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Abstract.—We describe a general likelihood-based ‘mixture model’ for inferring phylogenetic trees from gene-sequence or
other character-state data. The model accommodates cases in which different sites in the alignment evolve in qualitatively
distinct ways, but does not require prior knowledge of these patterns or partitioning of the data. We call this qualitative
variability in the pattern of evolution across sites “pattern-heterogeneity” to distinguish it from both a homogenous process
of evolution and from one characterized principally by differences in rates of evolution. We present studies to show that the
model correctly retrieves the signals of pattern-heterogeneity from simulated gene-sequence data, and we apply the method
to protein-coding genes and to a ribosomal 12S data set. The mixture model outperforms conventional partitioning in both
these data sets. We implement the mixture model such that it can simultaneously detect rate- and pattern-heterogeneity.
The model simplifies to a homogeneous model or a rate-variability model as special cases, and therefore always performs at
least as well as these two approaches, and often considerably improves upon them. We make the model available within a
Bayesian Markov-chain Monte Carlo framework for phylogenetic inference, as an easy-to-use computer program. [Bayesian
inference; MCMC; mixture model; phylogeny; rate-heterogeneity; secondary structure; sequence evolution]

The conventional likelihood-based approach to infer-
ring phylogenetic trees from aligned gene-sequence or
other data is to apply a single substitutional model to
all sites. Popular variations on this approach include use
of the gamma rate-heterogeneity model (Yang, 1994), or
partitioning the data in which the investigator assigns
a different substitutional model to different sites, later
combining the information from the different models
into a single overall likelihood.

The limitations of using a single homogeneous model
of substitution to characterize all sites are obvious. If
the data are nucleotides from a coding region, natural
selection may constrain variability at some sites more
than others (so-called purifying selection) and therefore
sites will, minimally, exhibit different rates of evolution.
This is one of the most compelling reasons for use of the
gamma rate-heterogeneity model: its success in improv-
ing the likelihood of the data derives from its ability to
allow some sites to be better characterized by a substitu-
tional process that is speeded up relative to other sites.

Rate-heterogeneity models are less applicable to cases
in which sites might be expected to evolve in qualita-
tively different ways, and not just vary in their overall
rates of evolution. First, second, and third codon posi-
tions, for example, might have different substitutional
patterns, independently of their tendency to evolve at
different rates. A well-known case in which heterogene-
ity across sites in the pattern of evolution is predicted
is in the stems and loops of ribosomal sequences. Stems
frequently adopt canonical Watson-Crick base pairing
giving the expectation that the frequency of transi-
tional changes will greatly exceed those of transversional
changes (Hillis and Dixon, 1991; Higgs, 1998; Savill et al.,
2001). Although no specific prediction is made about
loops, special substitutional models have been proposed
to characterize ribosomal stem data (e.g., Schöniger and
von Haeseler, 1994; Savill et al., 2001).

We call this qualitative variability in the pattern of
evolution across sites “pattern-heterogeneity” to distin-

guish it from both a homogenous process of evolution
and from one characterized principally by differences
in rates of evolution. In addition to patterns expected
within genes, codons, or secondary structures, concate-
nated sequence alignments may harbor large variation
in both the pattern and rates of evolution across sites.
Murphy et al. (2001), for example, analyzed an align-
ment of 22 genes comprising 16.4 kb of DNA to infer the
mammalian phylogeny. Even an alignment of this size
may soon seem small given the growth of what might be
called genomic-phylogenetics, in which large portions
of genomes are aligned across species. Rokas et al. (2003)
used 106 genes comprising 127,026 sites to infer the phy-
logeny of the yeast.

Heterogeneity across sites in the pattern of gene-
sequence evolution is often accommodated by partition-
ing the data such that different models of evolution are
assigned to different sites. This can be helpful when
there is clear evidence that the partitions follow differ-
ent evolutionary models, or even necessary if qualita-
tively different characters, such as gene sequences and
morphological traits, are combined in one analysis. In
other instances, however, it may not be obvious how
to partition data or it may be that there is important
variability within partitions. We give examples below in
which partitioning by gene, by codon position, or by the
stems and loops in ribosomal data would miss significant
evolutionary variation within these categories (see also
Hickson et al., 1996, and Simon et al., 1994, for examples
with ribosomal data).

As opposed to partitioning data, a realistic accounting
of one’s knowledge in many circumstances would be to
entertain the possibility that different models can apply
with varying probabilities to the same site in the gene
or alignment. The likelihood approach is then to sum the
likelihood over these different models, each weighted by
its probability. The probability that a given model applies
to a given site might be obtained from prior information
or, as we will show, the weights can be estimated from

571

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/53/4/571/1646012 by guest on 16 August 2022



572 SYSTEMATIC BIOLOGY VOL. 53

the data. Summing over models may be preferred when
there is not a clear case for partitioning the data, and may
allow for unforeseen patterns of evolution to emerge.

Gelman et al. (1995) use the term ‘mixture models’ to
describe the practice of calculating likelihoods by sum-
ming over a range of statistical models for a given data
point. In the context of phylogenetic inference, Koshi and
Goldstein (1998) report a mixture model to character-
ize amino acid sequences and Huelsenbeck and Nielsen
(1999) assume a gamma distribution of transition/
transversion ratios at each site in a nucleotide sequence.
Krajewski et al. (1999) attempt to construct a mixture
model based upon distance matrices, and Yang et al.
(2000) use a mixture model to sum over different values
of the synonymous/nonsynonymous substitution ratio
at each site. More recently, Lartillot and Philippe (2004)
develop a mixture model for amino acid sequences that
allows the equilibrium distribution of amino acid fre-
quencies to vary among sites.

