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ABSTRACT 

Ultra-high-speed photoelastic techniques have been applied to a 

study of the transient stresses and strains in a photoelastic · plastic 

when subject to cavitation. A photocell, used to detect the transient 

strains, indicated that the time duration of the strains was about 2 

microseconds. Using an ultra-high- speed motion picture camera, 

ultrasonic cavitation bubbles have been photographed collapsing on the 

surface of a photoelastic specimen, and the resulting strain wave in 

the solid has been photographed. 

The dynamic properties of a photoelastic material have been 

obtained in order to permit quantitative interpretation of the transients. 

This has indicated that the stresses due to cavitation may be as high 

as 2. 8 x 105 psi. 

The photoelastic plastic, CR-39, was found to exhibit strain 

birefringence, and its strain-optic constant was found to be independent 

of the rate of loading. 





I. INTRODUCTION 

Although the laws governing the gross behavior of cavitation are 

well established, the study of the microscopic details of the vapor bubble 

history and surface damage has been retarded by a lack of experimental 

techniques with adequate time resolution, Recently, acoustical methods 

of concentrating the vapor bubble cloud on a small area of surface and 

an ultra-high-speed motion picture camera have been developed by 

Dr. Albert T. Ellis
1

• 
2 

at the Hydrodynamics Laboratory of the California 

Institute of Technology. The shutter of this camera is a Kerr cell with 

crossed Polaroids on each side, This suggested immediately that the 

transient stress and strains due to cavitation could be investigated with 

photoelastic techniques. However, the laws concerning dynamic photo­

elasticity had not yet been accurately established; consequently, as a 

first step, a common photoelastic plastic, CR-39, was selected to make 

a comprehensive quantitative study of its static and dynamic photoelastic 

behavior. 

II. STATIC PROPERTIES OF CR-39 

It appeared advisable to determine the static properties of CR-39, 

for two reasons: first, to verify our experimental techniques by compar­

ing the results of a static study with other similar studies; and second, 

to compare the static properties with the dynamic properties. 

CR-39 was selected as the photoelastic plastic because of its 

availability and because a considerable amount of experience on its 

fabrication has been obtained at the Guggenheim Aeronautical Laboratory 

at the California Institute of Technology. CR -39 is a thermosetting 

polymer of allyl diglycol carbonate manufactured by the Cast Optic 

Corporation of Riverside, Conn., and according to Coolidge
3

, 

"Essentially, its manufacture consists of reacting phosgene 

with diethylene glycol to obtain a chloroformate which is then 

esterified with allyl alcohol to produce the diglycol carbonate 

monomer. This monomer is polymerized by heating in the 

presence of a catalyst such as benzoyl peroxide to form the 
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hard, strong, infusible, insoluble, clear, substantially colorless 

substance known as CR-39. The commercially obtainable sheets 

of CR-39 are cast-polymerized between glass plates producing 

optically beautiful surfaces." 

A. Experimental Procedure 

The static tests were made on a simple tensile specimen with a 

working section 0. 252 inches thick, 0. 500 inches wide, and 3 inches long. 

Baldwin A-8 wire strain gages, which are limited to strains up to lo/o, 

were cemented to the front and back of the specimen in both the longitu­

dinal and transverse directions. The strain was indicated directly by a 

Baldwin-Foxboro portable strain indicator which could be read to within 

10 microinches. The strain gage constant was checked by comparing 

the wire strain gages against two calibrated Huggenberger mechanical 

extensometers. 

The specimen was placed in the spherical mirror polariscope de­

signed by Goetz 
4

, for which the light source is a low pressure mercury 

vapor lamp, used with a Wratten 77A filter to produce monochromatic 

light of 5461~ wave length. The fringe order in the specimen was deter­

mined by a calibrated Babinet-Soleil compensator that could be read 

easily to within 1/100 of a fringe line with only visual observation. 

Creep tests were made by applying constant loads to the specimen 

for 180 minutes during which time the strain and fringe order were 

determined; the load was then removed and readings were made for 

another 180 minutes. 

B. Results 

Figure 1 shows the indicated strain for a typical creep test, where 

it is evident that CR-39 is viscoelastic. Figure 2 shows the ratio of 

stress, based on original area, to strain plotted as a function of time, 

where it is evident that the secant modulus decreases with both time and 

stress. Figure 3 shows stress vs. strain at 10 minutes after the ap­

plication of load, at which time the Young's modulus is 3. 36 x 10
5 

psi. 

Figure 4 shows the axial strain versus the transverse strain. For 

uniaxial stress, Poisson's ratio is given by the slope of the line, which 
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is 0. 443. 

