney disease, chronic liver 

disease, pulmonary embolism, and deep-vein thrombosis 

were extracted from the patients’ medical records using ICD9 

codes (either one inpatient or two outpatient codes).

Clinical and laboratory values
Systolic and diastolic blood pressures are reported in mmHg. 

Total cholesterol, high-density-lipoprotein cholesterol, low-

density-lipoprotein cholesterol, triglycerides, and hemoglo-

bin A
1c

 were extracted from medical visits after the diagnosis 

of AIS. Two clinicians adjudicated laboratory values for 

accuracy. Estimated glomerular filtration rate was calculated 

from serum creatinine using the Chronic Kidney Disease 

Epidemiology Collaboration equation.14

Medications
Aspirin, clopidogrel, warfarin, statins, β-blockers, angioten-

sin-converting-enzyme inhibitors, and angiotensin-receptor 

blockers were obtained from prescription codes within the 

VA healthcare system. Two independent clinician reviewers 

adjudicated these medications. Of note, many patients at the 

VA obtain aspirin as an over-the-counter medication instead 

of through a prescription, and thus the reported percentage of 

aspirin use in our table is likely an underestimation.

Results
The final 268 “no stroke” and “definite stroke” chart-reviewed 

labels, in addition to the EHR elements (Table 1), were used 

to train the machine-learning algorithms. The algorithm 

assigned a diagnosis of AIS when probability of “definite 

stroke” exceeded a specified threshold. Similarly, a diagno-

sis of no stroke was assigned when probability of “definite 

stroke” fell under another specified threshold (Table 2). 

Two algorithms were developed: one for longitudinal cohort 

studies and one for case–control studies. For longitudinal 

studies, in which a stroke phenotype was necessary for every 

patient, case and control thresholds at 0.5 were most accurate. 

For case–control studies, in which we were able to exclude 

uncertain stroke cases and controls, a case threshold of 0.75 

and control threshold of 0.15 yielded the highest sensitivity 

and specificity, excluding uncertain patients (0.15≤P≤0.75).

The best-performing model was adaptive LASSO regres-

sion with hyperparameters λ=0.016 and γ=1 trained with the 

second predictor set. The final predictors selected by LASSO 

were the Tirschwell and Longstreth classifier (β
1
=2.29), 
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 indicator for ICD9 codes 436 (β
2
=1.50), natural log of number 

of ICD9 code 434.91 (β
3
=1.0), and log of number of isch-

emic stroke-related ICD9 codes 433, 434, 436, 437.0, and 

437.6 (β
4
=0.59). The predicted probability for subjects with 

no predictors was 0.036, positive Tirschwell and Longstreth 

classifier 0.269, only Tirschwell and Longstreth classifier and 

one instance of ICD9 434.91 0.424, and only Tirschwell and 

Longstreth classifier and ICD9 436 0.621. Additional ICD9 

codes (433, 434, 436, 437.0, and 437.6) conferred additional 

risk above these baseline risks.

Our case–control algorithm had sensitivity of 91%, speci-

ficity of 95%, and PPV of 88%. It was slightly more sensitive 

than Tirschwell and Longstreth’s algorithm (0.906 vs 0.889) 

and much more specific (0.946 vs 0.83), leading to a superior 

PPV (0.879 vs 0.727). The probability threshold improved 

on the Tirschwell and Longstreth algorithm by excluding 

subjects with uncertain stroke diagnoses (ie, predicted stroke 

probabilities between 0.15 and 0.75), but the exclusions 

led to fewer cases and controls. The longitudinal cohort 

algorithm had comparable classification performance to the 

Tirschwell and Longstreth algorithm, with lower sensitivity 

(0.844 vs 0.889), but higher specificity (0.875 vs 0.83) and 

PPV (0.776 vs 0.727).

