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Abstract Surveys of microbial communities (microbiota), typically measured as relative

abundance of species, have illustrated the importance of these communities in human health and

disease. Yet, statistical artifacts commonly plague the analysis of relative abundance data. Here, we

introduce the PhILR transform, which incorporates microbial evolutionary models with the isometric

log-ratio transform to allow off-the-shelf statistical tools to be safely applied to microbiota surveys.

We demonstrate that analyses of community-level structure can be applied to PhILR transformed

data with performance on benchmarks rivaling or surpassing standard tools. Additionally, by

decomposing distance in the PhILR transformed space, we identified neighboring clades that may

have adapted to distinct human body sites. Decomposing variance revealed that covariation of

bacterial clades within human body sites increases with phylogenetic relatedness. Together, these

findings illustrate how the PhILR transform combines statistical and phylogenetic models to

overcome compositional data challenges and enable evolutionary insights relevant to microbial

communities.

DOI: 10.7554/eLife.21887.001

Introduction
Microbiota research today embodies the data-rich nature of modern biology. Advances in high-

throughput DNA sequencing allow for rapid and affordable surveys of thousands of bacterial taxa

across hundreds of samples (Caporaso et al., 2011). The exploding availability of sequencing data

has poised microbiota research to advance our understanding of fields as diverse as ecology, evolu-

tion, medicine, and agriculture (Waldor et al., 2015). Considerable effort now focuses on interrogat-

ing microbiota datasets to identify relationships between bacterial taxa, as well as between

microbes and their environment.

Increasingly, it is appreciated that the relative nature of microbial abundance data in microbiota

studies can lead to spurious statistical analyses (Jackson, 1997; Friedman and Alm, 2012; Aitchi-

son, 1986; Lovell et al., 2011; Gloor et al., 2016a; Britanova et al., 2014; Li, 2015;

Tsilimigras and Fodor, 2016). With next generation sequencing, the number of reads per sample
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can vary independently of microbial load (Lovell et al., 2011; Tsilimigras and Fodor, 2016). In order

to make measurements comparable across samples, most studies therefore analyze the relative

abundance of bacterial taxa. Analyses are thus not carried out on absolute abundances of commu-

nity members (Figure 1A), but rather on relative data occupying a constrained geometric space and

represented in a non-Cartesian coordinate system (Figure 1B). Such relative abundance datasets are

often termed compositional. The use of most standard statistical tools (e.g., correlation, regression,

or classification) within a compositional space leads to spurious results (Pawlowsky-Glahn et al.,

2015). For example, three-quarters of the significant bacterial interactions inferred by Pearson corre-

lation on a compositional human microbiota dataset were likely false (Friedman and Alm, 2012),

and over two-thirds of differentially abundant taxa inferred by a t-test on a simulated compositional

human microbiota dataset were spurious (Mandal et al., 2015). To account for compositional effects

in microbial datasets, bioinformatics efforts have re-derived common statistical methods including

correlation statistics (Friedman and Alm, 2012; Fang et al., 2015), hypothesis testing (La Rosa

et al., 2012), and variable selection (Chen and Li, 2013; Lin et al., 2014).

An alternative approach is to transform compositional microbiota data to a space where existing

statistical methods may be applied without introducing spurious conclusions. This approach is attrac-

tive because of its efficiency: the vast toolbox of existing statistical models can be applied without

re-derivation. Normalization methods, for example, have been proposed to modify count data by

Figure 1. PhILR uses an evolutionary tree to transform microbiota data into an unconstrained coordinate system. (A) Two hypothetical bacterial

communities share identical absolute numbers of Lactobacillus, and Ruminococcus bacteria; they differ only in the absolute abundance of Bacteroides

which is higher in community A (red circle) compared to community B (blue diamond). (B) A ternary plot depicts proportional data typically analyzed in

a sequencing-based microbiota survey. Note that viewed in terms of proportions the space is constrained and the axes are not Cartesian. As a result,

all three genera have changed in relative abundance between the two communities. (C) Schematic of the PhILR transform based on a phylogenetic

sequential binary partition. The PhILR coordinates can be viewed as ‘balances’ between the weights (relative abundances) of the two subclades of a

given internal node. In community B, the greater abundance of Bacteroides tips the balance y�
1
to the right. (D) The PhILR transform can be viewed as a

new coordinate system (grey dashed lines) in the proportional data space. (E) The data transformed to the PhILR space. Note that in contrast to the raw

proportional data (B), the PhILR space only shows a change in the variable associated with Bacteroides.

DOI: 10.7554/eLife.21887.002
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assuming reads follow certain statistical distributions (e.g., negative binomial) (Paulson et al., 2013;

Anders and Huber, 2010). Alternatively, the field of Compositional Data Analysis (CoDA) has

focused on formalizing methods for transforming compositional data into a simpler geometry with-

out having to assume data adhere to a distribution model (Bacon-Shone, 2011). Previous microbiota

analyses have already leveraged CoDA theory and used the centered log-ratio transform to recon-

struct microbial association networks and interactions (Kurtz et al., 2015; Lee et al., 2014) and to

analyze differential abundances (Fernandes et al., 2014; Gloor et al., 2016b). However, the cen-

tered log-ratio transform has a crucial limitation: it yields a coordinate system featuring a singular

covariance matrix and is thus unsuitable for many common statistical models (Pawlowsky-

Glahn et al., 2015). This drawback can be sidestepped using another CoDA transform, known as

the Isometric Log-Ratio (ILR) transformation (Egozcue et al., 2003). The ILR transform can be built

from a sequential binary partition of the original variable space (Figure 1C), creating a new coordi-

nate system with an orthonormal basis (Figure 1D and E) (Egozcue and Pawlowsky-Glahn, 2005).

However, a known obstacle to using the ILR transform is the choice of partition such that the result-

ing coordinates are meaningful (Pawlowsky-Glahn et al., 2015). To date, microbiota studies have

chosen ILR coordinates using ad hoc sequential binary partitions of bacterial groups that are not eas-

ily interpreted (Finucane et al., 2014; Lê Cao et al., 2016). Alternatively, external covariates have

been used to pick groups of bacterial taxa to contrast (Morton et al., 2017).

Here, we introduce the bacterial phylogenetic tree as a natural and informative sequential binary

partition when applying the ILR transform to microbiota datasets (Figure 1C). Using phylogenies to

construct the ILR transform results in an ILR coordinate system capturing evolutionary relationships

between neighboring bacterial groups (clades). Analyses of neighboring clades offer the opportunity

for biological insight: clade analyses have linked genetic differentiation to ecological adaptation

(Hunt et al., 2008), and the relative levels of sister bacterial genera differentiate human cohorts by

diet, geography, and culture (De Filippo et al., 2010; Wu et al., 2011; Yatsunenko et al., 2012).