Figure 5 shows the fringe order N as a function of the difference 

in principal slrains, from which it is evident that the birefringence of 

CR- 39 is proportioned to strain rather than to stress. The strain-fringe 

constant for plane stress,defined as 

G = ( E 1 - (1) 

is 3. 48 x 10-
4 

in/fringe, where E 1 and E 
2 

are the principal strains 

normal to the light path, W is the width of the specimen, and 'N is 

the fringe order. 

Finally, in Fig. 6, the fringe order at the time of loading, as 

determined by extrapolation, is plotted against the product of stress 

and specimen width. The slope of this curve is the so-called stress­

optic constant F, and is 90.8 psi-in/fringe. This value decreases with 

time as the plastic creeps. 

C. Discussion 

Table I below is a summary of the author's date in comparison 

with the data by Coolidge
3

, and the manufacturer's data. The procedure 

by which the manufacturer obtained the data is not known, but the reasons 

for the discrepancy with Coolidge's data is evident from an examination 

of his experimental techniques. 

TABLE I- Static Properties of CR-39 

Manufacturer's Coolidge's Author's 

Property Data Data Data 

Tensile Strength, psi 5000-6000 5 7000* 5 ------ 5* 
Elastic Modulus, psi 2.5-3.3xl0 2.7xl0 3.76xl0 

Poisson's Ratio --~---- ------- 0.443 

Strain Creep ------- yes ye s(.see text) 

Specific Gravity 1. 31 ------- 1. 326 

Stress-Fringe Constant 86.6 78. s** 90. B* 
psi-in/fringe, 5461A 

20o/o/180 min yes( see te,rt) Optical Creep none 

Strain-Fringe constant, ------- ------- 3.48xl0-

in/fringe 
Refractive index ND 1.50398 ------- -------
*Immediately after application of load. 

"'*Stress was increased by increments to 4300 psi during 14 minutes; time 

between increments varied from one to two minutes. 
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Coolidge determined the mechanical properties of CR-39 from a 

tensile specimen for which the load was increased every 10 minutes, but 

because CR-39 creeps, the elastic modulus thus obtained cannot be 

extrapolated to experiments in which the entire load is applied at one 

time. In addition, Coolidge determined a stress-fringe cons\:.an\:. by 

applying incremental loads every one to two minutes, and using the 

definition of the stress fringe constant, 

( 2) 

where o-
1 

is the axial stress, and o-
2 

(in this case) was zero. The 

above comments also apply tothis procedure; but more important, his 

assumption that CR-39 is stress-birefringent is incorrect. 

In passing, it should also be noted that Coolidge did observe a 

change in the fringe pattern with time in a beam subject to pure bending. 

In reducing this data, however, Coolidge used the Bernoulli beam equa­

tions and did not take into account either the strain-creep characteristics 

or the nonlinearity of CR- 39; hence his data on the change of fringe order 

with time does not correspond to that of Fig. 1. 

It should also be noted that two other plastics have been reported 

as strain birefringent, namely, polyethylene by Fried and Shoup
5

, 

and a special nylon by HetJnyi. 
6 

No other correlations of birefringence to 

strain for plastics have been found in the literature by the author. 

III. DYNAMIC PROPERTIES OF CR-39 

The fore-going static properties of CR-39 cannot be extrapolated 

to make quantitative photoelastic observations of stress waves for two 

reasons. First, the dynamic strain-fringe constant may differ from 

the static value; for instance, Senior and Wells 
7 

and Flynn
8 

measured 

the dynamic stress-fringe constants for several other plastics and found 

them to be higher than the static value. Second, since CR-39 is visco­

elastic, the velocity of compressional and shear waves will depend on 

the wavelengths of the Fourier components of the wave, and in addition, 
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the waves will become attenuated as they travel through the plastic. One 

way of describing this phenomena is to ascribe to the material a complex 

modulus which is a function of the wave length or the frequency of the 

Fourier components of the wave. 
9 

A. Dynamic Me chanica! Properties of CR- 39 

It may be assumed that CR-39 is a Voigt solid at any one frequency. 