Table 3 contains sample sizes and characteristics, includ-

ing demographic, clinical variables, and comorbid conditions, 

when the case–control algorithm was applied to the VHA-

wide cohort. Characteristics of patients with predicted AIS 

cases from the chart reviews (60 cases), the MVP (3,423 

cases/323,122) and the VA-wide CVD-risk cohort (80,508 

cases/2,114,458) are shown. For the VA-wide CVD-risk 

cohort, the mean age was 65±11 years, mean body-mass 

index 29 kg/m2, 98% of patients were men, and 81% were 

White. The prevalence of smoking (current or past) was 

82%, hypertension was 76%, and hyperlipidemia was 61%. 

In contrast, the MVP cohort had a slightly lower cumulative 

incidence of AIS, tended to be younger, with a mean age of 

56 years, and had lower smoking prevalence of 41%. From 

the year 2000 onwards, the CVD-risk cohort had an estimated 

crude 15-year cumulative incidence of 80.8 cases/1,000 

 persons using the Tirschwell and Longstreth algorithm 

and 75.8 cases/1,000 persons using the longitudinal cohort 

algorithm. From 2000, the MVP cohort had estimated crude 

15-year cumulative incidence of 25.7 cases/1,000 persons and 

21.1 cases/1,000 persons with the Tirschwell and Longstreth 

and longitudinal cohort algorithms, respectively. Tables S2 

and S3 provide the incidence per year based on the rule-

based algorithm7 and the longitudinal cohort algorithm in the 

national VA CVD-risk cohort and the MVP cohort.

Discussion
Our algorithm demonstrates that patients with AIS can be 

identified with both high sensitivity and specificity in a large 

national database. We present three different approaches to 

this task: a rule-based algorithm,7 a machine-learning algo-

rithm for longitudinal cohort studies, and a machine-learning 

algorithm for case–control studies that excludes patients 

with uncertain stroke diagnoses. The rule-based Tirschwell 

and Longstreth algorithm7 yields high sensitivity and sample 

size, while the longitudinal cohort algorithm has increased 

specificity and PPV. The case–control algorithm has the 

highest specificity and PPV, but produces no classification 

for patients with uncertain stroke diagnoses and cannot be 

applied to longitudinal cohorts. The machine-learning algo-

rithm produces probabilities, which can be used to recalibrate 

the model for different (non-VA) populations.15

Ideally, power analyses should be run to choose among 

the three models and determine the optimal trade off of 

sensitivity and specificity for each study. If a power analysis 

is unavailable, we suggest applying strict probability thresh-

olds with high specificity to populations where disease 

prevalence is low. Both false positives and false negatives 

will reduce the effect size of a risk factor, but false positives 

and algorithm specificity have a higher impact when stroke 

is less prevalent. Finding the appropriate balance of sensitiv-

ity and specificity is especially important when effect sizes 

are small, such as in GWASs. High specificity and sample 

size are essential for GWASs, due to most genetic variants 

having small effects on complex phenotypes, such as stroke. 

Table 2 Classification performance in the validation set (n=134)

Algorithm Stroke* No stroke Sensitivity Specificity PPV AUC

Tirschwell and Longstreth# 0.889 (0.81–0.96)§ 0.83 (0.76–0.90) 0.727 (0.62–0.84)

Longitudinal cohort P‡>0.5 P<0.5 0.844 (0.75–0.94) 0.875 (0.82–0.93) 0.776 (0.68–0.87) 0.926 (0.89–0.96)

Case–control P≥0.75 P≤0.15 0.906 (0.81–0.97) 0.946 (0.90–0.99) 0.879 (0.78–0.97) 0.948 (0.90–0.98)

Notes: *Decision rule for classifying acute ischemic stroke; #from Tirschwell and Longstreth;7 ‡predicted from classification model; §performance measure (bootstrapped 

95% CI).

Abbreviations: PPV, positive predictive value; AUC, area under the curve.
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Misclassification of cases and controls would reduce the 

effect and require an exponentially larger sample size to 

maintain adequate power.

