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Abstract

Background: Cattle are important agriculturally and relevant as a model organism. Previously

described genetic and radiation hybrid (RH) maps of the bovine genome have been used to identify

genomic regions and genes affecting specific traits. Application of these maps to identify influential

genetic polymorphisms will be enhanced by integration with each other and with bacterial artificial

chromosome (BAC) libraries. The BAC libraries and clone maps are essential for the hybrid clone-

by-clone/whole-genome shotgun sequencing approach taken by the bovine genome sequencing

project.

Results: A bovine BAC map was constructed with HindIII restriction digest fragments of 290,797

BAC clones from animals of three different breeds. Comparative mapping of 422,522 BAC end

sequences assisted with BAC map ordering and assembly. Genotypes and pedigree from two

genetic maps and marker scores from three whole-genome RH panels were consolidated on a

17,254-marker composite map. Sequence similarity allowed integrating the BAC and composite

maps with the bovine draft assembly (Btau3.1), establishing a comprehensive resource describing

the bovine genome. Agreement between the marker and BAC maps and the draft assembly is high,

although discrepancies exist. The composite and BAC maps are more similar than either is to the

draft assembly.

Conclusion: Further refinement of the maps and greater integration into the genome assembly

process may contribute to a high quality assembly. The maps provide resources to associate

phenotypic variation with underlying genomic variation, and are crucial resources for

understanding the biology underpinning this important ruminant species so closely associated with

humans.

Background
Cattle have played a crucial role throughout recent human

agrarian history, providing draft power, milk and meat for

human consumption since domestication 8,000 years ago

[1,2]. Cattle studies have contributed to our knowledge of

endocrine function, fertilization, and growth, and enhanced

our understanding of genetics, selection and evolution [3,4].

However, much remains to be determined; particularly, how

cattle have adapted to intense selection pressures since

domestication and how ruminants convert low quality for-

ages into energy and protein-dense meat and milk. World-

wide, roughly 1,000 different breeds and varieties have been

recognized [5]. These breeds originated in different locations,

were subjected to different environments, and possess some-

what different characteristics as a consequence of ongoing

natural and artificial selection. Ancestry of much of today's

seedstock can be traced to breed-specific herdbooks estab-

lished in the mid-1800's [2]. Formalization of the genetic

selection process has culminated in extensive estimation of

heritabilities, and genetic and environmental relationships

between traits [6,7], coupled with objective approaches to

animal evaluation [8] and selection [9]. These have been

widely utilized in the development of modern beef and dairy

performance recording and evaluation schemes [10-12]. The

phenotype-based selection systems developed and optimized

in the last century are now moving towards integration of

DNA information to accelerate genetic progress.

While numerous quantitative trait loci (QTL) have been

mapped [13,14], only a small number of quantitative trait

nucleotides or causative mutations [15-19] have been identi-

fied for economically important cattle QTL. We expect further

development of cattle genomic resources to accelerate discov-

ery of causative mutations, and facilitate genome-wide selec-

tion that considers whole genome sequence and associated

single-nucleotide polymorphisms (SNPs), rather than spe-

cific individual loci [20].

Understanding the genetic basis of breed differentiation

through natural and artificial selection, production related

traits, and disease will be greatly advanced by the availability

of the genomic sequence of cattle. The foundation of the

genomic sequence is provided by a clone-based physical map.

Development of a clone-based physical map also offers a

resource to accelerate discovery of polymorphisms within and

between breeds, including causal polymorphisms contribut-

ing to a wide variety of bovine traits. The physical map is a

source of genomic clones for sequencing templates and func-

tional studies, and can also be employed to assist in the

assembly of whole genome shotgun sequence [21-23].

The value of a clone-based map can be enhanced by establish-

ing connections to the annotated genome sequences of closely

related species [24], as well as to sequence tagged site (STS)

maps of the same species. Links established between clones

and annotated sequence can be used to identify specific
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clones containing genes of interest, and connections to