Datasets analyzed by a phylogenetically aware ILR transform could therefore reveal ecological and

evolutionary factors shaping host-associated microbial communities.

We term our approach the Phylogenetic ILR (PhILR) transform. Using published environmental

and human-associated 16S rRNA datasets as benchmarks, we found that simple Euclidean distances

calculated on PhILR transformed data provided a compositionally robust alternative to distance/dis-

similarity measures like Bray-Curtis, Jaccard, and Unifrac. In addition, we observed that the accuracy

of supervised classification methods on our benchmark datasets was matched or improved with

PhILR transformed data relative to applying the same models on untransformed (raw) or log trans-

formed relative abundance data. Decomposing distances between samples along PhILR coordinates

identified bacterial clades that may have differentiated to adapt to distinct body sites. Similar

decomposition of variance along PhILR coordinates showed that, in all human body sites studied,

the degree to which neighboring bacterial clades covary tends to increase with the phylogenetic

relatedness between clades. Together, these findings demonstrate that the PhILR transform can be

used to enhance existing microbiota analysis pipelines, as well as enable novel phylogenetic analyses

of microbial ecosystems.

Results

Constructing the PhILR transform
The PhILR transform has two goals. The first goal is to transform input microbiota data into an

unconstrained space with an orthogonal basis while preserving all information contained in the origi-

nal composition. The second goal is to conduct this transform using phylogenetic information. To

achieve these dual goals on a given set of N samples consisting of relative measurements of D taxa

(Figure 1B), we transform data into a new space of N samples and D� 1ð Þ coordinates termed ‘bal-

ances’ (Figure 1C–E) (Egozcue et al., 2003; Egozcue and Pawlowsky-Glahn, 2005). Each balance

y�i is associated with a single internal node i of a phylogenetic tree with the D taxa as leaves (the

asterisk denotes a quantity represented in PhILR space). The balance represents the log-ratio of the

geometric mean relative abundance of the two clades of taxa that descend from i (Materials and

methods). Although individual balances may share overlapping sets of leaves and thus exhibit

dependent behavior, the ILR transform rescales and combines leaves to form a coordinate system
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whose basis vectors are orthonormal and the corresponding coordinates are Cartesian

(Egozcue et al., 2003; Egozcue and Pawlowsky-Glahn, 2005). The orthogonality of basis vectors

allows conventional statistical tools to be used without compositional artifacts. The unit-length of

basis vectors makes balances across the tree statistically comparable even when they have differing

numbers of descendant tips or exist at different depths in the tree (Pawlowsky-Glahn et al., 2015).

In addition, the unit-length ensures that the variance of PhILR balances has a consistent scale, unlike

the variance of log-ratios originally proposed by Aitchison (Aitchison, 1986) as a measure of associa-

tion, in which it can be unclear what constitutes a large or small variance (Friedman and Alm, 2012).

While the above description represents the core of the PhILR transform, we have also equipped

the PhILR transform with two sets of weights that can: (1) address the multitude of zero and near-

zero counts present in microbiota data; and, (2) incorporate phylogenetic branch lengths into the

transformed space. Because zero counts cause problems when computing logs or performing divi-

sion, zeros are often replaced in microbiota analyses with small non-zero counts. However, to avoid

excess zero replacement that may itself introduce bias, stringent hard filtering thresholds are often

employed (e.g. removing all taxa that are not seen with at least a minimum number of counts in a

subset of samples). Still, hard filtering thresholds may remove a substantial fraction of observed taxa

and do not account for the low precision (or high variability) of near-zero counts (Gloor et al.,

2016a; Good, 1956; McMurdie and Holmes, 2014). We therefore developed a ‘taxon weighting’

scheme that acts as a type of soft-thresholding, supplementing zero replacement methods with a

generalized form of the ILR transform that allows weights to be attached to individual taxa

(Egozcue and Pawlowsky-Glahn, 2016). Weights are chosen with a heuristic designed to down

weight the influence of taxa with many zero or near-zero counts (Materials and methods).

Our second weighting scheme is called branch length weighting. Certain analyses may benefit

from incorporating information on evolutionary distances between taxa (Lozupone and Knight,

2005; Fukuyama et al., 2012; Purdom, 2011). For example, because related bacteria may be more

likely to share similar traits (Martiny et al., 2015), it may be desirable to consider communities dif-

fering only in the abundance of closely-related microbes to be more similar than communities differ-

ing only in the abundance of distantly-related microbes. Because of the one-to-one correspondence

between PhILR balances and internal nodes on the phylogenetic tree, evolutionary information can

be incorporated into the PhILR transform by scaling balances using the phylogenetic distance

between their direct descendants (Materials and methods). We note that we employ both branch

length weighting and taxon weighting throughout our following analyses except where noted; still,

these weights should be considered optional additions to the core PhILR transform.

Benchmarking community-level analyses in the PhILR coordinate system
To illustrate how the PhILR transform can be used to perform standard community-level analyses of

microbiota datasets, we first examined measures of community dissimilarity. Microbiota analyses

commonly compute the dissimilarity or distance between pairs of samples and use these computed

pairwise distances as input to a variety of statistical tools. We investigated how Euclidean distances

calculated on PhILR transformed data compared to common ecological measures of microbiota dis-

tance or dissimilarity (UniFrac, Bray-Curtis, and Jaccard) as well as Euclidean distance applied to raw

relative abundance data in standard distance-based analysis. We chose three different microbiota

surveys as reference datasets: Costello Skin Sites (CSS), a dataset of 357 samples from 12 human

skin sites (Costello et al., 2009; Knights et al., 2011); Human Microbiome Project (HMP), a dataset

of 4743 samples from 18 human body sites (e.g., skin, vaginal, oral, and stool) (Human Microbiome

Project Consortium, 2012); and, Global Patterns (GP), a dataset of 26 samples from nine human or

environmental sites (Caporaso et al., 2011) (Supplementary file 1 and Figure 2—figure supple-

ment 1).

Distance-based analyses using Euclidean distances computed on PhILR transformed data exhib-

ited performance rivaling common ecological distance or dissimilarity measures. Principal coordinate

analyses (PCoA) qualitatively demonstrated separation of body sites using both Euclidean distances

on PhILR transformed data (Figure 2A) and with several standard distance measures calculated on

raw relative abundance data (Figure 2—figure supplement 2). To quantitatively compare distance

measures, we tested how well habitat information explained variability among distance matrices as

measured by the R2 statistic from PERMANOVA (Chen et al., 2012). By this metric, the Euclidean

distance in the PhILR coordinate system significantly outperformed the five competing distance
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metrics in all but one case (in comparison to Weighted UniFrac when applied to the HMP dataset;

Figure 2B).