Here we describe a mixture model for detecting hetero-
geneity across sites in the pattern of evolution of gene-
sequence data, although it is applicable in principle to
any aligned character-state data capable of exhibiting
more than one pattern of evolution. The method fits two
or more qualitatively different models of sequence evo-
lution to each site in a gene-sequence alignment, without
specifying in advance the nature of the models, their rel-
ative probabilities, or having knowledge of which sites
are best fit by which model.

THE MODEL

Define the likelihood of a model of gene sequence evo-
lution as an amount proportional to the probability of the
data given the model:

L(Q) ∝ P(D | Q)

where Q is the substitution rate matrix that defines the
model of evolution, and D will normally be an aligned
set of sequence data. In the case of nucleotide data, Q is
the familiar 4 × 4 matrix of transition rates among A, C,
G, and T (e.g., Swofford et al., 1996). If the data consist of
binary characters, then Q would be a 2 × 2 matrix, and
for protein data Q is a 20 × 20 matrix representing the
transition rates among all pairs of amino acids.

Given an aligned set of gene-sequence or other
character-state data, the probability of the data in D is
found as the product over sites of the individual proba-
bilities of each site. By taking the product over sites, we
are assuming that their evolution is independent. Con-
sidering that the the likelihood is calculated for a specific
phylogenetic tree we can write the right hand side of the
above equation as

P(D | Q, T) =
∏

i

P(Di | Q, T)

where the product is over all of the sites in the data matrix
and T stands for the specific tree.

A mixture model for gene-sequence or amino acid data
modifies this basic framework by including more than
one model of evolution Q. The probability of the data is
now calculated by summing the likelihood at each site
over all of the different Q matrices. Thus, defining the
different matrices as Q1, Q2, . . . , QJ write the probabil-
ity of the data under the mixture model as

P(D | Q1, Q2, . . . Q j , T) =
∏

i

∑
j

w j P(Di | Q j , T) (1)

where the summation over J now specifies that the like-
lihood of the data at each site is summed over J separate
rate or Q matrices, the summation being weighted by
w’s where w1 + w2+ · · · + w j = 1.0. The number of ma-
trices, J , can be determined either by prior knowledge
of how many different patterns are expected in the data,
or empirically as we illustrate in a later section.

Equation 1 is a general statement about how to com-
bine likelihoods from different models of evolution ap-
plied to the same data. It says that the observed data at a
given site arose with probability w j from the model im-
plied by the rate parameters in Q j . One Q might, for ex-
ample, contain parameters that conform to the nature of
evolution that tends to predominate at coding positions,
while another conforms to the patterns seen at silent sites.
However, both are allowed to apply with some probabil-
ity to each site.

Discrete-Gamma as a Mixture Model

The popular discrete gamma model (Yang, 1994) is a
mixture model that is constrained to take a specific form.
The gamma model supposes that rates of evolution vary
across sites with probabilities that follow a gamma distri-
bution. This is a class of right-skewed curves, reflecting
the assumption that most sites evolve relatively slowly,
with a smaller number evolving at higher rates.

The discretized gamma curve supplies J multipliers
ranging from slow (<1) to fast (>1). The discrete-gamma
model then sums the likelihood of Equation 1 over these
J categories by, in turn, multiplying the elements of the
single Q matrix by the separate γ j scalars; the J different
Q’s of Equation 1 all become multiples of each other in
the gamma model:

P(D | Q, γ , T) =
∏

i

∑
j

w j P(Di | γ j Q, T)

The J gamma rates are chosen to divide the continuous
gamma distribution into J equally probable parts, such
that w1 = w2 = . . . = w j = 1/J .

This statement of the discrete-gamma model empha-
sises its elegance—the J multipliers are obtained from
a one-parameter distribution—but also its restrictions.
The amount of realism that the gamma model brings
to a data set depends upon whether the variability in
the data is limited to differences in rates and whether
these differences conform to a gamma distribution. Other
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probability distributions, such as the beta, allowing left-
skewed, and even U-shaped distributions of rates can
easily be incorporated into the above formalism.

More generally, a mixture model allowing the Q ma-
trices to adopt any configuration will always perform at
least as well as the discrete-gamma (or other distribu-
tion) model, and frequently better, although the mixture
model will often require more parameters. The perfor-
mance of the mixture model relative to the gamma arises
because the separate Q matrices of the general model
can always be made to conform to those that would arise
under the gamma model. In the limiting case when all
of the data conform to a single homogeneous process,
both the general mixture model and the gamma rate-
heterogeneity models simplify to a model based upon a
single Q matrix.

Combining Rate- and Pattern-Heterogeneity

To combine variation across sites in the rates of evolu-
tion with variation in the qualitative pattern of evolution,
rewrite Equation 1 as

P(D | Q1, Q2, . . . QJ , γ , T)

=
∏

i

∑
j

w j

/
k

∑
k

P(Di | γkQ j , T) (2)

This model fits J separate rate matrices of the pattern-
heterogeneity model, each of which is allowed to have
K rates from the gamma rates model. If heterogeneity
across sites in both the rate and patterns of evolution ex-
ist in the data, Equation 2 allows the rate-heterogeneity
to be detected by the addition of a single parameter. This
reduces the number of parameters in the model, free-
ing the remaining Q matrices to detect non–rate-related
pattern-heterogeneity.