genetic STS maps can indicate clones harboring QTL. Exist-

ing bovine genetic maps, however, have limited utility for

identifying clones containing positional candidate genes near

QTL, due to a lack of gene-specific genetic markers and a lack

of recombination to separate closely linked markers within

the existing bovine genetic maps [25-27]. Available gene-rich

radiation hybrid (RH) maps [28-30] have greater short-range

resolution than genetic maps, but their whole-chromosome

ordering may be unreliable [31], and RH maps often lack

many of the polymorphic markers that are needed to refine

the locations of QTL. Exploiting the complementary resolu-

tion of genetic and RH data, a composite map can consolidate

marker information to more efficiently indicate genes and

sequence in the vicinity of QTL. Connections between a clone-

based physical map, composite marker map, and annotated

genome sequences will greatly facilitate the annotation of

newly generated and assembled sequence. We report here the

generation of a fingerprinted bacterial artificial chromosome

(BAC)-based physical map, representing approximately 15.5-

fold coverage of the bovine genome; the construction of a

composite marker map from two linkage and three RH data

sets; and connections with annotated human sequence and

the largely unannotated draft bovine genome sequence.

Results
BAC clone fingerprinting

Clones from three BAC libraries, representing DNA from both

beef and dairy cattle, were fingerprinted: 200,064 CHORI-

240 [32], 94,848 RPCI-42 [32,33], and 44,948 TAMBT [34].

These include 18,982 CHORI-240 clones previously mapped

on a low-coverage BAC fingerprint map [35], and 755 TAMBT

clones selected for presence of a bovine marker. Fingerprints

were attempted for 339,840 clones, and fingerprints for

290,797 clones (85.6%) were used to assemble the fingerprint

map. These fingerprinted clones represent approximately a

15.5-fold coverage of the estimated 3.1 Gb bovine genome

(Table 1).

A small subset of the BAC clones (approximately 5% of all fin-

gerprinted clones) generated low complexity restriction

digest fingerprint patterns, containing a single large molecu-

lar weight HindIII fragment (> 30 kb, the largest marker frag-

ment), in addition to the expected vector-specific HindIII

fragment(s). These clones appeared to lack HindIII sites

within the insert, and were therefore unsuitable for finger-

print pattern-based assembly. Digestion of a small number of

these clones with EcoRI generated fingerprints of one to four

restriction fragments, each present in multiple copies (data

not shown), suggesting that the inserts in these BAC clones

were probably derived from regions of repetitive sequence

[36]. Thus, while represented within the BAC library these

genomic regions are under-represented within the finger-

print map.

Aligning bovine BAC clones to the human genome

Following strategies used to increase contiguity, order and

orient the mouse [24] and rat [21] BAC maps, bovine BAC end

sequence (BES) reads were aligned with the reference human

genome sequence [37,38]. At least one end read was available

for 186,872 (64%) of the mapped BAC clones, and 149,865

(52%) had sequence data for both ends (Table 2, with addi-

tional data on their properties in Additional data file 1). A set

of 12,273 paired BES alignments was obtained after filtering

on alignment score, relative position and orientation. A single

end sequence of 40,134 clones had a suitable match. In total,

48,325 clones in 480 contigs, along with 4,082 singletons,

had sequence anchors to the human genome.

BAC map assembly

Clone fingerprints were assembled into the International

Bovine BAC Consortium (IBBMC) map, which consists of 655

contigs containing 257,914 clones, and 32,883 singletons

(Table 3) [39-42]. This map is the result of first assembling an

initial, high-stringency map, followed by merging based on

similarity between clones at contig ends, number of

unmatched restriction fragments at potential merge points,

and comparative BES alignments. The initial 13,426 contigs

and 34,189 singletons were assembled with FPC [43,44],

before clone order within contigs was refined using

CORAL[45].

Table 1

BAC library fingerprinting summary

Library Library 
indicator*

Library construction 
enzyme†

Source DNA Clones 
fingerprinted

Successful fingerprints Clones in FPC‡ Average 
size (kb)§

Clone 
depth

CHORI240 E MboI Hereford bull L1 Domino 99373 200,064 170,644 169,283 169 9.5X

RPCI42 H EcoRI/EcoRI methylase Holstein bull 94,848 83,627 81,437 171 4.6X

TAMBT T HindIII Angus bull, Angus cow 44,928 40,380 40,077 106 1.4X

Total 339,840 294,651 290,797 161 15.5X

*The one-letter prefix used in clone names to indicate the library source. †All libraries were constructed from partially digested DNA. ‡After filtering. §Based on the sum of the 
sizes of the HindIII fingerprint fragments identified for each clone, excluding vector-specific fragments.
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When merging contigs, Sulston fingerprint similarity scores