In the absence of a power analysis, we suggest the algo-

rithm with the fewest false positives and false negatives 

overall for choosing between a more sensitive algorithm 

Table 3 Baseline characteristics of populations with predicted acute ischemic stroke (strict algorithm)

Chart reviews Million Veteran Program CVD-risk cohort

Predicted strokes (n)/population size (n) 60/199 3,423/323,122 80,508/2,114,458

Age (years), mean ± SD 59.0±11.4 56.4±9.7 64.8±11

<30 years 0 25 (0.7%) 147 (0.2%)

30–49.99 years 5 (9.8%) 694 (20.5%) 5,741 (8.2%)

50–59.99 years 23 (45.1%) 1,570 (46.5%) 19,305 (27.4%)

60–69.99 years 7 (13.7%) 776 (23%) 19,453 (27.7%)

>70 years 16 (31.4%) 313 (9.3%) 25,687 (36.5%)

Men 51 (100%) 3,241 (97.5%) 67,583 (98.1%)

Race

White

American Indian/Alaska native

Asian

Black/African-American

Native Hawaiian or other Pacific Islander

30 (63.8%)

0

0

17 (36.2%)

0

2,433 (75.4%)

17 (0.5%)

21 (0.7%)

735 (22.8%)

21 (0.7%)

53,902 (81.3%)

370 (0.6%)

444 (0.7%)

10,785 (16.3%)

824 (1.2%)

Cardiovascular risk factors

Smoking, current or past

Body-mass index (kg/m2)

Hypertension (%)

SBP (mmHg)

DBP (mmHg)

Hyperlipidemia (%)

Total cholesterol (mg/dL)

HDL cholesterol (mg/dL)

LDL cholesterol (mg/dL)

Triglycerides (mg/dL)

Diabetes mellitus (%)

HbA
1c
 (mmol/mol)

eGFR (mL/min/1.73 m2)

38 (90.5%)

28.8±6.4

49 (81.7%)

143±27.2

79.7±15.1

31 (51.7%)

168.8±44.2

43±14.8

98.8±33.9

146.2±131.5

25 (41.7%)

6.8±1.7

64.9±27

1,329 (41.4%)

30±5.5

2,667 (77.9%)

138.9±23

79.6±13.6

2,391 (69.9%)

170.7±42.8

41.7±12.2

99.4±37.4

160.1±129.2

1,233 (36%)

6.7±1.6

74.4±20.5

66,227 (82.3%)

28.8±5.4

61,084 (75.9%)

139.8±22.8

76.1±13

48,837 (60.7%)

173.9±43.4

42.4±12.9

101.4±36

157.9±124.2

27,628 (34.3%)

6.8±1.5

67.8±20.7

Medication

*Aspirin

Clopidogrel

tPA: alteplase or reteplase

Warfarin

Statins

β-Blockers

ACE inhibitors/ARBs

42 (70%)

28 (46.7%)

2 (3.3%)

12 (20%)

42 (70%)

33 (55%)

34 (56.7%)

1,289 (37.7%)

843 (24.6%)

6 (0.2%)

558 (16.3%)

2,458 (71.8%)

1,546 (45.2%)

1,600 (46.7%)

26,035 (32.3%)

20,230 (25.1%)

75 (0.1%)

12,186 (15.1%)

50,712 (63%)

35,017 (43.5%)

37,514 (46.6%)

Comorbid conditions

Atrial fibrillation
COPD

Coronary heart disease

Peripheral vascular disease

Congestive heart failure

Chronic kidney disease

Chronic liver disease

Deep-vein thrombosis

Pulmonary embolism

8 (13.3%)

15 (25%)

30 (50%)

10 (16.7%)

15 (25%)

7 (11.7%)

0

0

1 (1.7%)

406 (11.9%)

420 (12.3%)

1,101 (32.2%)

263 (7.7%)

224 (6.5%)