Next, we tested the performance of predictive statistical models in the PhILR coordinate system.

We examined four standard supervised classification techniques: logistic regression (LR), support

vector machines (SVM), k-nearest neighbors (kNN), and random forests (RF) (Knights et al., 2011).

Figure 2. Performance of standard statistical models on PhILR transformed microbiota data. Benchmarks were performed using three datasets: Costello

Skin Sites (CSS), Global Patterns (GP), Human Microbiome Project (HMP) (a summary of these datasets after preprocessing is shown in

Supplementary file 1 and Figure 2—figure supplement 1). (A) Sample distance visualized using principal coordinate analysis (PCoA) of Euclidean

distances computed in PhILR coordinate system. A comparison to PCoAs calculated with other distance measures is shown in Figure 2—figure

supplement 2. (B) Sample distance (or dissimilarity) was computed by a range of statistics. PERMANOVA R2 values, which represent how well sample

identity explained the variability in sample pairwise distances, were used as a performance metric. Distances in the PhILR transformed space were

calculated using Euclidean distance. Distances between samples on raw relative abundance data were computed using Weighted and Unweighted

UniFrac (WUnifrac and Unifrac, respectively), Bray-Curtis, Binary Jaccard, and Euclidean distance. Error bars represent standard error measurements

from 100 bootstrap replicates and (*) denotes a p-value of �0.01 after FDR correction of pairwise tests against PhILR. (C) Accuracy of supervised

classification methods tested on benchmark datasets. Error bars represent standard error measurements from 10 test/train splits and (*) denotes a

p-value of �0.01 after FDR correction of all pairwise tests.

DOI: 10.7554/eLife.21887.003

The following source data and figure supplements are available for figure 2:

Source data 1. Source data for Figure 2b and c as well as FDR corrected p-values from tests.

DOI: 10.7554/eLife.21887.004

Figure supplement 1. Taxa weighting scheme tends to assign smaller weights to taxa with more zero and near zero counts.

DOI: 10.7554/eLife.21887.005

Figure supplement 2. Principal coordinate analyses using different measures of community distance or dissimilarity.

DOI: 10.7554/eLife.21887.006
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We applied these methods to the same three reference datasets used in our comparison of distance

metrics. As a baseline, the machine learning methods were applied to raw relative abundance data-

sets and raw relative abundance data that had been log-transformed.

The PhILR transform significantly improved supervised classification accuracy in 7 of the 12 bench-

mark tasks compared to raw relative abundances (Figure 2C). Accuracy improved by more than 90%

in two benchmarks (SVM on HMP and GP), relative to results on the raw data. Log transformation of

the data also improved classifier accuracy significantly on 6 of the 12 benchmarks but also signifi-

cantly underperformed on one benchmark compared to raw relative abundances. In addition, the

PhILR transform significantly improved classification accuracy in 5 of the 12 benchmarks relative to

the log transform. Overall, the PhILR transform often outperformed the raw and log transformed rel-

ative abundances with respect to classification accuracy and was never significantly worse.

Identifying neighboring clades that differ by body site preference
While our benchmarking experiments demonstrated how PhILR transformed data performed in com-

munity-level analyses, we also wanted to explore potential biological insights afforded by the PhILR

coordinate system. We therefore investigated how distances decomposed along PhILR balances

using a sparse logistic regression model to examine which balances distinguished human body site

microbiota in the HMP dataset. Such balances could be used to identify neighboring bacterial clades

whose relative abundances capture community-level differences between body site microbiota.

Microbial genetic differentiation may be associated with specialization to new resources or lifestyle

preferences (Hunt et al., 2008), meaning that distinguishing balances near the tips of the bacterial

tree may correspond to clades adapting to human body site environments.

We identified dozens of highly discriminatory balances, which were spread across the bacterial

phylogeny (Figure 3A and Figure 3—figure supplement 1). Some discriminatory balances were

found deep in the tree. Abundances of the Firmicutes, Bacteroidetes, and Proteobacteria relative to

the Actinobacteria, Fusobacteria, and members of other phyla, separated skin body sites from oral

and stool sites (Figure 3B). Levels of the genus Bacteroides relative to the genus Prevotella differen-

tiated stool microbiota from other communities on the body (Figure 3C). Notably, values of select

balances below the genus level also varied by body site. Relative levels of sister Corynebacterium

species separated human skin sites from gingival sites (Figure 3D). Species-level balances even dif-

ferentiated sites in nearby habitats; levels of sister Streptococcus species or sister Actinomyces spe-

cies vary depending on specific oral sites (Figure 3E and F). These results show that the

decomposition of distances between groups of samples along PhILR balances can be used to high-

light ancestral balances that distinguish body site microbiota, as well as to identify more recent bal-

ances that may separate species that have adapted to inhabit different body sites.

Balance variance and microbiota assembly
As a natural extension of our analysis of how distance decomposes along PhILR balances, we next

investigated how balance variance decomposed in the PhILR coordinate system. Balance variance is

a measure of association between neighboring bacterial clades. When the variance of a balance

between two clades approaches zero, the mean abundance of taxa in each of the two clades will be

linearly related and thus covary across microbial habitats (Lovell et al., 2015). By contrast, when a

balance exhibits high variance, related bacterial clades exhibit unlinked or exclusionary patterns

across samples. Unlike standard measures of association (e.g., Pearson correlation) balance variance

is robust to compositional effects (Pawlowsky-Glahn et al., 2015).

Our preliminary investigation demonstrated a striking pattern in which balance variance

decreased for balances closer to the tips of the phylogeny and increased for balances nearer to the

root. To determine if this observed pattern was not the result of technical artifact, we took the fol-

lowing three steps. First, we omitted branch length weights from the transform as we anticipated

that branch lengths may vary non-randomly as a function of depth in the phylogeny. Second, we

anticipated that balances near the tips of the phylogeny would be associated with fewer read counts

and thus would be more biased by our chosen heuristics for taxon weighting and zero replacement.

We therefore omitted taxon weighting, employed more stringent filtering thresholds, and condi-

tioned our calculation of balance variance on non-zero counts rather than using zero-replacement

(Materials and methods). Third, we combined regression and a permutation scheme to test the null
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hypothesis that the degree to which neighboring clades covary is independent of the phylogenetic

distance between them (Materials and methods). By permuting tip labels on the tree, our test gener-

ates a restricted subset of random sequential binary partitions that still maintains the count variability

(and potential biases due to our zero handling methods) of the observed data.