Then the stress-strain relationship may be expressed as follows: 

IT = E' E + E" dE/dt ( 3) 

where IT and E are the stress and strain respectively, t is time, and 

E' and E" are functions of the frequency (1) of the applied strain; that 

is, 

(4) 

Equation (3) then becomes 

IT = (E' + iru E") E ( 5) 

Therefore E 1 + iruE" may be considered to be a complex modulus; that 

is, 

* icp E = E' + iCbE" = E l + i E
2 

= E e ( 6) 

where 

( 7) 

For longitudinal stress waves in a bar, if the ·wave lengths are long 

in comparison to the thickness, Newton's law for a small element becomes 

(8) 

where p is the mass per unit volume, t is time, x is the longitudinal 

coordinate of the bar, and u is the longitudinal displacement; that is, 
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E = Bu/ax . (9) 

By substituting (5), (6) and (9) into (8), one obtains the following differ­

ential equation: 

( 1 0) 

When a bar of length L is executing free -free longitudinal vibrations, 

Eq. (10) may be solved for its motion, which is 

1fli: -sin(!£. ff!. t) 
u = cos( V ~ -[,cos ! t) e 

2 
P L sin(1T x/L). (11) 

It may be seen that the frequency f and period of oscillation T are 

given by 

f = ~ ~ - 1
- cos .i 

p 2L 2 
( 12} 

= 1~ 2L 
T v E cp 

cos 2 
( 13) 

and the wave length A, wave speed c, logarithmic decrement 0 are 

given by 

A= 2L 

c = fA= V E/p 

6 = 2 1T tan ( cp/ 2} 

cos (cp/2) 

(14} 

( 15) 

(16} 

As a given wave travels along the bar, it is attenuated as e-a. xi it may 

similarly be shown that the attenuation factor a. is given by 

a. = FJ/ A . ( 17) 

The preceding constants were determined from free-free vibrations 

of various length bars of CR-39, in which the strain was measured by 

Baldwin C-19 wire strain gages. For the shorter bars, a correction was 
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made for the thickness, using data from experiments made by Morse , 

11 
and from a theoretical analysis by Bancroft. The results of the 

experiments on CR-39 are shown in Figs. 7, 8, and 9. From these, 

it is evident that with increasing frequency, the wave speed, logarith­

mic decrement, attenuation factor, and E all increase. All dynamic 

values of E are greater than any reported static values. 

B. Dynamic Strain-Fringe Constant 

B'ased on the correlation of the photoelastic fringe order to the 

strain, it appeared desirable to make similar measurements during 

transient stresses; that is, stresses caused by impacts. The dynamic 

loading apparatus is shown in Fig. 10 and a close-up of the specimen in 

Fig. 11. The procedure is to release a small hammer from the top of 

7 

the loading frame, which then slides down a pair of vertical wires, and 

strikes the end of an aligned specimen of CR -39 which was 0. 248 inches 

thick, 0. 500 inches wide, and 10. 75 inches long. Two Baldwin C -19 

strain gages, the gage constant of which as given by the manufacturer 

was guaranteed to be within 3o/o, were cemented on the specimen 

in the longitudinal direction, and two in the transverse direction. 

By comparing the strain in the two directions during the passage of 

a stress wave, Poisson's ratio was found to be 0. 44, which is the 

static value within experimental error. 

To determine the strain-fringe constant, the loading frame was 

plac.ed in a polariscope and a monochromatic circularly-polarized light 

beam of 54611 was directed through the space between the strain gages 

(see Fig. 12). The light intensity was detected by an IP 21 multiplier 

phototube whose output was amplified and displayed on one of the Tek­

tronix oscilloscopes; the strain in the longitudinal direction was simul­

taneously detected by a bridge circuit similar to one used by Ripperger
12

, 
' 

and displayed on the other Tektronix osci~loscope. Oscillograms were 

made with Dumont-Land oscillograph cameras. Figure 13 shows two 

such oscillograms, together with the fringe order, which is given by 

N(t) 
1 . -1 = - s1n 
1r 

vI( t)/1
0 

(18) 
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where I is the peak light intensity, and I(t) and N{t) are the instan-
o 

taneous light intensity and fringe order, respectively. The oscillograms 

are for the leading edge of the strain wave, the rise time of which was 

about 25 microseconds. The fringe order versus strain for the leading 

edge is shown in Fig. 14 and the slope, which is the strain fringe constant 

is 3. 42 x 10-
4 ± 3o/o in/fringe. This value is the same as the static 

value within experimental error. 

These tests also indicate that CR-39 is strain-birefringent 

rather than stress-birefringent, which is the usual relation used in 

photoelasticity. Note that both Eqs. (1) and (2) are valid for an elastic 

material, the birefringent constants being related by: 

F = GE/(1 + v) 

and stress-birefringence cannot be distinguished from strain-birefrin­

gence in an isotropic solid subject to plane stress. However, plastics 

are viscoelastic to some extent; that is, E increases with increasing 

frequency, so that the dynamic value of E is greater than the static 

value, the exact dynamic value depending upon the frequency components 

of the transient situation. Therefore, if a plastic is strain birefringent, 

the dynamic value of F will be greater than the static value. This 

effect has been observed by other investigators, 
7

• 
8 

but unfortunately 

transient strains were not measured in those experiments. Hence, 

although those plastics are definitely not stress-birefringent, it cannot 

be cpncluded that they are strain-birefringent. 