299 (8.7%)

51 (1.5%)

19 (0.6%)

31 (0.9%)

10,336 (12.8%)

12,599 (15.6%)

29,604 (36.8%)

7,146 (8.9%)

6,620 (8.2%)

6,164 (7.7%)

678 (0.8%)

209 (0.3%)

536 (0.7%)

Notes: Ages computed at a baseline year of 2002. Descriptive statistics for continuous variables computed using first lab values within a year following the first stroke event. 
Dichotomous variables, such as medications, are positive if any records found within a year of first stroke event. *Aspirin is taken by many patients as an over the counter 
and/or non-VA medication instead of a prescription, and thus the reported percentage in this table is an underestimation of aspirin use.

Abbreviations: ACE, angiotensin converting enzyme; ARBs, angiotensin-receptor blockers; CVD, cardiovascular disease; DBP, diastolic blood pressure; eGFR, estimated 

glomerular filtration rate; HDL, high-density lipoprotein; LDL, low-density lipoprotein; SBP, systolic blood pressure; tPA, tissue plasminogen activator.

and a more specific algorithm. The more sensitive algorithm 

will have (sensitivity gain) × p × n fewer false negatives and 

(sensitivity decrease) × (1–p) × n more false positives than 

the more specific algorithm, where p is the prevalence and 

n the population size. In other words, use the more sensitive 

algorithm when:
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gain in sensitivity

decrease in specificity

p

p
>
−1

 

If every patient needs a clear classification, such as when AIS 

is used to define another phenotype or is used in a longitu-

dinal study, we recommend identifying stroke with simpler 

rule-based algorithms (such as Tirschwell and Longstreth)7 

or our longitudinal cohort algorithm. Table 3 shows that the 

sensitivity:specificity ratio was 3.54 for the Tirschwell and 

Longstreth algorithm compared to the longitudinal cohort 

algorithm, so the rule-based Tirschwell and Longstreth 

algorithm7 would be preferred over our longitudinal cohort 

algorithm when stroke prevalence exceeds 22%.

A recent study that validated ICD9 codes for AIS in a 

national health-insurance claims database in Taiwan found 

a PPV of 88%, sensitivity of 97%, and false-positive rate 

of 11.6%. The Taiwanese cohort had a PPV comparable to 

that of our study (88% vs 88%),16 but a much higher false-

positive rate (11.6% vs 5%).16 In contrast to the previous 

algorithm described by Tirschwell and Longstreth,7 which 

included an administrative database of discharge diagnoses 

for all patients hospitalized in Washington State (excluding 

the VA hospitals), our case–control algorithm had greater 

sensitivity (91% vs 89%) and much higher specificity (95% 

vs 83%). There are several plausible reasons that we may 

observe such differences. First, our case–control algorithm 

improves on specificity by excluding subjects with uncer-

tain stroke diagnoses (those with predicted probabilities of 

0.15–0.75). With the inclusion of only definite stroke cases, 

our specificity is increased. However, it yields a smaller 

number of cases compared to an algorithm that includes both 

probable and definite cases. For instance, some uncertain 

cases or cases of TIA may be coded as stroke and picked 

up in previous algorithms, but would not be classified as 

definite AIS in our algorithm. The population studied by 

Tirschwell and Longstreth7 differed from our study in that it 

included patients in one state in hospitals other than the VA, 

whereas our study includes veterans in a nationwide cohort. 