Partitioning and Mixture Models

Equation 1 can be used to understand the relationship
of partitioning the data to mixture modeling. Partitioning
data by applying different models to different sites is
equivalent to setting to zero different w’s of a mixture
model at different sites. In some cases this partitioning
might be justified on empirical grounds that it improves
the likelihood of the data. In other cases, such as with
secondary structure, or when different kinds of data are
combined into a single analysis, the data are partitioned
on the basis of an a priori expectation.

APPLICATIONS OF THE MODEL TO SIMULATED
AND REAL DATA

We implemented the pattern-heterogeneity mixture
model with or without gamma rate variability in a
Markov chain Monte carlo (MCMC) method for infer-
ring phylogenetic trees, and studied its performance in
several simulated and real data sets. Geyer (1992) and
Gilks et al. (1996) discuss MCMC methods in general
and (among others) Wilson and Balding (1998), Larget
and Simon (1999), Huelsenbeck et al. (2001), and Pagel

and Lutzoni (2002) discuss their use in phylogenetic in-
ference. Our use of MCMC is one of convenience and
preference. There is nothing in mixture models that re-
quires use of MCMC, and the model could just as ap-
propriately be implemented as a maximum-likelihood
method. We use the MCMC approach here to estimate
the posterior density or probability distribution of trees
and parameters of the model of sequence evolution.

We use the general time reversible model (GTR) to
characterize the transition rates among the four nu-
cleotides (Swofford et al., 1996). For phylogenetic infer-
ence, this matrix is normally written as the product of
a symmetric rate matrix R, and a diagonal matrix called
�. The R matrix contains the six rate parameters describ-
ing symmetrical rates of changes between pairs of nu-
cleotides, and � contains the four base frequencies (de-
noted πi ). Their product returns the matrix Q with up to
12 different transition rates among pairs of nucleotides:

QGT R = R� =
A C G T

A

C

G

T




− ∑
J

q AjπJ q ACπC q AGπG q ATπT

q ACπA − ∑
J

qC jπJ qCGπG qCTπT

q AGπA qGCπC − ∑
J

qG jπJ qGTπT

q ATπA qCTπC qGTπG − ∑
J

qT jπJ




The R matrix of the GTR model is conventionally speci-
fied by five free rate parameters, with the sixth, the G↔T
transition, set to 1.0. Popular models of gene sequence
evolution are simply modifications of Q. For example,
the Jukes-Cantor model presumes that all of the transi-
tion rates and all the base frequencies are equal.

When using more than one rate matrix in our mix-
ture model (Equation 1), we use the conventional five
rate-parameter configuration for the first rate matrix, but
then allow the successive matrices to have six free rate
parameters. We use a common set of base frequency pa-
rameters across all rate matrices, estimated from the data,
although it is straightforward to estimate these param-
eters separately for each matrix. In addition to the rate
parameters, we estimate a weight term (Equation 1) for
each rate matrix. Each additional GTR rate matrix in the
mixture model therefore requires seven new parameters.
Adding gamma rate-heterogeneity requires one param-
eter independently of the number of rate matrices.

In reporting results we denote the mixture model by
the number of independent rate matrices (e.g., 2Q =
two rate matrices) and we refer to the combined gamma
rate-heterogeneity plus mixture model by denoting the
number of rate matrices followed by � (e.g., 2Q + �). We
used four rate categories for all analyses with the gamma
model.
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Model Testing

We use Bayes factors (Gelman et al., 1995) to compare
models in both the real and simulated data. The Bayes
factor for model i compared to model j is the ratio of
their marginal likelihoods. The marginal likelihood is
the probability of the data given the model scaled by the
model’s prior probability, then integrated over all values
of the model parameters. In a Bayesian phylogenetic set-
ting the marginal likelihood is integrated over trees (T)
and values of the rate parameters in the Q matrix:

P(D | M) =
∫

‘T

∫
Q

P(D | Q, T)p(Q)p(T)dQ, dT

The term P(D | M) refers to the marginal probability of
the data given some model M, where M includes the
parameters of the substitutional process and the phy-
logenetic trees. The terms p(Q) and p(T) are the prior
probabilities of the rate parameters and the tree, respec-
tively. This integration is difficult because the parameters
can vary continuously, so the marginal likelihood is ap-
proximated via the harmonic mean of the likelihoods of
the data (Raftery, 1996) over a representative sample of
parameter values, weighted by their prior probabilities.
The sample is derived from the converged Markov chain.

Given marginal likelihoods for two different models
the log-Bayes factor is defined as:

log BF = −2 log
[

p(D | Mi

p(D | Mj )

]

Using the logarithm of the Bayes factor, Raftery (1996;
165) suggests a rule of thumb of 2 to 5 as “positive”
evidence for model i , and greater than 5 as “strong”
evidence. Log-Bayes factors of zero indicate equivalence
of two models, and less than 0 provide evidence for
model j .

The Bayes factor test penalizes more complex mod-
els via the prior terms. Normally each prior is a num-
ber less than one. More complex models multiply to-
gether a larger number of these prior terms, reducing
their marginal likelihoods relative to simpler models. In
all of our MCMC runs we assigned uniform priors to
trees and parameters of the models of sequence evolu-
tion, and an exponential prior to branch lengths. Using
these priors, as a rule of thumb, each GTR rate matrix
added to a mixture model requires an improvement in
the log-likelihood of about 30 log-units to return a Bayes
factor of 0.