With our modified PhILR analysis in place, we observed significantly decreasing balance variances

near the tips of the phylogenetic tree for all body sites in the HMP dataset (p<0.01, permutation

test with FDR correction; Figure 4A–F and Figure 4—figure supplements 1–2). Low variance balan-

ces predominated near the leaves of the tree. Examples of such balances involved B. fragilis species

in stool (Figure 4H), Rothia mucilaginosa species in the buccal mucosa (Figure 4J), and Lactobacillus

species in the mid-vagina (Figure 4L). By contrast, higher variance balances tended to be more basal

on the tree. Three examples of high variance balances corresponded with clades at the order

(Figure 4G), family (Figure 4I), and genus (Figure 4K) levels. We also observed that the relationship

between balance variance and phylogenetic depth varied at different taxonomic scales. LOESS

regression revealed that trends between variance and phylogenetic depth were stronger above the

species level than below it (Materials and methods; Figure 4D–F and Figure 4—figure supplement

2). Overall, the observed pattern of decreasing balance variance near the tips of the phylogenetic

tree suggested that closely related bacteria tend to covary in human body sites.

Figure 3. Balances distinguishing human microbiota by body site. Sparse logistic regression was used to identify balances that best separated the

different sampling sites (full list of balances provided in Figure 3—figure supplement 1). (A) Each balance is represented on the tree as a broken grey

bar. The left portion of the bar identifies the clade in the denominator of the log-ratio, and the right portion identifies the clade in the numerator of the

log-ratio. The branch leading from the Firmicutes to the Bacteroidetes has been rescaled to facilitate visualization. (B–F) The distribution of balance

values across body sites. Vertical lines indicate median values, boxes represent interquartile ranges (IQR) and whiskers extend to 1.5 IQR on either side

of the median. Balances between: (B) the phyla Actinobacteria and Fusobacteria versus the phyla Bacteroidetes, Firmicutes, and Proteobacteria

distinguish stool and oral sites from skin sites; (C) Prevotella spp. and Bacteroides spp. distinguish stool from oral sites; (D) Corynebacterium spp.

distinguish skin and oral sites; (E) Streptococcus spp. distinguish oral sites; and, (F) Actinomyces spp. distinguish oral plaques from other oral sites. (†)

Includes Bacteroidetes, Firmicutes, Alpha-, Beta-, and Gamma-proteobacteria. (‡) Includes Actinobacteria, Fusobacteria, Epsilon-proteobacteria,

Spirochaetes, and Verrucomicrobia.

DOI: 10.7554/eLife.21887.007

The following figure supplement is available for figure 3:

Figure supplement 1. Balances found to distinguish human body sites by sparse logistic regression.

DOI: 10.7554/eLife.21887.008
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Discussion
There exists a symbiosis between our understanding of bacterial evolution and the ecology of host-

associated microbial communities (Matsen, 2015). Microbiota studies have shown that mammals

and bacteria cospeciated over millions of years (Moeller et al., 2016; Ley et al., 2008), and human

Figure 4. Neighboring clades covary less with increasing phylogenetic depth. The variance of balance values captures the degree to which neighboring

clades covary, with smaller balance variances representing sister clades that covary more strongly (Figure 4—figure supplement 1). (A–C) Balance

variances were computed among samples from stool (A), buccal mucosa (B), and the mid-vagina (C). Red branches indicate small balance variance and

blue branches indicate high balance variance. Balances 1–6 are individually tracked in panels (D–L). (D–F) Balance variances within each body site

increased linearly with increasing phylogenetic depth on a log-scale (blue line; p<0.01, permutation test with FDR correction; Methods). Significant

trends are seen across all other body sites (Figure 4—figure supplements 2 and 3). Non-parametric LOESS regression (green line and corresponding

95% confidence interval) reveals an inflection point in the relation between phylogenetic depth and balance variance. This inflection point appears

below the estimated species level (‘s’ dotted line; the median depth beyond which balances no longer involve leaves sharing the same species

assignment; Materials and methods). (G–L) Examples of balances with high and low variance from panels (A–F). Low balance variances (H, J, L) reflect a

linear relationship between the geometric means of sister clades abundances. High balance variances (G, I, K) reflect either unlinked or exclusionary

dynamics between the geometric means of sister clades abundances.

DOI: 10.7554/eLife.21887.009

The following source data, source code and figure supplements are available for figure 3:

Source code 1. Source code for Figure 4 and associated supplements.

DOI: 10.7554/eLife.21887.010

Source data 1. FDR corrected p-values from permutation tests.

DOI: 10.7554/eLife.21887.011

Figure supplement 1. Balances with high and low variance.

DOI: 10.7554/eLife.21887.012

Figure supplement 2. Neighboring clades covary less with increasing phylogenetic depth.

DOI: 10.7554/eLife.21887.013

Figure supplement 3. The null distribution for b.

DOI: 10.7554/eLife.21887.014
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gut microbes have revealed the forces driving horizontal gene transfer between bacteria

(Smillie et al., 2011). Evolutionary tools and theory have been used to explain how cooperation ben-

efits members of gut microbial communities (Rakoff-Nahoum et al., 2016), and raise concerns that

rising rates of chronic disease are linked to microbiota disruption (Blaser and Falkow, 2009). Here,

we aimed to continue building links between microbiota evolution and ecology by designing a data

transform that uses phylogenetic models to overcome the challenges associated with compositional

data while enabling novel evolutionary analyses.

We found that the resulting PhILR coordinate system, at least with respect to the performance

metrics chosen, led to significantly improved performance for a variety of community-level analyses

now used in microbiota analysis. While these results add credence to our proposed approach, we

underscore that we do not find it essential that PhILR demonstrates superior benchmark perfor-

mance to motivate its use in microbiota analysis. We believe that the need for compositionally

robust tools has already been well established (Jackson, 1997; Friedman and Alm, 2012; Aitchi-

son, 1986; Lovell et al., 2011; Gloor et al., 2016a; Li, 2015; Tsilimigras and Fodor, 2016) and

intended these benchmarks to showcase the flexibility and utility of working with PhILR transformed

data. We also note that for some analyses, a phylogeny-based ILR transform will not outperform an

ILR transform built from another sequential binary partition. In fact, in the absence of branch length

weights, any random ILR partition would yield equivalent results on our benchmark tasks. Instead,

what distinguishes the PhILR transform from other ILR transforms is the interpretability of the trans-

formed coordinates. Balances in PhILR space correspond to speciation events, which can be a source

for biological insight.