[46] were relaxed from the initial stringency, considering that

the search space was limited to contig ends, and comparative

alignments provided supporting evidence. A maximum of

four unmatched restriction fragments across the merge point

(fragments present in only one of the two merged contigs)

allowed for: first, minor errors in fragment identification by

BandLeader, the automated band calling software; second,

the fact that HindIII does not cleanly excise the insert from

the vector in the CHORI-240 and RPCI-42 BAC clones,

resulting in two vector-insert junction fragments of unpre-

dictable size that are not expected to be shared by neighbor-

ing clones; and third, the potential presence of polymorphic

restriction fragments produced by indels, duplications, SNPs

creating or destroying HindIII restriction sites, and other

haplotype and/or breed-specific DNA variations that result in

restriction fragment length differences. Automated scripts

were employed throughout the merging process, although

merges based on comparative alignments were manually

inspected. Discrepancies between FPC/CORAL and human-

based clone orders were identified, and manually evaluated in

conjunction with the fingerprint images. Clones were rear-

ranged to be consistent with human order only when the rear-

rangements were supported by fingerprint data.

Assigning contigs to bovine chromosomes using 

comparative mapping data

A cattle-human comparative map [47] in combination with

Table 2

Summary of BAC clones, sequences, and matches with composite map markers

CHORI-240 RPCI-42 TAMBT All

FPC map 169,283 81,437 40,077 290,797

Clone sequences*

Single BES 26,900 4,472 5,513 36,885

Paired BES 121,205 20,173 8,487 149,865

Other 109 13 122

All 148,214 24,658 14,000 186,872

% Clones with sequence 87.6 30.3 34.9 64.3

Match marker† 21,077 3,770 744 25,591

*Clones with sequence deposited in GenBank genome survey sequence division. Single BES: sequence available for only one clone end. Paired BES: 
sequence available for both clone ends. Other: BAC clones with plasmid sub-clone sequences in addition to end sequences. †Clone and marker 
sequences align, or clone and marker sequences match same Btau 3.1 whole-genome shotgun sequence contig [GenBank:AAFC03000000].

Table 3

Fingerprint map summary

Number of contigs 655

Clones in contigs (% of total) 257,914 (89%)

Singletons 32,883

Average number of clones per contig 394

Largest number of clones in a contig 6,516

Contigs assigned to bovine chromosomes 397

Autosome and X assignment by comparative alignments 379

Y by SRY-positive probes 18

Number clones in assigned contigs (% of total) 252,971 (87%)

Average number of clones per assigned contig 637

Clones per autosome and X contig 663

Clones per Y contig 92

N50 size of assigned contigs 17.1 Mb

Average number of clones per unassigned contig 19

N50 size of unassigned contigs 0.5 Mb

Average number of contigs per autosome 10

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AAFC03000000


http://genomebiology.com/2007/8/8/R165 Genome Biology 2007,     Volume 8, Issue 8, Article R165       Snelling et al. R165.5

c
o

m
m

e
n

t
re

v
ie

w
s

re
p

o
rts

re
fe

re
e
d

 re
se

a
rc

h
d

e
p

o
site

d
 re

se
a
rc

h
in

te
ra

c
tio

n
s

in
fo

rm
a
tio

n

Genome Biology 2007, 8:R165

BES alignments to the human genome was used to assign,

order and orient contigs on bovine chromosomes. Contigs

were renumbered to reflect their chromosome assignments

and relative order. A total of 379 of the 655 contigs were

mapped onto bovine chromosomes by this process, 300 to

autosomes (Table 3; Additional data file 2) and 79 to the X

chromosome. An additional 18 contigs were tentatively

assigned to the Y chromosome, five based on positive probes

for the sex-determining region Y (SRY) marker, and the

remainder based on fingerprint similarity to the SRY-positive

contigs. The contigs assigned to autosomes had a mean size of

9.8 Mbp, based on the fingerprint data, and a mean of 813

clones per contig. Contigs assigned to the X chromosome

were substantially smaller, with means of 1.7 Mbp and 92

clones per contig. Y-assigned contigs also averaged 92 clones

per contig. Using this information, the genome size, including

the contigs assigned to autosomes and X chromosome, was

estimated to be 3.1 Gbp (Table 4). Chromosome assignments

could not be made for 258 contigs, which lacked both human

alignments needed for comparative assignment or marker-

positive clones. These were relatively small contigs, contain-

ing an average of 19 clones, and had a mean size of 0.4 Mbp.