Simulated Data

We used SeqGen (Rambaut and Grassly, 1997) to simu-
late nucleotide sequences on a randomly generated phy-
logenetic tree of 50 species with branch lengths randomly
chosen to vary between 0 and 1.0. We produced data ac-
cording to four models of evolution, always simulating
2000 independent sites: a homogeneous process model, a

continuous gamma rates model (with the gamma shape
parameter set to 1.0), a mixture model based upon two
different rate matrices, and a combined pattern- and rate-
heterogeneity mixture model also using two rate matri-
ces. We simulated all models using GTR rate matrices.

SeqGen fixes the G ↔ T transition at 1.0, and so for
the simulations we chose the values of the five free pa-
rameters at random from a uniform distribution on the
interval of 0 to 5. This was done separately for the rate-
homogeneity and gamma-rates models. We used equal
base frequencies (πA = πC = πG = πT = 0.25). To simu-
late pattern-heterogeneity we reused the rate matrix from
the homogeneous model and the rate matrix from the
gamma-rates model, generating new data from each.
One of the two was used to generate 1200 independent
sites, with the remaining 800 sites coming from the sec-
ond rate matrix. We simulated combined pattern and
rate heterogeneity by adding the same rate heterogene-
ity to the two rate matrices. Figure 1 shows the tree with
branch lengths, plus the instantaneous rate parameters
of the two random R matrices.

RESULTS OF SIMULATIONS

We analyzed the simulated data by MCMC methods,
allowing our Markov-chain to reach convergence before
sampling 100 trees at widely spaced intervals (10,000
trees) to ensure independence of successive trees. We
treated a chain as being at convergence when there was
no average improvement in the likelihood for 200,000
iterations. We ran at least five chains for each model,
and all runs converged to the same region of tree space
as judged by likelihoods and posterior probabilities of
trees. The means and averages we report below are based
upon these samples. We used four rate categories in the
gamma-rates model to analyse the data. Additional rate
categories did not significantly increase the likelihood.
We used two or four independent rate matrices in the
pattern-heterogeneity mixture model to analyze all four
simulated data sets.

Table 1 reports the average over 100 trees of the log-
likelihood of each model as applied to each of the four
simulated data sets. We expect that when the model used
to analyze the data matches the model used to simu-
late the data, the fit will be adequate (entries in bold
type). Simpler models are not expected to fit the data
as well, and more complicated models should only lead
to small improvements in the likelihood. Where mod-
els with more parameters apparently improve the fit, the
Bayes factor should be small, suggesting that the im-
provement is only that expected given greater number
of parameters, and does not signify a real difference be-
tween the two models.

The expected patterns emerge from these simulated
data. The first row of the table shows that the models
all perform equally well on the simulated homogeneous
data (1Q), differing in their average log-likelihoods by
less than 0.01%. As expected, the GTR+� model sub-
stantially outperforms the homogenous model when the
data are generated according to a gamma-rates model.
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FIGURE 1. Random tree of 50 tips used in the simulations. Tips are arbitrarily numbered. Branch lengths were chosen randomly from a
uniform distribution on the interval 0–1. The box shows the two R matrices of instantaneous rates used in the simulations. These were generated
at random by choosing from a uniform distribution on the interval of 0–5, with G ↔ T transitions fixed at 1.0. Matrix R1 was used to simulate
the homogeneous rates model, matrix R2 was used to simulate the gamma rate-heterogeneity (using a gamma shape parameter of 1.0), and R1
and R2 were combined to generate the pattern-heterogeneity data set.

The 2Q model performs slightly worse than the GTR+�
model on the simulated gamma data, but the 4Q model
returns an approximately 23 log-unit improvement over
the GTR+� model when both are applied to the simu-
lated gamma data.

This result for the 4Q model confirms our expecta-
tion that the mixture model can always be made to con-

TABLE 1. Log-likelihoods of four different models applied to simulated gene-sequence data.

Analysis modela

Pattern-heterogeneity
Simulation

modelb
No. of

parameters GTR GTR +�(4)c 2Q 4Q 2Q+�

GTR 5 −98192 (6.94)d −98193 (8.44) −98187 (6.59) −98191 (5.52) −98225 (7.09)
GTR+� 6 −88051 (7.60) −82905 (6.32) −83782 (9.05) −82882 (7.81) −82874 (7.89)
2Q 12 −100864 (7.79) −100857 (7.36) −100295 (7.80) −100294 (7.21) −100319 (9.20)
2Q+� 13 −87576 (6.68) −82556 (7.00) −83375 (8.40) −82506 (7.48) −82256 (6.56)

aGTR = general time reversible model (see text). The notation for the pattern-heterogeneity model signifies that the data were analyzed using two or four
independent rate matrices (see text) or two matrices plus gamma rate heterogeneity.

bData were simulated from general time reversible models (GTR) with or without gamma and using pattern-heterogeneity with two rate matrices or two rate
matrices plus gamma.

cThe notation for the gamma model signifies that we used four discrete rate categories to analyze the data.
dMeans are calculated from 100 independent MCMC trees, standard deviation in parentheses. Bold type signifies that the analysis model matches the simulation

model.

form to a gamma model if sufficient rate matrices are
used. However, the 4Q model requires 26 parameters,
compared to just 6 for the GTR+� model. The log-Bayes
factor comparing these two models is <0, indicating that
the 23 log-unit improvement of the 4Q model is expected
given its greater number of parameters. The same conclu-
sion holds for the 31 log-unit improvement of the 2Q+�
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TABLE 2. Input and obtained rate parameters from simulated data.