For example, performing regression on PhILR transformed data enabled us to decompose the

distance between bacterial communities onto individual locations on the phylogeny, highlighting bal-

ances near the tips of the tree that distinguished human body sites. These balances may reflect func-

tional specialization, as ecological partitioning among recently differentiated bacterial clades could

be caused by genetic adaptation to new environments or lifestyles (Hunt et al., 2008). Indeed,

among oral body sites, we observed consistent site specificity of neighboring bacterial clades within

the genera Actinomyces (Figure 3F) and Streptococcus (Figure 3E). Species within the Actinomyces

genera have been previously observed to partition by oral sites (Aas et al., 2005; Mager et al.,

2003). Even more heterogeneity has been observed within the Streptococcus genus, where species

have been identified that distinguish teeth, plaque, mucosal, tongue, saliva, and other oral sites

(Aas et al., 2005; Mager et al., 2003). This partitioning likely reflects variation in the anatomy and

resource availability across regions of the mouth (Aas et al., 2005), as well as the kinds of surfaces

bacterial strains can adhere to (Mager et al., 2003).

We also observed evidence for potential within-genus adaptation to body sites that has not been

previously reported. Within the genus Corynebacterium, we found ratios of taxa varied among oral

plaques and select skin sites (Figure 3D). Although the genus is now appreciated as favoring moist

skin environments, the roles played by individual Corynebacteria within skin microbiota remain

incompletely understood (Grice and Segre, 2011). Precisely linking individual Corynebacterium spe-

cies or strains to body sites is beyond the scope of this study due to the limited taxonomic resolution

of 16S rRNA datasets (Janda and Abbott, 2007; Větrovský and Baldrian, 2013). Nevertheless, we

believe the PhILR coordinate system may be used in the future to identify groups of related bacterial

taxa that have undergone recent functional adaptation.

Another example of how the PhILR transform can provide biological insights arose in our analysis

of how human microbiota variance decomposes along individual balances. We observed that balan-

ces between more phylogenetically related clades were significantly more likely to covary than

expected by chance. This pattern could reflect evolutionary and ecological forces structuring micro-

bial communities in the human body. Related bacterial taxa have been hypothesized to have similar

lifestyle characteristics (Martiny et al., 2015; Zaneveld et al., 2010), and may thus covary in human

body sites that favor their shared traits (Levy and Borenstein, 2013; Faust et al., 2012). An alterna-

tive explanation for the balance variation patterns we observed is that sequencing errors and read

clustering artifacts are likely to produce OTUs (Operational Taxonomic Units) with similar reference

sequences and distributions across samples. While we cannot conclusively rule out this alternative

hypothesis, we note that it would not explain why signal for taxa co-variation is weakest for balances

at higher taxonomic levels and appears to plateau for balances near or below the species level. A

biological explanation for the plateauing signal would be that lifestyle characteristics enabling
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bacteria to persist in human body sites are conserved among strains roughly corresponding to the

same species. Follow-up studies are needed to more conclusively understand how balance variance

patterns across the phylogenies can be interpreted from an evolutionary standpoint.

Though the methods presented here provide a coherent geometric framework for performing

microbiota analysis free from compositional artifacts, future refinements are possible. Specifically,

we highlight issues relating to our choice of weights, the handling of zero values, and information

loss during count normalization. Both the taxa weights and the branch lengths weights we introduce

here may be viewed as preliminary heuristics; future work will likely yield additional weighting

schemes, as well as knowledge for when a given weighting scheme should be matched to an analysis

task. In the case of supervised machine learning, weighting selection could be optimized as part of

the training process. Additionally, if it is important that the transformed data has meaningful numeri-

cal coordinates, such that one desires to interpret the exact numerical value of a given balance in a

sample, we suggest that neither branch length weights nor taxa weights be used as these weights

can complicate this type of interpretation. Concerning our handling of zero values, this model design

choice confronts an outstanding challenge for microbiota and compositional data analysis

(Tsilimigras and Fodor, 2016; Martın-Fernandez et al., 2011). Part of this challenge’s difficulty is

whether a zero value represents a value below the detection limit (rounded zero) or a truly absent

taxon (essential zero). Here, we employ zero replacement, which implies an assumption that all zero

values represent rounded zeros. New mixture models that explicitly allow for both essential and

rounded zeros (Bear and Billheimer, 2016), as well as more advanced methods of zero replacement

(Martın-Fernandez et al., 2011; Martin-Fernandez et al., 2015), may enable us to handle zeros in a

more sophisticated manner. Lastly, in regards to informational loss caused by normalization, it is

known that the number of counts measured for a given taxon influences the precision with which we

may estimate its relative abundance in a sample (Gloor et al., 2016a; Good, 1956; McMurdie and

Holmes, 2014). While our taxa weights are intended to address this idea, a fully probabilistic model

of counts would likely provide more accurate error bounds for inference. We believe it would be

possible to build such a model in a Bayesian framework by viewing the observed counts as multino-

mial draws from a point in the PhILR transformed space, as has been done for other log-ratio based

spaces (Billheimer et al., 2001).

Beyond refining the PhILR transform itself, future effort may also be directed towards interpreting

the transform’s results at the single taxon level. Microbiota studies frequently focus on individual

taxa for tasks such as identifying specific bacteria that are causal or biomarkers of disease. Log-ratio

approaches can provide a compositionally robust approach to identifying biomarkers based on

changes in the relative abundance of individual taxa. Due to the one-to-one correspondence

between CLR coordinates and individual taxa, the CLR transform has been used previously to build

compositionally robust models in terms of individual taxa (Mandal et al., 2015; Kurtz et al., 2015;

Fernandes et al., 2014). However, CLR transformed data suffer from the drawback of a singular

covariance matrix, which can make the development of new models based on the CLR transform dif-

ficult (Pawlowsky-Glahn et al., 2015). ILR transformed data do not suffer this drawback (Pawlow-

sky-Glahn et al., 2015) and moreover, can be analyzed at the single taxon level. To do so, the

inverse ILR transform can be applied to model results generated in an ILR coordinate system, yield-

ing analyses in terms of changes in the relative abundance of individual taxa (Pawlowsky-

Glahn et al., 2015). The use of the inverse ILR transform in this manner is well established (Pawlow-

sky-Glahn et al., 2015; van den Boogaart and Tolosana-Delgado, 2013; Pawlowsky-Glahn and

Buccianti, 2011) and the inverse transform is provided in the Methods (Egozcue and Pawlowsky-

Glahn, 2016).