The mean patient age (68 years in the validation subset) was 

slightly higher in the Tirschwell and Longstreth cohort than 

in ours (65 years). The percentage of women in this cohort 

was 44% compared to 2% in the VA. However, the overall 

underlying pathophysiology would be the same for the two 

populations. Moreover, the Tirschwell and Longstreth study 

was conducted in 2002, whereas our study is more recent, 

and thus there are differences in clinical diagnosis, imaging 

techniques, and management of stroke over time that affect 

these findings. The American Heart Association/American 

Stroke Association guidelines for the prevention of stroke in 

patients with stroke and TIA have been updated over the years 

to reflect these changes, with the latest in 2014.17

Our study has limitations. Although we have provided 

(bootstrapped) 95% CIs (Table 2), our small sample, lack 

of independent test set, chart-sampling criteria based on 

administrative codes, and exclusion of uncertain cases may 

lead to optimistic sensitivity and specificity. Some patients 

had AIS events at non-VA hospitals, but returned to the VHA 

system afterwards. Physicians noted these events and stroke-

related complications, but the VHA records often lack the 

primary stroke data (imaging and clinical exam) that were 

collected at other institutions. We excluded these “possible” 

strokes when assessing classification performance, and the 

case–control algorithm excluded them using probability 

thresholds (Figure 3). While the algorithm does not require 

primary stroke data and might misclassify these cases in the 

population, Figure 3 shows that there is a positive trend in 

algorithm-predicted probability across the chart reviewed 

“no”, “possible”, and “definite” stroke groups. The medical 

charts chosen for review were based on ICD9-CM codes 

with a high probability for stroke. Those with less definite 

ICD codes were likely missed, thus decreasing sensitivity. 

However, this is likely to occur across all categories. Also, 

the time frame of our study was 1992–2014, and thus may 

not generalize to other periods.

Our study also has several strengths. First, we present 

a highly specific algorithm to analyze cases of AIS from a 

large national cohort, which can easily be applied to other 

databases as well. Careful implementation of the algorithm, 

such as removing uncertain stroke cases, resolves several 

study limitations of administrative data. Each stroke case also 

has an associated probability of being a true case, which can 

be used as its own phenotype in β-regression.18 Consequently, 

researchers can utilize the large study population at little cost 

to quality and with minimal time and resources spent review-

ing medical records. Also, in contrast to cohort studies com-

monly used in clinical research that may contain self-reported 

information or biomarker data, large clinical databases, such 

as the VHA database, have more detailed anthropometric, 

demographic, clinical, and biomarker data, often with large 

samples. Additionally, our gold-standard chart review incor-

porated brain-imaging data, which were lacking in many 

prior studies that developed stroke algorithms.4 Such efforts 

as this to produce an accurate algorithm for AIS may be fur-

ther utilized when linked with GWASs, thus paving the way 

for precision medicine in the future. Future developments 

will analyze unstructured data elements, such as applying 
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natural-language processing to free-form medical notes or 

using deep (machine) learning to differentiate between brain 

images of patients with and without stroke. Specifically, our 

group is working on developing a novel chart-review tool 

using natural-language processing for validating EHR-based 

phenotyping algorithms.
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Supplementary materials
 

Figure S1 Database platform for the chart review process.

Note: In addition to what is presented in the above figure, the platform also included information on patient demographics, ICD-9 codes, and data from Centers for 
Medicare and Medicaid Services and the National Death Index. 
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Table S1 Process of case selection for review (n=300 charts)

Case selection process*

Selection criteria: Random selection of medical charts from the CVD Merit cohort with ICD-9 codes for acute ischemic stroke (AIS) (433.x, 434.x, 

436) 

Criteria Count of charts meeting criteria in the national Veterans 

Affairs cohort

10 charts with only one inpatient ICD-9 2,710

10 charts with only one outpatient ICD-9 10,809

10 charts with one inpatient ICD-9 AND multiple outpatient ICD-9s 37,199

10 charts with no inpatient ICD-9 AND multiple outpatient ICD-9s 62,773

10 charts with multiple inpatient ICD-9s AND multiple outpatient ICD-9s 25,648

Note: *This process was replicated for each chart reviewer.