IV. TIME DURATION OF STRAINS DUE TO CAVITATION 

A. Experimental Apparatus 

To study the strains caused by cavitation, the acoustic method de­

vised by Ellis
13 

was used. The essential apparatus is shown in Fig. 15, 

and consisted of a glass beaker, a barium titanate ferroelectric ring 

surrounded by closed-cell sponge rubber, and a specimen holder, which 

in this case is a one-inch thick base of stainless steel. A 1/16 x 1/16 

x 1/8 inch specimen of CR-39 was held in the center of the base, and 

the beaker was filled with distilled and deaerated water. 
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The electrode surfaces of the barium titanate ring were connected 

to an audio-oscillator amplifier circuit, which excited the first mode of 

the oscillations of the water-base system when tuned to 22,000 cycles 

per second. The maximum pressure amplitude of the water is on the 

centerline of the beaker at the base. As the power to the barium titanate 

is increased, the minimum pressure during the negative part of the 

cycle drops below vapor pressure and cavitation forms on the upper sur­

face of the specimen. The cavitation is visible in Fig. 15 in the form 

of a small bubble cloud. 

The beaker was placed in a polariscope with a modified optical 

system so that a magnified image of the specimen was projected onto 

a screen in which a square hole was cut. In this way, only the light from 

an area 0. 004 inch square on the specimen passed through the slit, the 

intensity of which was detected by an IP21 multiplier phototube, which 

was immersed in liquid nitrogen to reduce the noise level. The photo­

tube output was amplified by a Tektronix Type 121 amplifier, and dis­

played on a Tektronix Type 513D oscilloscope. The frequency response 

of the amplifier is 12 megacycles and of the oscilloscope 18 megacycles. 

The frequency response of the phototube, as determined by light im­

pulses through a Kerr cell of 0. 08 microsecond duration was at least 

as high as that of the oscilloscope. 

B. Experimental Re suUs 

The light slit was centered 0. 006 inches below the upper surface 

of the CR-39 specimen. As the oscillator amplitude was increased, a 

distinct sine wave became visible on the oscilloscope, the frequency of 

which corresponded to that of the oscillator. As the oscillator was tuned 

to the lowest resonant frequency, 22,000 cps, the · wave form of the 

light intensity became distorted from sinusoidal toward a saw-tooth form. 

When the bubble cloud formed, a spike appeared on the oscilloscope 

screen, at the part of the cycle where the pressure becomes positive. 

Typical oscillograms are shown in Fig. 16. The spikes were pre sent 

only when the bubble cloud was present. The lower oscillogram, a 

double expo sure, shows that the time between spikes is not constant. The 

time duration of the spike was about 2 microseconds. When the slit was 

moved down away from the upper end of the specimen, or toward either 
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side of the specimen, the spikes gradually decreased in amplitude, but 

the time duration of the spike rer11ained constant. The amplitude of the 

spike corresponds to about one-quarter of a fringe-line, and was ap­

parently insensitive to the bubble cloud size or amplitude of the exciting 

pressure cycle. It should be mentioned that the concentration of vapor 

bubbles seemed to be greatest at the center of the bubble cloud, just 

above the surface of the specimen. 

Figure 17 shows photomicrographs of the top and sides of a speci­

men that had been subject to about 5 minutes of cavitation. There is a 

large irregular hole in the center, surrounded by individual holes which 

are about 0.001 incl1P.s in diameter. 

The strain wave due to the cavitation did not exhibit the visco­

elastic dispersion or dissipation that is typical of CR-39 at lower fre­

quencies; this indicates the internal damping is negligible and the wave 

speed, and hence the elastic modulus, is approximately constant for 

the higher frequency components of the spike. 

V. ULTRA-HIGH-SPEED MOTION PICTURES 

Experimental Apparatus 

In order to photograph the transient isochromatic pattern due to 

the strains caused by cavitation, the ultra-high- speed motion picture 

camera developed by Ellis 
1 

was utilized. This camera has a repetition 

rate up to one million frames per second for about a millisecond with 

a frame exposure of about 0. 08 microsecond. Figure 18 shows the 

camera set up to photograph cavitation bubbles. 