Despite these avenues for improvement, modification, or extension we believe the PhILR trans-

form already enables existing statistical methods to be applied to metagenomic datasets, free from

compositional artifacts and framed according to an evolutionary perspective. We foresee the PhILR

transform being used as a default transformation prior to many microbiota analyses, particularly if a

phylogenetic perspective is desired. For example, the PhILR transform could be used in lieu of the

conventional log transform, which is often the default choice in microbiota analysis but is not robust

to compositional effects. Substituting PhILR into existing bioinformatics pipelines should often be

seamless and we emphasize that all statistical tools applied to PhILR transformed data in this study

were used ’off-the-shelf’ and without modification. Importantly, such a substitution contrasts with

the alternative approach for accounting for compositional microbiota data, which is to modify
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existing statistical techniques. Such modification is often challenging because many statistics were

derived assuming an unconstrained space with an orthonormal basis, not a constrained and over-

determined compositional space. Therefore, while select techniques have already been adapted (e.

g. distance measures that incorporate phylogenetic information (Lozupone and Knight, 2005) and

feature selection methods that handle compositional input (Chen and Li, 2013; Lin et al., 2014)), it

is likely that certain statistical goals, such as non-linear community forecasting or control system

modeling, may prove too complex for adapting to the compositional nature of microbiota datasets.

Finally, beyond microbiota surveys, we also recognize that compositional metagenomics datasets

are generated when studying the ecology of viral communities (Culley et al., 2006) or clonal popula-

tion structure in cancer (Britanova et al., 2014; Yuan et al., 2015; Roth et al., 2014). We expect

the PhILR transform to aid other arenas of biological research where variables are measured by rela-

tive abundance and related by an evolutionary tree.

Materials and methods

The ILR transform
A typical microbiome sample consists of measured counts cj for taxa j 2 1; . . . ; Df g. A standard

operation is to take count data and transform it to relative abundances. This operation is referred to

as closure in compositional data analysis (Aitchison, 1986) and is given by

x¼ C c1; � � � ;cDð Þ½ � ¼
c1
P

j cj
; . . . ;

cD
P

j cj

 !

where x represents a vector of relative abundances for the D taxa in the sample. We can represent a

binary phylogenetic tree of the D taxa using a sign matrix Q as introduced by Pawlowsky-Glahn and

Egozcue (Pawlowsky-Glahn and Egozcue, 2011) and shown in Figure 5. Each row of the sign

matrix indexes an internal node i of the tree and each column indexes a tip of the tree. A given ele-

ment in the sign matrix is �1 depending on which of the two clades descending from i that tip is a

part of and 0 if that tip is not a descendent of i. The assignment of þ1 versus �1 determines which

clade is represented in the numerator versus the denominator of the corresponding log-ratio (as

described below). Exchanging this assignment for a given balance switches which clade is repre-

sented in the numerator versus the denominator of the log-ratio. Following Egozcue and Pawlowsky-

Glahn (Egozcue and Pawlowsky-Glahn, 2016), we represent the ILR coordinate (balance) associated

with node i in terms of the shifted composition y¼ x=p¼ x1=p1; . . . ;xD=pDð Þ as

y�i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nþi n
�
i

nþi þ n�i

s

log
gp y

þ
ið Þ

gp y
�
ið Þ

: (1)

Here, gp y
þ
ið Þ and gp y

�
i

� �

represents the weighted geometric mean of the components of y that

represent tips in the þ1 or �1 clade descendant from node i respectively. This weighted geometric

mean is given by

Figure 5. Sign matrix representation of a phylogenetic tree. A binary tree (Left) can be represented by a sign matrix (Right) denoted Q.

DOI: 10.7554/eLife.21887.015
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gp y
�
i

� �

¼ exp

P

�ij¼�1ð Þ pj log yj
P

�ij¼�1ð Þ pj

 !

(2)

where pj is the weight assigned to taxa j. The term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nþi n
�
i =n

þ
i þ n�i

p

in equation 1 is the scaling term

that ensures that the ILR basis element has unit length and the terms n�i are given by

n�i ¼
X

�ij¼�1

pj: (3)

Note that when p¼ 1; . . . ;1ð Þ; y¼ x, Equation 1 represent the ILR transform as originally published

(Egozcue et al., 2003), Equation 2 represents the standard formula for geometric mean of a vector

y, and equation 3 represents the number of tips that descend from the þ1 or �1 clade descendant

from node i. However, when p 6¼ 1; . . . ;1ð Þ, these three equations represent a more generalized form

of the ILR transform that allows weights to be assigned to taxa in the transformed space

(Egozcue and Pawlowsky-Glahn, 2016).

Following Egozcue and Pawlowsky-Glahn (Egozcue and Pawlowsky-Glahn, 2016), we also note

that the form of the generalized ILR (which we will denote ilrp) transform can be rewritten in terms

of a generalized CLR transform (which we will denote clrp). This formulation in terms of the general-

ized CLR transform can be more efficient to compute and allows the inverse of the transform to be

easily described. We can define the generalized CLR transform as

clrp yð Þ ¼ log
y1

gp yð Þ
; � � � ; log

yD

gp yð Þ

� �

:

The generalized ILR transform can then be written as

y
� ¼ ilrp yð Þ ¼ clrp yð Þ diag pð Þ	T

with the ijth element of the matrix 	 given by

 ij ¼

þ 1

nþ
i

ffiffiffiffiffiffiffiffiffiffiffi

nþ
i
n�
i

nþ
i
þn�

i

r

if �ij ¼þ1

� 1

n�
i

ffiffiffiffiffiffiffiffiffiffiffi

nþ
i
n�
i

nþ
i
þn�

i

r

if �ij ¼�1

0 if �ij ¼ 0 :

8

>

>

>

>

<

>

>

>

>

:

With these components defined the inverse of generalized ILR transform can be written as C y½ � ¼

ilrp
�1

y
�ð Þ ¼ C exp y

�	ð Þ½ � and x¼ C ilrp
�1

y
�ð Þp

� �

.