Table S2 Cumulative incidence of acute ischemic stroke (derived from rules based and statistical algorithm) from 2000 to 2015 in the 

national Veterans Cardiovascular Disease risk cohort

Year Rules-based algorithm (Tirschwell) Longitudinal cohort statistical algorithm

Count Crude incidence Incidence per  

10,000 persons

Count Crude incidence Incidence per  

10,000 persons

2000 13515 0.006407864 64.07864486 12359 0.005858918 58.58917605

2001 14792 0.007058559 70.5855855 13620 0.006494761 64.94760559

2002 16717 0.008033852 80.33852039 15599 0.007487083 74.87082754

2003 17637 0.008544632 85.44631736 16659 0.00805617 80.56170256

2004 17408 0.008506371 85.06371472 16594 0.00808991 80.89910428

2005 15232 0.007506932 75.06931788 14423 0.007088852 70.88852223

2006 14039 0.006971307 69.71307352 13318 0.006592482 65.92481858

2007 12189 0.006095149 60.95149133 11536 0.005748278 57.48277659

2008 8710 0.004382174 43.8217386 8164 0.004091562 40.9156198

2009 7817 0.003950198 39.50198293 7372 0.003709813 37.09813292

2010 7262 0.003684291 36.84291433 6839 0.003454407 34.54406781

2011 6876 0.003501359 35.01358839 6509 0.003299119 32.99118934

2012 6798 0.003473803 34.7380314 6367 0.003237828 32.37827508

2013 6295 0.003227982 32.27981653 5755 0.002936112 29.36112139

2014 5554 0.002857231 28.57231048 5183 0.002652073 26.52073355

2015 4571 0.002358269 23.5826911 4312 0.002212261 22.12261119

Table S3 Cumulative incidence of acute ischemic stroke (derived from statistical algorithm) from 2000 to 2015 in the Million Veteran 

Program

Year Rules-based algorithm (Tirschwell) Longitudinal cohort statistical algorithm

Count Crude incidence Incidence per  

10,000 persons

Count Crude incidence Incidence per  

10,000 persons

2000 274 0.000848 8.482394 234 0.000724 7.243977

2001 294 0.000911 9.109274 253 0.000784 7.83784

2002 315 0.000977 9.768835 275 0.000853 8.526074

2003 346 0.001074 10.74071 323 0.001002 10.02281

2004 363 0.001128 11.28054 325 0.001009 10.09499

2005 399 0.001241 12.41328 380 0.001182 11.8153

2006 399 0.001243 12.42871 364 0.001133 11.3312

2007 443 0.001382 13.81646 407 0.001268 12.68415

2008 487 0.001521 15.20977 434 0.001354 13.54278

2009 603 0.001886 18.86131 536 0.001675 16.74833

2010 729 0.002285 22.84557 666 0.002085 20.84533

2011 794 0.002494 24.93954 616 0.001932 19.32064

2012 930 0.002928 29.28433 641 0.002014 20.14368

2013 993 0.003136 31.35994 672 0.002116 21.16049

2014 923 0.002924 29.24097 692 0.002184 21.83647

2015 853 0.00271 27.1026 607 0.00192 19.19616
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Table S4 Sensitivity and PPV of code-groups in chart-reviewed VA sample (N=300)

Code Group ICD-9 Total AIS Possible 

AIS

ICH/SAH TIA No 

Stroke

Sensitivity PPV

Tirschwell 433.x1, 434, 436 144 85 25 5 2 27 0.934 0.599

AHA/ASA 433.01, 433.11, 433.21, 433.31, 

433.81, 433.91, 434.01, 434.11, 

434.91

72 50 6 2 1 13 0.549 0.704

ICH 431 8 4 0 4 0 0 0.800 0.571

SAH 430 3 2 0 1 0 0 0.200 0.500

Abbreviations: PPV, positive predictive value; VA, Veterans Affairs; AIS, acute ischemic stroke; ICH, intracranial hemorrhage; SAH, subarachnoid hemorrhage; TIA, 

transient ischemic attack; AHA/ASA, American Heart Association/American Stroke Association
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