A composite bovine marker map

A 17,254-marker genome map of the 29 bovine autosomes

and X chromosome (Additional data file 3) [40,48,49] was

constructed from a composite of two linkage and three RH

data sets. Marker data included those used to construct the

Shirakawa Institute-US Department of Agriculture (SIAG-

USDA) [26,27] and Alberta-Missouri (UAMU) [50] linkage

Table 4

Summary of map contig coverage of bovine chromosomes

Chromosome No. of contigs Estimated size (Mbp)* Genome assembly size 
(Mbp)

Syntenic human 
chromosomes

Human genome coverage 
(Mbp)†

1 16 186 146 3, 21 155

2 10 160 125 1,2,15 135

3 11 145 116 1,2 118

4 12 141 110 7 119

5 18 143 118 12,22 115

6 19 135 111 4 117

7 14 135 100 1,5,19 105

8 11 129 103 4,8,9 106

9 15 128 95 6 108

10 8 121 95 5,14,15 98

11 16 123 101 2,9 113

12 15 108 77 13 91

13 8 104 83 10,20 91

14 11 97 82 8 96

15 13 101 75 11 75

16 11 98 72 1 76

17 8 92 70 4,12,22 81

18 11 82 62 16,19 70

19 12 78 63 17 70

20 5 83 68 5 75

21 7 80 63 14,15 63

22 2 73 59 3 63

23 10 62 48 6 56

24 12 73 60 18 71

25 10 54 42 7,16 49

26 5 58 47 10 51

27 2 48 43 4,8 41

28 3 52 40 1,10 44

29 5 61 45 11 44

X 79 138 99 X 119

Total 379 3088 2434 2616

*Size estimated from clone fingerprint data. †Based on span of BES alignments to the reference human genome sequence.
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maps, and the third generation Illinois-Texas (ILTX-2005)

[28], Shirakawa Institute (SIAG) [29], and BovGen RH maps.

For this work, the BovGen data set includes markers on the

BovGen map [30], bovine sequencing project SNP [50], and

other markers scored on the ComRad [51] panel. Strategies to

exploit complimentary resolution characteristics of linkage

and RH data [52,53] were employed to overcome inconsisten-

cies between the individual maps. Sequence-based matching

identified 17,254 unique markers from a total of 25,582 mark-

ers in the combined data sets, with 6,716 shared by at least

two data sets and 6,173 common to at least one linkage and

one RH data set (Table 5).

The markers were mapped as 15,627 discrete entities,

accounting for RH markers showing identical retention

patterns within a panel. Three maps were computed for each

chromosome. Only linkage and RH data were considered to

determine an unassisted order. Ordering information from

the BAC map and Btau3.1 draft assembly [54] was introduced

for BAC- and sequence-assisted maps. Centimorgan (cM) and

kilobase pair locations from the most likely of the three maps

were interpolated using location database software [55], and

confidence intervals were estimated. Mean separation

between projected marker positions was 0.27 cM, or 228 Kbp.

Estimated confidence intervals (CIs) indicate that 5,241

markers, occupying 4,639 positions, could not be reposi-

tioned relative to other markers without reducing likelihood.

Expressed in cM, the median estimated CI is 0.8 cM, and

62.5% of markers have CI ≤ 1 cM. A tiny fraction of markers

(0.1%) have extremely ambiguous positions with estimated

CI ≥ 25 cM. Most of the extremely ambiguous markers are

expressed sequence tag (EST)-based SNPs and have ambigu-

ous placement on the SIAG-USDA linkage map [27].

Marker-clone, marker-sequence and clone-sequence 

alignments

In addition to markers derived from BES, direct alignments

between marker and clone-based sequences and indirect

alignments using alignments of marker and clone sequences

to whole genome shotgun sequence (WGS) contigs were used

to anchor markers to the BAC fingerprint map. Matches

between 10,313 markers and 25,591 BAC clones in 426 con-

tigs were identified using e-PCR [56] and BLAT [57]. This

includes 9,916 markers that matched 23,724 clones in 359

contigs assigned to autosomes or the X chromosome. Com-

posite and BAC map chromosome assignments were consist-

ent for 97.6% of the 8,902 markers that matched clones from

a single chromosome. For 97.2% of the 1,014 markers that

matched clones from multiple chromosomes (autosomes and

X), at least one of the matched clones was assigned to the

same chromosome as the marker. Additionally, clone-marker

alignments suggested placement of 23 contigs that were not

assigned to chromosomes by comparative alignments.