Soft thresholding through weighting taxa
We make use of this generalized ILR transform to down weight the influence of taxa with many zero

and near-zero counts since these are less reliable and therefore more variable (Good, 1956). Our

choice of taxa weights is a heuristic that combines two terms multiplicatively: a measure of the cen-

tral tendency of counts, such as the mean or median of the raw counts for a taxon across the N sam-

ples in a dataset; and, the norm of the vector of relative abundances of a taxon across the N

samples in a dataset. We add this vector norm term to weight taxa by their site-specificity. Prelimi-

nary studies showed that the geometric mean of the counts (with a pseudocount added to avoid

skew from zero values) outperformed both the arithmetic mean and median as a measure of central

tendency for the counts (data not shown). Additionally, while both the Euclidean norm and the Aitch-

ison norm improved preliminary benchmark performance compared to using the geometric mean

alone, in one case (classification using support vector machine on the global patterns dataset), the

Euclidean norm greatly outperformed the Aitchison norm (Supplementary file 1). Therefore, our

chosen taxa weighting scheme uses the geometric mean times the Euclidean norm:

pj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cj1 þ 1
� �

� . . . � cjN þ 1
� �

N

q

� xj










:

Note that we add the subscript j to the right-hand side of the above equation to emphasize that
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this is calculated with respect to a single taxon across the N samples in a dataset. As intended, this

scheme tended to assign smaller weights to taxa in our benchmarks with more zero and near-zero

counts (Figure 2—figure supplement 1). Despite their heuristic nature, we found that our chosen

weights provide performance improvements over alternative weights (or the lack thereof) as mea-

sured by our benchmark tasks (Supplementary file 1).

Our taxa weighting scheme supplements the use of pseudo-counts and represents a soft-thresh-

old on low abundance taxa. More generally, these taxa weights represent a form of prior information

regarding the importance of each taxon. We note that if prior biological information suggests allow-

ing specific taxa to influence the PhILR transform more (or less) strongly, such a weighting could be

achieved for taxon j by increasing (or decreasing) pj.

Incorporating branch lengths
Beyond utilizing the connectivity of the phylogenetic tree to dictate the partitioning scheme for ILR

balances, branch length information can be embedded into the transformed space by linearly scaling

ILR balances (y�i ) by the distance between neighboring clades. We call this scaling by phylogenetic

distance ‘branch length weighting’. Specifically, for each coordinate y�i , corresponding to node i we

use the transform

y
�;blw
i ¼ y�i � f dþi ;d

�
i

� �

where d�i represent the branch lengths of the two direct children of node i. When f dþi ;d
�
i

� �

¼ 1, the

coordinates are not weighted by branch lengths. The form of this transform was chosen so that the

weights d�i , only influence the corresponding coordinate (y�;blwi ).

We also investigated the effect of using f dþi ; d
�
i

� �

¼ 1, f dþi ; d
�
i

� �

¼ dþi þ d�i , and based on the

results of Chen et al. (2012), f dþi ; d
�
i

� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dþi þ d�i

p

on benchmark performance. When coupled with

the taxa weights specified above, the square root of the summed distances had the highest rank in 9

of the 12 supervised classification tasks and 2 of the three distance based tasks (Supplementary file

1). Based on these results, except for our analysis of balance variance versus phylogenetic depth

(see below), the square root of the summed distances was used throughout our analyses.

Implementation
The PhILR transform, as well as the incorporation of branch length and taxa weightings has been

implemented in the R programing language as the package philr available at https://bioconductor.

org/packages/philr/.

Datasets and preprocessing
All data preprocessing was done in the R programming language using the phyloseq package for

analysis of microbiome census data (McMurdie and Holmes, 2013) as well as the ape

(Paradis et al., 2004) and phangorn (Schliep, 2011) packages for analysis of phylogenetic trees.

Data acquisition
We chose to use previously published OTU tables, taxonomic classifications, and phylogenies as the

starting point for our analyses. The Human Microbiome Project (HMP) dataset was obtained from

the QIIME Community Profiling Pipeline applied to high-quality reads from the v3-5 region, available

at http://hmpdacc.org/HMQCP/. The Global Patterns dataset was originally published in Caporaso,

et al. (Caporaso et al., 2011) and is provided with the phyloseq R package (McMurdie and Holmes,

2013). The Costello Skin Sites dataset (CSS) is a subset of the dataset collected by Costello et al.

(Costello et al., 2009) featuring only the samples from skin sites. This skin subset was introduced as

a benchmark for supervised machine learning by Knights et al. (Knights et al., 2011) and can be

obtained from http://www.knightslab.org/data.

OTU table preprocessing
To accord with general practice, we performed a minimal level of OTU table filtering for all datasets

used in benchmarks and analyses. Due to differences in sequencing depth, sequencing methodol-

ogy, and the number and diversity of samples between datasets, filtering thresholds were set
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independently for each dataset. For the HMP dataset, we initially removed samples with fewer than

1000 counts to mimic prior analyses (Human Microbiome Project Consortium, 2012). We addition-

ally removed OTUs that were not seen with more than three counts in at least 1% of samples. Pre-

processing of the Global Patterns OTU table followed the methods outlined in McMurdie and

Holmes (McMurdie and Holmes, 2013). Specifically, OTUs that were not seen with more than three

counts in at least 20% of samples were removed, the sequencing depth of each sample was stan-

dardized to the abundance of the median sampling depth, and finally OTUs with a coefficient of

variation �3.0 were removed. The CSS dataset had lower sequencing depth than the other two

datasets; we chose to filter OTUs that were not seen with greater than 10 counts across the skin

samples. The PhILR transform, and more generally our benchmarking results in Figure 2b and C,

were robust to varying our filtering strategies (Supplementary file 2).

Preprocessing phylogenies
For each dataset, the phylogeny was pruned to include only those taxa remaining after OTU table

preprocessing. Except for the Global Patterns dataset, which was already rooted, we chose to root

phylogenies by manually specifying an outgroup. For the HMP dataset the phylum Euryarchaeota

was chosen as an outgroup. For the CSS dataset, the tree was rooted with OTU 12871 (from phylum

Plantomycetes) as the outgroup. For all three phylogenies, any multichotomies were resolved with

the function multi2di from the ape package which replaces multichotomies with a series of dichoto-

mies with one (or several) branch(es) of length zero.

Zero replacement and normalization
A pseudocount of 1 was added prior to PhILR transformation to avoid taking log-ratios with zero

counts. We found that our benchmarking results were robust to changing the value of this pseudo-

count from 1 to 2, 3, or 10 (Supplementary file 1).

Grouping sampling sites
To simplify subsequent analyses, HMP samples from the left and right retroauricular crease and sam-

ples from the left and right antecubital fossa were grouped together, respectively, as preliminary

PERMANOVA analysis suggested that these sites were indistinguishable (data not shown).

Benchmarking
Distance/dissimilarity based analysis
Distance between samples in PhILR transformed space was calculated using Euclidean distance. All

other distance measures were calculated using phyloseq on the preprocessed data without adding a

pseudocount. Principle coordinate analysis was performed for visualization using phyloseq. PERMA-

NOVA was performed using the function adonis from the R package vegan (v2.3.4). The R2 value

from the fitted model was taken as a performance metric. Standard errors were calculated using

bootstrap resampling with 100 samples each. Differences between the performance of Euclidean

distance in PhILR transformed space and that of each other distance or dissimilarity measure on a

given task was tested using two-sided t-tests and multiple hypothesis testing was accounted for

using FDR correction.