Input and obtained rate parametersa

A ↔ C A ↔ G A ↔ T C ↔ G C ↔ T G ↔ T Q-weight

Rate matrix 2.11, 4.97 3.13, 3.41 0.34, 0.82 3.87, 0.35 1.49, 2.82 1, 1 0.4, 0.6
Q1 1.96 (0.14) 2.98 (0.2) 0.4 (0.04) 3.64 (0.26) 1.54 (0.09) 0.92 (0.09) 0.43 (0.02)
Q2 4.2 (0.27) 3.01 (0.19) 0.71 (0.07) 0.22 (0.05) 2.52 (0.15) 1 (na)b 0.57 (0.02)

aValues in italics are the transition rate parameters from the R matrix of the GTR model used to generate the simulated data. Equal base frequencies of 0.25 were
assumed. Values in the main body of the table are those obtained from the 2Q pattern-heterogeneity mixture model, standard deviations in parentheses.

bThis transition rate is fixed at 1.0.

model over the GTR+� model when both are applied to
the simulated gamma data. By comparison the 2Q model
improves upon the homogeneous and GTR+� models
by about 560 log-units (log-Bayes factors of >500) for
data generated from a 2Q model. The 2Q+� model ap-
plied to the simulated 2Q+� data substantially outper-
forms all the other models.

Parameter and Branch Length Estimation in Simulated Data

The 2Q mixture model accurately estimates the in-
put transition rate parameters for the simulated 2Q
data (Table 2), and returns the correct tree length (in-
put tree length = 22.46, average obtained tree length =
23.04 ± 0.21). Figure 2 shows that the 2Q model also

FIGURE 2. Site by site differences in the goodness of fit (log-likelihood) between the two rate matrices of the 2Q model as applied to the
simulated pattern-heterogeneity data. Positive values indicate that rate matrix 1 fitted the data better than matrix 2, and vice versa. As these are
logs, their difference indicates the ratio of the goodness of fit. The pattern changes at the boundary between the two simulated genes indicating
that the 2Q model detects qualitatively different patterns without prior partitioning, or knowledge of the patterns in the data.

recovers the two different substitutional patterns on a
site by site basis. The figure plots for each of the 2000
simulated sites, the difference in the log-likelihoods at-
tributable to the two rate matrices. Positive values in-
dicate sites for which the first rate matrix fitted the site
better and vice versa. The crossover at site 1200 is where
the sites began to be simulated from the second rate
matrix.

We expect the 4Q model to recover transition rates
from the simulated gamma data that conform to gamma
expectations (Equation 2). Figure 3 plots the 24 transition
rate parameters we obtained from the 4Q model against
the values expected from the gamma model. The latter
are obtained by multiplying the input transition rates by
the four gamma scaling factors obtained from a discrete
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FIGURE 3. Relationship between transition rate parameters esti-
mated by the 4Q mixture model and the input gamma-distributed
transition rates used to generate the simulated rate-heterogeneity data:
r 2 = 0.996, slope = 0.99. The legend indicates the symbols associated
with each of the four rate matrices of the 4Q model. Logarithmic axes
are used to improve resolution. The relationship shows that the pattern-
heterogeneity model can mimic the rate-heterogeneity model.

gamma distribution with shape parameter set to 1.0. The
strong linear relationship between the two shows that
the 4Q model is detecting the gamma signal in the data
and configuring its separate rate matrices to act like the
gamma model. Although this shows how gamma is a
special case of the mixture model, faced with these re-
sults, one would use the gamma model to analyze these
data, owing to its simplicity.

How Many Rate Matrices to Estimate?

We used a 2Q model in Figure 2 to analyze the sim-
ulated pattern-heterogeneity data, knowing that there
were two patterns embedded in it. The number of rate
matrices would not normally be known in advance,
and so it is important to show that once the main pat-
terns are detected, adding rate matrices does not im-
prove the likelihood. This is analogous to determining
how many rate categories to estimate under the gamma
model. Figure 4 shows the likelihoods associated with
the mixture model for increasing numbers of rate matri-
ces, when applied to the simulated 2Q data and to the
simulated gamma data. The likelihood reaches a plateau
at two rate matrices, and for the simulated gamma data
the likelihood improves very little beyond four rate
matrices.

We also expect that when sufficient rate matrices have
been estimated for a given data set, the parameters of ad-
ditional matrices will be poorly estimated and that super-
fluous matrices will receive small weights (Equation 1).
Figure 5 records the standard deviations of the estimated
rate parameters calculated over 100 MCMC samples for
the 2Q model applied to data simulated from a single rate
matrix. The second matrix receives a very small weight
and its parameters have very much larger standard de-
viations.

FIGURE 4. Plot of the log-likelihood of the mixture model using a
range of rate matrices, applied to the pattern-heterogeneity data sim-
ulated from two rate matrices (left Y-axis), and to the gamma data
simulated from a continuous gamma (right Y-axis). The expectation
is that the log-likelihood should plateau at two rate matrices for the
simulated pattern-heterogeneity data and at about four rate matrices
for the simulated gamma data. Slight improvements with three, four,
and five matrices are attributable to the greater number of parameters
in these models and do not represent significant gains.