The comparative map-based chromosome assignments were

supported by marker-clone alignments for 290 of the 300

contigs assigned to autosomes, and 66 of the 79 contigs

assigned to X. The composite map indicated different chro-

mosome assignments for only three autosome-assigned con-

tigs (ctg7970 - BTA10; ctg17005 - BTA6; ctg25050 - BTA4).

Each of these is located near a bovine-human breakpoint, so

ambiguity in the bovine-human comparative map may have

resulted in the apparent misassignment. For 112 of the 121

contigs containing clones that were assayed for a marker,

comparative chromosome assignments agree with the physi-

cal probe assignments.

Further support for the comparative map-based chromosome

assignments was provided by the first-generation bovine

physical map produced by the French National Institute for

Agricultural Research (INRA) [35]. The IBBMC and INRA

BAC maps share 18,980 CHORI-240 clones, which allow 227

of IBBMC contigs to be joined with 653 INRA contigs. Chro-

mosome assignments concur for 192 of the 214 assigned

IBBMC contigs containing a shared CHORI-240 clone. Mark-

ers associated with INRA clones suggest chromosome assign-

ments for the 13 unassigned IBBMC contigs containing a

shared clone, although the assignments for two of these con-

tigs remain ambiguous.

Table 5

Markers contributed by linkage and radiation hybrid data sets to the composite bovine map*

BovGen ILTX-2005 SIAG SIAG-USDA UAMU

BovGen 9,190 513 1,351 1,476 2,564

ILTX-2005 3,434 520 402 51

SIAG 5,513 3,218 48

SIAG-USDA 4,881 41

UAMU 2,564

Diagonal counts are markers contributed by the individual map; off-diagonals are counts of markers common to the two maps. There were 10,538 
markers that appeared on only one map, 5,346 that appeared on two maps, 1,130 that appeared on three maps, and 240 that appeared on four or 
five maps. *BovGen: second generation [31] plus additional markers, including bovine sequencing project SNP [49] scored on 3,000 rad ComRad RH 
panel. ILTX-2005: markers from third generation map [29] scored on 5,000 rad Illinois/Texas panel. SIAG: microsatellite and EST markers scored on 
Shirakawa Institute 7,000 rad panel [30]. SIAG-USDA: genotypes and pedigree from Shirakawa-USDA linkage map [28]. UAMU: SNP genotypes and 
pedigree from eight-breed population [49].
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Strong agreement between composite and BAC map orders is

indicated by Spearman's (ρ) and Kendall's (τ) rank correla-

tion coefficients. Spearman's ρ, used to measure strength of

the relationship between marker order along the two maps,

ranges from 0.97 to 1.00 among autosomal markers matched

to BAC clones. Coefficients are > 0.99 for 21 of the 29 auto-

somes. Kendall's τ indicates rearrangement necessary to rec-

oncile orders, and ranges from 0.92 to 0.99 for the autosomal

maps. Agreement between orders along the X chromosome is

slightly weaker, with ρ = 0.91 and τ = 0.72. For all chromo-

somes, ρ exceeds τ, suggesting any rearrangements between

the maps are predominately local, involving markers in close

proximity to each other.

Composite map markers were also matched to the Btau3.1

draft assembly using e-PCR and BLAT. The draft assembly

consists of contig sequences and intermediate scaffolds

assembled with ATLAS [58], which were arranged on whole-

chromosome scaffolds according to a set of bovine markers. A

total of 15,746 markers matched 14,952 contig sequences,

including15,498 markers matching whole-chromosome scaf-

folds, and 706 markers matching unassigned scaffolds. Fur-

ther, 3,897 markers matched multiple contigs; for 3,495 of

these, all contigs were within the same intermediate scaffold,

175 matched multiple intermediate scaffolds assigned to the

same chromosome, and 227 matched scaffolds assigned to

different chromosomes. Composite map and draft assembly

chromosome assignments were consistent for 96.4% of the

markers matching a single chromosome, and one assembly

assignment concurred with the composite map for 92.7% of

markers matching multiple chromosomes. Markers matched

668 unassigned scaffolds; 542 unassigned scaffolds matched

a single marker, 97 matched more than one marker from the

same chromosome, and 29 unassigned scaffolds matched

markers from two or more chromosomes. Rank correlations

suggest somewhat greater rearrangement between the com-

posite map and draft assembly than was observed between

the composite and BAC maps; ρ ranged from 0.89 to 1.00,

with ρ of 13 chromosomes greater than 0.99; and τ was

between 0.87 and 0.96. The level of agreement for the X chro-

mosome was similar to the autosomes, with ρ = 0.98 and τ =
0.95.