The camera is a revolving mirror type; the mirror distributes a 

series of images onto the inner periphery of a stationary drum in which 

a 7-1/2 foot length of 35 mm Tri-X film has been placed. The exposure 

for each frame is achieved by a Kerr cell. The Kerr cell consists of a 

glass container, on the front and back of which are crossed Polaroids 

so that normally no light is transmitted through the cell. On either side 

of the cell are two flat electrodes spaced 0. 25 inches apart; when a 

voltage difference of 13,000 volts exists across the electrodes·, the 
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nitrobenzene in the container becomes sufficiently optically active to :ro­

tate the plane of the light that had been polarized by the front polaroid 

so that it passes through the rear polaroid. 

The Kerr cell is electrically pulsed for about 0. (}8 microseconds 

to achieve each frame, and is pulsed continuously only during one revo­

lution of the mirror. During this revolution, a General Electric FT 524 

flash tube is illuminated by discharging through it the energy stored in a 

bank of capacitors. Suitable inductances cause the light intensity to be 

almost constant for about a millisecond. 

To photograph the strains due to cavitation, a slightly different 

cavitation beaker was used. A circularized light polariscope with a light 

background was used so that the entire field, including the cavitation 

bubbles, would be visible; specimens with thicknesses of 0. 25, 0. 0625, 

and 0. 020 inch were used. The resonant frequency for this beaker was 

10 kilocycles per second. 

Results 

Figure 19 shows a series of consecutive frames taken at 150,000 

frames per second of a 0. 25-inch thick specimen. The lower right-hand 

line represents the edge of the specimen; it is blurred because of the 

small depth of field of the lens. The other two dark lines are time-edge 

isochromatics, caused by leaving the specimen immersed in water for 

too long a period of time. However, they provided a sensitive means 

to detect fractional changes in the isochromatics due to transient strains. 

The twelfth frame shows a shift of about 1/4 of a fringe just after the 

collapse of the bubble cloud. In addition, the entire specimen is also 

darkened. Only one frame is affected; this is caused by the short time 

duration of the transient and the large speed of propagation of the stress 

wave. 

In subsequent runs, half a dozen cases of fringe shift just after 

bubble collapse were observed; this was also observed in the 0. 0625 

specimen, but not in the 0. 020 specimen. When the fringe shift was ob­

served, it always occurred in the immediate vicinity of the bubble collapse. 

These bubbles did not exhibit spherical symmetry; on the other hand, the 

affected area in the specimen was always spherical, centered below the 
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last bubbles to collapse. 

Because of the blurring of the edge of the specimen, it was not 

possible to determine photographically the initially strained area. How­

ever, it may be postulated that initially, the cavitation pressure acts 

only on the area corresponding to a small pit; that is, a diameter of 

0. 001 inch. It may be assumed that during the initial pulse, the 

lateral elongations are zero; then the observed fringe order is 

N = .!. ~ dx 
G _/ '1 

(19) 

where E 
1 

is the strain normal to the surface. Now, for plane strain, 

the stress a-
1 

normal to the surface is given by 

(J" = 
1 

(1-v)Ee 1 
(1 + v)(l - 2v) 

(20) 

where v is Poisson's ratio. When E 
1 

is eliminated from Eqs. ( 19) 

and (20), the following expression is obtained for the average stress 

+d/2 

crt = ~ J CTl dx 

-d/2 

= EGN (1-v) 
d( 1 + v )( 1 - 2 v) 

where d is the diameter over which the stress acts initially. The 

(21) 

elastic modulus is not known accurately for ultra-high-frequency com­

ponents, but to obtain an order of magnitude estimate of the average 

stress, it may be estimated as 10
6 

psi. With G = 3. 42 x 10-
4 

in/fringe 

N = 1/4 and d = 0. 001 inch, the average stress lr! is about 2. 8 x 10
5 

psi, 

CONCLUDING REMARKS 

The ultra-high-speed photoelastic techniques have yielded quanti­

tative information on the time duration of stresses due to cavitation and 

the magnitude of the stresses. Additional study of the behavior of 

photoelastic materials at higher frequencies and stresses is required, 

as well as a method of direct calibration of axially symmetric impacts. 
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It also appears desirable to obtain better depth of field and magnification 

of the photographic image. 
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Fig. 10 Dynamic loading apparatus. Left: photomultiplier. 

Center: loading frame with wire strain gages cemented to 
the specimen. Right: strain gage bridge and oscilloscope. 
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Fig. 15 Acoustic cavitation in water. A small bubble 

cloud can be seen on top of the photoelastic specimen. 

Fig. 16 Oscillographs of the light intensity through a 
0. 004 x 0. 004 in. slit centered 0. 006 in. below the 
surface of a 1/16 x 1/16 x 1/8 in. CR-39 specimen 
when cavitation is occurring. Horizontal sweep-time 
10 microseconds per division. 
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