RESULTS IN REAL DATA

EF-1α and DDC Concatenated Alignment

Mitchell, Mitter, and Regier’s (2000) concatenated
alignment of the nuclear EF-1α and decarboxylase (DDC)
genes for 77 noctuoid moth species totals 1949 base
pairs. We analyzed these data with models using mul-
tiple rate matrices and multiple rate matrices + gamma
rate-heterogeneity. The upper portion of Figure 6 plots
the log-likelihoods from these two models for be-
tween one and six rate matrices (plotted data in Figure
caption).

FIGURE 5. Standard deviations of the estimated rate parameters
derived from the 2Q mixture model with two rate matrices applied to
simulated data using one rate matrix. The model gives a weight of 0.99
to the first matrix, and the parameters are estimated within narrow lim-
its (small standard deviations). The second rate matrix is superfluous,
receives a weight of 0.01, and its rate parameters are poorly estimated.
No standard deviation was calculated for the G ↔ T rate parameter for
the matrix labelled Q2, it having been fixed at 1.0.

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/53/4/571/1646012 by guest on 16 August 2022



578 SYSTEMATIC BIOLOGY VOL. 53

FIGURE 6. Plot of the average log-likelihoods (left-hand axis) of the
mixture model with and without gamma rate heterogeneity and using
a range of rate matrices, as applied to the EF-1α+DDC data (Mitchell
et al., 2000). Average log-likelihoods were obtained from 100 trees sam-
pled from the converged Markov chain. The right-hand axis records for
different numbers of rate matrices the average of the standard devia-
tions of the rate parameters. The standard deviation of each rate co-
efficient was measured across the same 100 MCMC samples and then
averaged across all six parameters. The improvement in log-likelihood
between three and four rate matrices for the combined pattern and rate
heterogeneity model is 140 log-units. However, the large increase in the
standard deviations of the rate coefficients at four matrices may sug-
gest that the parameters of this model are not well estimated. Plotted
data: log-likelihoods for 1–6Q model: −41084, −33998, −33129, −33060,
−32556, −32395; log-likelihoods for 1–6Q +� model: −33614, −33219,
−32607, −32466, −32410, −32389.

The comparison between the 1Q and 1Q+� mod-
els shows that there is a large component of rate-
heterogeneity in these data. For additional rate matri-
ces, combining rate- and pattern-heterogeneity always
improves upon pattern-heterogeneity alone, except for
the case of six rate matrices. At six rate matrices, the
6Q and 6Q+� models return virtually identical likeli-
hoods (log L = −32395 ± 11.67 and −32389 ± 12.17, re-
spectively). This again shows how a mixture model al-
lowing pattern-heterogeneity can always mimic a model
that includes gamma rate-heterogeneity, and here sug-
gests that six rate matrices effectively exhaust the sys-
tematic rate- and pattern-heterogeneity variability in the
data.

The question is whether a simpler model should be
preferred. The 2Q+� improves the likelihood by 395 log-
units over 1Q+�. The 3Q+� ccounts for a further 612
log-units. With a fourth rate matrix, the increase in like-
lihood slows to 141 log-units (log-Bayes factor > 100),
a fifth matrix adds 56 log units (log-Bayes factor = 23),
and the 6Q+� adds just 21 log units over 5Q+� (log-
Bayes factor < 0). Superficially, these results point to the
5Q+� model. However, the data set has a large number
of invariant sites, meaning that sites may not be inde-
pendent as presumed by the Bayes factor test. There is
also a large increase in the standard deviations of the es-
timated rate coefficients (measured in 100 MCMC sam-
ples; lower portion of Fig. 6) beginning with the 4Q+�
model. Putting these two points together may suggest

that the 3Q+� odel is preferred. This cut-off point cor-
responds to a slowing in the improvements to the over-
all log-likelihood of the data from the combined model.
Rate matrices beyond three may begin to account for
rate-heterogeneity, a hunch that is backed up by the
convergence of the pattern-heterogeneity and pattern-
heterogeneity + gamma models.

Adopting the 3Q+� model for these data gives a
log-likelihood of −32607 ± 10.68, based on 20 parame-
ters. This improves by 574 log-units on the −33181 that
Mitchell et al. (2000) report for a GTR+�+I (invariant
sites) model, having partitioned the data and fitted the
model separately to each gene. Their GTR+�+I model
also requires 20 parameters (10 rate parameters, 6 base
frequencies, 2 gamma shape parameters, and 2 invariant
sites parameters). Another comparison to the mixture
model is to partition the data by codon position, fitting
separate GTR+� models within each partition. This re-
turns a likelihood of −32, 993 ± 10.40, and requires 27
parameters (15 rate parameters, 9 base frequencies, and
3 gamma shape parameters). The 3Q+� mixture model
improves upon this model by 386 log-units, while using
7 fewer parameters.

Table 3 analyzes the contribution of the 3Q+� model’s
three rate matrices by studying the number of sites that
each rate matrix fits best, broken down by codon posi-
tion and gene in the alignment, and summed over rate
categories of the gamma model. Each rate matrix special-
izes on a particular codon position. This is independent
of variation among codon positions in rates of evolution
as that is accounted for by the gamma rate heterogeneity
component of the model. However, despite specializing,
each matrix also provides the best fit to a large number
of other codon sites. Although there are patterns that
statistically distinguish the codon positions, they are not
unique to those positions. This is why partitioning the
data by gene or by codon position performs worse that
fitting the mixture model: partitioning misses the within-
partition variability.