End and other partial sequences from 156,783 fingerprinted

BAC clones were also aligned to the assembled draft genome

sequence. These include: 128,774 autosome- or X-assigned

clones matched to whole-chromosome scaffold sequences;

26,587 autosome- or X-assigned clones matched to unas-

signed scaffolds; and 14,586 singleton BAC clones or clones in

unassigned fingerprint contigs matched to whole-chromo-

some scaffold sequence. BAC map and draft assembly chro-

mosome assignments were consistent for 96.1% of the aligned

clones. All 379 autosome- and X-assigned fingerprint contigs

contained at least one clone with sequence matching the

bovine assembly. All autosomal BAC contigs contained at

least one clone matching sequence assembled for that auto-

some, and the most frequently matched chromosome was

consistent with BAC map chromosome assignment for 98.7%

of the 300 autosome-assigned BAC contigs. Thirty-seven con-

tigs exclusively matched sequence assembled for the assigned

chromosome. Agreement between BAC map and assembly

orders was less than that observed between the composite

map and either the BAC map or assembly, with ρ between

0.88 and 0.95, and τ between 0.81 and 0.91 for the auto-

somes; for X, ρ = 0.79 and τ = 0.62.

After removing markers that matched multiple chromo-

somes, or had widely separated matches on a single chromo-

some, a set of 14,123 markers was identified to evaluate the

likelihood of marker order along the Btau3.1 draft assembly,

and to provide the starting point for sequence-assisted reor-

dering of the composite map. Similarly, 7,780 markers with

consistent BAC and composite map chromosome assign-

ments matched to single or close clones on the BAC map were

used to evaluate the likelihood of markers in the BAC map

order, and initiate a BAC-assisted reordering of the composite

map. Log10-likelihoods of markers ordered according to the

assembly are lower than for the same markers in the unas-

sisted composite map order (Additional data file 4). Differ-

ences in log10-likelihoods between markers ordered

according to the BAC or unassisted composite map are not as

pronounced; the BAC map orders for BTA17 and BTA20 are

more likely than the unassisted order. After rearranging and

adding markers not included in the starting order, the BAC-

assisted order was more likely than the unassisted order for

20 autosomes (Additional data file 5). Sequence-assisted

orders were never the most likely computed order, but the

log10-likelihoods are intermediate between the unassisted

and BAC-assisted orders for ten chromosomes.

The arrangement of markers and BAC clones along the com-

posite map, BAC map and Btau3.1 assembly is depicted in

Figure 1. Gbrowse [59] implementations to visualize the

maps, including alignments to the BAC map, draft bovine and

human sequence assemblies, and relative positions of QTL

summarized from the literature [14,60] are available online

[40,48,49].

Discussion
A BAC physical map that spans the majority of the bovine

genome has been constructed. Genome coverage by the BAC

map is at least equal to that of the Btau 3.1 7X draft sequence

assembly. Genome size estimated from the BAC map is 3.1

Gbp, somewhat larger than the 2.9 Gbp estimated by the

bovine genome sequencing project, but at the low end of the

3.1 to 3.8 Gbp range of estimates obtained from different

measures of haploid DNA content [61,62]. The use of three

different BAC libraries each constructed using different

restriction enzymes may have increased coverage over that

possible with a single restriction enzyme, because certain

genomic regions may not be clonable due to recognition site
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Figure 1 (see legend on next page)
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biases. Coverage by the BAC map may still be incomplete,

however, because other highly repetitive, complex regions,

such as telomeric and centromeric regions, may not be clona-

ble with any enzyme, and may not be represented in any of the

BAC libraries or the BAC map. Error in our estimates of

genome size and genome coverage by individual contigs can-

not be fully ascertained without a more finished assembly of

bovine genomic sequence.

A composite linkage/RH map was also developed. This map

consolidates available data to place markers in a consensus

order and approximate positions in common cM and Kbp

scales. The CarthaGene [31,51] procedures used to construct

the bovine composite map have also been used to order

markers on composite linkage maps of a parasitoid wasp [63],

grapevine [64], rapeseed [65] and conifers [66], and a porcine

map that combines linkage and RH data [67]. A related

approach using weighted least squares is implemented in

JoinMap [68] to compute composite linkage maps produced

from different populations. Combining four linkage data sets

for the Picea mariana × Picea rubens species complex [66]

reported that similar maps were obtained with either Join-

Map or CarthaGene.