Supervised classification
The performance, as measured by classification accuracy, of PhILR transformed data was compared

against data preprocessed using one of two standard strategies for normalizing sequencing depth:

the preprocessed data was transformed to relative abundances (e.g., each sample was normalized

to a constant sum of 1; raw); or, a pseudocount of 1 was added, the data was transformed to relative

abundances, and finally the relative abundances were log-transformed (log).

All supervised learning was implemented in Python using the following libraries: Scikit-learn

(v0.17.1), numpy (v1.11.0) and pandas (v0.17.1). Four classifiers were used: penalized logistic regres-

sion, support vector classification with RBF kernel, random forest classification, and k-nearest-neigh-

bors classification. Each classification task was evaluated using the mean and variance of the test

accuracy over 10 randomized test/train (30/70) splits which preserved the percentage of samples

from each class at each split. For each classifier, for each split, the following parameters were set
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using cross-validation on the training set. Logistic regression and Support Vector Classification: the

‘C’ parameter was allowed to vary between 10
�3 to 10

3 and multi-class classification was handled

with a one-vs-all loss. In addition, for logistic regression the penalty was allowed to be either l1 or l2.

K-nearest-neighbors classification: the ‘weights’ argument was set to ‘distance’. Random forest clas-

sification: each forest contained 30 trees and the ‘max_features’ argument was allowed to vary

between 0.1 and 1. All other parameters were set to default values. Due to the small size of the

Global Patterns dataset, the supervised classification task was simplified to distinguishing human vs.

non-human samples. Differences between each method’s accuracy in each task was tested using

two-sided t-tests and multiple hypothesis testing was accounted for using FDR correction.

Identifying balances that distinguish sites
To identify a sparse set of balances that distinguish sampling sites while accounting for the depen-

dencies between nested balances, we fit a multinomial regression model with a grouped l1 penalty

using the R package glmnet (v2.0.5). The penalization term lambda was set by visually inspecting

model outputs for clear body site separation (lambda = 0.1198). This resulted in 35 balances with

non-zero regression coefficients. Phylogenetic tree visualization was done using the R package

ggtree (Yu et al., 2017).

Variance and depth
To reduce the likelihood that our analysis of balance variance and phylogenetic depth was affected

by statistical artifact, we modified our PhILR transform in several ways. First, we omitted branch

length weights (i.e., we set f dþi ; d
�
i

� �

¼ 1) as these may vary non-randomly as a function of phyloge-

netic depth. Second, we also anticipated that any zero replacement method would likely lead to

lower variance measurements, which could have greater effects on balances closer to the tips of the

tree. We therefore omitted taxa weights and zero replacement; we instead used stricter hard filter-

ing thresholds and calculated balance values based on non-zero counts. In practice, we used the fol-

lowing filtering thresholds for each body site, taxa present in less than 20% of samples from that site

were excluded and subsequently samples that had less than 50 total counts were excluded. To calcu-

late balance values based on non-zero counts we retained balances that met the following criteria:

the term gp y
þ
ið Þ=gp y

�
i

� �

had non-zero counts from some taxa within the subcomposition y
þ
i (formed

by the taxa that descend from the þ1 clade of node i) and some other taxa within the subcomposi-

tion y
�
i (formed by the taxa that descend from the �1 clade of node i) in at least 40 samples from

that body site. We believe these two modifications to PhILR resulted in a more conservative analysis

of balance variance versus phylogenetic depth but are likely not optimal in other situations.

To investigate the overall relationship between balance variance and phylogenetic depth we used

linear regression. A balance’s depth in the tree was calculated as its mean phylogenetic distance to

its descendant tips dð Þ. For a given body site the following model was fit:

logvar y�ð Þ ¼ b logdþ a

where d represents mean distance from a balance to its descendant tips. We then set out to test the

null hypothesis that b¼ 0, or that the variance of the log-ratio between two clades was invariant to

the distance of the two clades from their most recent common ancestor. For each site, a null distri-

bution for b was constructed by permutations of the tip labels of the phylogenetic tree. For each

permutation of the labels, the resultant tree was used to transform the data and b was estimated.

We chose this permutation scheme to ensure that the increasing variance we saw with increasing

proximity of a balance to the root was not because deeper balances had more descendant tips, an

artifact of variance scaling with mean abundance, or due to bias introduced due to our handling of

zeros. Furthermore, for each body site, we found the null distribution for b was symmetric about b¼

0 which further supports that balance variance depends on phylogenetic depth through a biological

mechanism and not through a statistical artifact (Figure 4—figure supplement 3). Two tailed p-val-

ues were calculated for b based on 20000 samples from each site’s respective null distribution. FDR

correction was applied to account for multiple hypothesis testing between body sites.

To visualize local trends in the relationship between balance variance and phylogenetic depth, a

LOESS regression was fit independently for each body site. This was done using the function geo-

m_smooth from the R package ggplot2 (v2.1.0) with default parameters.
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The data and code needed to reproduce our analysis of balance variance versus phylogenetic

depth is provided in Figure 4—source data 1 and Figure 4—source code 1 respectively.

Integrating taxonomic information
Taxonomy was assigned to OTUs in the HMP dataset using the assign_taxonomy.py script from

Qiime (v1.9.1) to call uclust (v1.2.22) with default parameters using the representative OTU sequen-

ces obtained as described above. Taxonomic identifiers were assigned to the two descendant clades

of a given balance separately using a simple voting scheme and combined into a single name for

that balance. The voting scheme occurs as follows: (1) for a given clade, the entire taxonomy table

was subset to only contain the OTUs that were present in that clade (2) starting at the finest taxo-

nomic rank the subset taxonomy table was checked to see if any species identifier

represented �95% of the table entries at that taxonomic rank, if so that identifier was taken as the

taxonomic label for the clade (3) if no consensus identifier was found, the table was checked at the

next most-specific taxonomic rank.

Median phylogenetic depths for each taxonomic rank were estimated by first decorating a phylo-

genetic tree with taxonomy information using tax2tree (v1.0) (McDonald et al., 2012). For a given

taxonomic rank the mean distance to tips was calculated for each internal node possessing a label

that ended in that rank. The median of these distances was used to display an estimate of the phylo-

genetic depth of that given rank. This calculation of median phylogenetic depth of different taxo-

nomic ranks was done separately for each body site.

The data and code needed to reproduce the taxonomic assignment and estimation of median

phylogenetic depths for each taxonomic rank is included in Figure 4—source data 1 and Figure 4—

source code 1 respectively.
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