Analysis of Patterns in 12S Ribosomal RNA

The stem and loop secondary structure of ribosomal
RNA is predicted to be associated with different pat-
terns of evolution. Stems or helices of ribosomal RNA

TABLE 3. Numbers of sites for which a given rate matrix fits the
data best, broken down by codon position: EF-1α+DDC data.a

Gene 1 Gene 2
Codon position Codon position

Rate matrix 1 2 3 1 2 3

Q1 282 197 172 117 96 61
Q2 126 214 111 77 116 33
Q3 5 2 131 42 24 143

aThe data consist of a concatenated alignment of two genes and 1949 sites:
EF-1α has 1240 sites and the decarboxylase gene has 709 sites. The data were an-
alyzed using three independent rate matrices plus gamma rate variability across
all sites (see text, Equation 2). The number in each cell records the number of sites
at a given codon position for which the corresponding rate matrix provided the
best fit.
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TABLE 4. Log-likelihoods of models fitted to 12S data, n = 54 mam-
mal species.

Modela Log-likelihood mean (SD)b

GTR −27097 (9.80)
GTR+� (4 categories) −23233 (9.97)
GTR+� (partitioned)c −22790 (6.33)

2 Q’s 4 Q’s

Pattern-heterogeneityd −23772 (9.44) −22981 (8.47)
Pattern-heterogeneity + �e −22914 (9.23) −22730 (7.37)

aGTR = general time reversible model (see text).
bMeans calculated from 100 independent MCMC trees, standard deviation in

parentheses.
cData partitioned and separate GTR+� models fitted to stem versus loop sites.
dData were analyzed using either two (2Q) or four (4Q) rate matrices, with

and without gamma rate heterogeneity.
eBase frequencies (πi) allowed to vary among Q matrices owing to large dif-

ferences between stems and loops.

often adopt canonical Watson-Crick base pairing
whereas loops are unpaired. Nucleotide substitutions at
a given site in a stem are therefore expected to be com-
pensated by a change at the paired site. Higgs (1998) sug-
gests that this will lead to high transition/transversion
ratios in stems. No predictions are made for loops.

We fitted the mixture model with and without rate-
heterogeneity to the 12S ribosomal DNA data from the
54 mammal species Jow et al. (2003) report. We also fit-
ted a model in which the data were partitioned into stem
versus loop sites. The combined 4Q+� model improves
upon the 2Q+� model by 184 log-units (Table 4; log-
Bayes factor of 119.5). This example, like that above for
the two protein coding genes, shows that there is sub-
stantial pattern-heterogeneity in these data even after
accounting for the rate-heterogeneity.

Table 5 reports the rate parameters obtained from fit-
ting four rate matrices to the 12S data. Rate matrix Q4
has the highest ratio of transitions to transversions and
recovers the predicted pattern for stem substitutions
(high Tr/Tv and slow-fast-slow-slow-fast-slow ordering
of transition rates as listed in Table 5). Matrix Q3 also
shows this pattern but seems to identify sites in which
transversions occur at higher rates than in Q4. Matrices
Q1 and Q2 do not show the predicted stem pattern.

Table 6 analyzes the fit of these four rate matrices to
stems and loops using the predicted secondary structure

TABLE 5. Transition rate parameters for mammalian 12S data using
four rate matrices.a

Transition rate parameters
Rate

matrixb A ↔ C A ↔ G A ↔ T C ↔ G C ↔ T G ↔ T Tr/TV

Q1 15.34 2.91 13.00 1.50 95.32 1 5.02
Q2 27.64 18.42 19.71 6.62 27.76 4.93 1.53
Q3 4.94 25.24 3.79 1.40 30.08 3.49 7.66
Q4 0.18 18.88 0.48 0.82 14.33 0.30 41.15

aTransitions A ↔ G and C ↔ T in bold, transversions in regular type. Values
are from the R-matrix, that is, the matrix of instantaneous rates, not scaled by the
base frequencies. The G ↔ T rate of 1.0 in Q1 is fixed in advance. Rate matrix
Q3 shows the high transition-transversion ratio and “slow, fast, slow, slow, fast,
slow” pattern of transition rates predicted to hold for compensatory substitution
in stems of ribosomal molecules.

bIndependent rate matrices used in the pattern-heterogeneity model.

TABLE 6. Numbers of stem and loop sites fitted best by respective
rate matrices: mammalian 12S data.

Secondary structure Q1 Q2 Q3 Q4

Stem 76 21 71 296
Loop 133 112 83 249

of 12S (Springer and Douzery, 1996; P. Higgs, personal
communication). Matrices Q1 and Q2 seem to character-
ize loop evolution. Matrices Q3 and Q4 fit the majority of
stem sites best, but also fit a large number of loop sites.
In fact, the matrix Q4 emerges as a generalist matrix,
roughly evenly divided between fitting stems and loops.

DISCUSSION

The pattern-heterogeneity mixture model is a general
tool that can be applied to any kind of aligned data set,
including proteins or morphological traits. Our simula-
tion studies show that it retrieves the model of sequence
evolution used to produce the data, and outperforms ei-
ther homogeneous or rate-heterogeneity models when
rate- or pattern-heterogeneity are present. The model is
useful for analyzing patterns of evolution within a sin-
gle gene, and can be applied to data sets derived from
more than one gene. An attractive feature of the model
is that the investigator can observe how different rate
matrices may characterise different regions of the data,
without partitioning it. We have not given examples of
applying the mixture model to morphological traits, but
have implemented a model to do so (Pagel, 1994; Lewis,
2001) and find that morphological traits can also exhibit
pattern-heterogeneity.

Our analysis of the combined EF-1α and DDC data
(Mitchell et al., 2001) showed how a mixture model can
improve upon partitioning. Partitioning the data by gene
or by codon position returned poorer likelihoods than
allowing the mixture model to settle on three rate matri-
ces. These two protein coding genes exhibited different
patterns of evolution, and they showed the characteris-
tic differences at first, second, and third codon positions.
However, the evolutionary variability within genes and
within codon position is large and this is missed by the
partitions. By comparison the mixture model finds three
rate matrices that exhibit some specialisation on codon
position but seem also to capture other patterns not ob-
vious from mere inspection of the data.

In our application of the model to mammalian ribo-
somal 12S data, we were able to identify specific rate
matrices for stems and loops. These show that the pat-
tern of evolution for a majority of the stem sites does
not conform to the predicted ‘stem’ rate matrix (see also
Hickson et al., 1996; Simon et al., 1994). Here again, par-
titioning would miss this variability. The patterns in the
mixture model are emergent, not being specified or con-
strained in any way a priori and not being dependent
upon knowledge of the secondary structure. They could
be of importance in predicting secondary structure, and
by implication, in understanding the behaviour of the
secondary structure of the molecule.
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Methods developed especially for ribosomal data ap-
ply specific models of paired-sites sequence evolution to
stems, ignoring loop data (Schöniger and von Haeseler,
1994; Savill et al., 2001). This approach assumes that the
secondary structure is accurate as the coordinates of the
stems and loops are supplied in advance by the investi-
gator, and that all sights of a particular structure follow
a single specific model. Its strengths are that it allows the
investigator to test specific hypotheses based on theoret-
ically justified models of evolution. The mixture model
alternative is to fit separate rate matrices to the data, with-
out any prior expectation as to their form or what sites
they may fit, allowing the data to reveal its patterns of
evolution.

Applied to multiple-gene concatenated data sets, a
mixture model does not require that any more param-
eters be estimated than with partitioned data. The differ-
ence is that with the mixture model all of the data are used
to estimate each parameter, and rate matrices are free to
fit more than one class of site. Even where the primary
variation amongst sites is in rates of evolution, it may
not conform to gamma rate heterogeneity. In such cases
a mixture model of pattern-heterogeneity can character-
ize the rate variability properly and lead to substantial
improvement over the gamma model. However, when
rates of evolution do conform to a gamma distribution,
there will be little improvement from the mixture model
and the gamma model should be used in preference to
it, being specified by fewer parameters.

Mixture models can be difficult to fit to data, owing to
the large number of parameters. This is largely a techni-
cal issue and not a function of the model per se. But it
means that the model is best applied to larger data sets,
and we suggest as a general rule of thumb in any phylo-
genetic inference, 10 data points per parameter. This can
be estimated as sites × species or more generally as oper-
ational taxonomic units × characters, but bearing in mind
that neither sites nor species are likely to be independent.
A better estimate might be number of different characters ×
number of OTUs.

Even allowing for these very rough and probably
liberal estimates, a given data set may not support
two or more models of evolution (these cautionary
remarks apply to partitioning or use of the gamma
rate-heterogeneity model as well as to the pattern-
heterogeneity model). Indications of this are a very small
estimated weight (see Equation 1) for a rate matrix or
large variability in the estimates of the rate parameters.
In some cases, for example when a given class of data
has been analyzed many times such as with HIV or flu
data, one may have informed prior expectations about
the number of rate matrices to fit.

Our use of a Bayes factor approach for choosing among
models is, like the use of the likelihood ratio statistic in
maximum likelihood (e.g., Posada and Crandall, 2001),
dependent upon a number of assumptions, particularly
that characters in the alignment are independent. In our
own work we look for 70 to 80 log-units as a minimum
contribution from an additional GTR matrix of six pa-
rameters plus one weight parameter (corresponding here

to a log-Bayes factor using wide and uninformative pri-
ors of about 40).

Probable lack of independence among sites provided
an additional reason for ignoring the relatively large log-
Bayes factors we obtained for some of the model com-
parisons using the EF-1α+DDC data. For ribosomal data,
one should additionally bear in mind that if stem sites
are truly compensatory in their evolution, then the num-
ber of independent stem sites is roughly half of the total
number of stem sites. It may be useful to apply Bayes
factors in conjunction with a more subjective ‘scree’ test.
This test plots the overall likelihood against the number
of rate matrices fitted to the data, looking for an obvi-
ous turning point where the rate of increase in likeli-
hood with additional matrices slows greatly. Analyzing
the variation in fitted rate parameters may also be useful.

The results we have reported for the pattern-
heterogeneity mixture model send the encouraging mes-
sage that phylogenetically structured data harbor com-
plex signals of the history of evolution, and that it is
possible to design general models to detect those sig-
nals. To the extent that these signals are not lost or over-
written by more recent evolutionary events, investiga-
tors can use statistical approaches validly to infer the
nature and modes of past evolutionary events and pro-
cesses (Pagel, 1999), complementing experimental and
palaeontological methods. We have implemented the
mixture model in a computer program available from
http://www.ams.reading.ac.uk/zoology/pagel. It uses
an MCMC framework for inferring trees and estimating
parameters of the models of evolution for sequence or
morphological data.
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