There is significant global agreement among the bovine maps,

although each of the contributing maps was rearranged to

some extent relative to the composite map, and differences in

order among the composite map, BAC map and sequence

exist. Based on rearrangements among the well-connected

whole-genome maps, the ILTX-2005 RH map is more similar

to the composite and BAC map than either the SIAG RH or

SIAG-USDA linkage map, and all the marker maps are more

similar to the BAC map than to the Btau3.1 draft sequence

assembly (Figure 2). Differences in log10-likelihoods suggest

that the BAC map order is better supported by available link-

age and RH data than the order of markers along the assem-

bled sequence.

Examination of preliminary composite and BAC maps

showed that discrepancies could not readily be resolved.

Beyond the inevitable laboratory errors contributing to incor-

rect marker and clone order and contig membership, poten-

tial causes of discrepancies include sub-optimal orders of

both maps, ambiguous orders, and error arising from spuri-

ous marker and clone sequence alignments. The composite

map orders are probably less than optimal, because explicitly

evaluating n!/2 possible orders, where n may represent a

hundred or more markers on each chromosome, is computa-

tionally infeasible. The traveling salesman problem (TSP)

approach [69,70] can be taken to implicitly determine opti-

mal order for some RH data sets, but the combined data sets

were not suitable for TSP analysis. Our approach of adding

markers to an initial order, and using iterative flips and polish

consistently produced the most likely order when testing

alternative map construction strategies. The final order from

this approach, however, is influenced by the starting order,

and identifying the optimal order is not guaranteed. The

process of computing maps from three different starting

orders was intended to avoid bias towards any of the contrib-

uting marker maps, and to introduce fine-scale arrangements

supported by external data that are not explicitly considered

in the ordering process. Unassisted maps started from a pair

of markers from opposite ends of each chromosome, to avoid

bias towards any of the contributing maps. BAC-assisted

orders started with markers ordered according to the BAC

map, to introduce arrangements supported by fingerprint

data. Similarly, sequence-assisted orders starting from mark-

ers ordered according to the draft assembly introduced

assembly-based arrangements. This strategy of seeding the

marker order according to the BAC map or assembly intro-

duces marker arrangements that may not otherwise be evalu-

ated. By considering these arrangements, the BAC map and

Comparison of the bovine BAC fingerprint map, composite marker map and Bt3.1 sequence assemblyFigure 1 (see previous page)

Comparison of the bovine BAC fingerprint map, composite marker map and Bt3.1 sequence assembly. For each chromosome, top and bottom lines are 
the composite map, the second line from the top is the assembly, and the third is the BAC map. The upper (blue) region depicts connections between the 
composite map to the assembly, the middle (green) connects the assembly and BAC map, and the lower (maroon) connects the BAC and composite maps.

Phylogenic tree depicting relationships between whole-genome order of markers on bovine maps and sequenceFigure 2

Phylogenic tree depicting relationships between whole-genome order of 
markers on bovine maps and sequence. Pairwise distances between maps 
are the 1 - τ, where τ is Kendall's rank correlation coefficient. Whole-
genome τ values were computed by summing the number of inversions 
necessary to reconcile orders of each chromosome over all 
chromosomes. Maps included in the comparison are the Btau3.1 sequence 
assembly (Btau3.1), the BAC fingerprint map (BAC), the composite 
marker map, the third generation Illinois/Texas (ILTX-2005) radiation 
hybrid (RH) map [29], the Shirikawa (SIAG) RH map [30], and the SIAG-
USDA linkage map [28]. BovGen RH and Alberta/Missouri (UAMU) 
linkage data also contribute to the composite map, but are not included 
here because an independent map of all markers scored on the BovGen 
panel is not available, and a lack of markers shared by UAMU and data sets 
other than BovGen precludes meaningful comparison.

SIAG−USDA

SIAG

BAC

ILTX−2005

Composite

Btau3.1



R165.10 Genome Biology 2007,     Volume 8, Issue 8, Article R165       Snelling et al. http://genomebiology.com/2007/8/8/R165

Genome Biology 2007, 8:R165

sequence have some influence on the resulting composite

map, but testing rearrangements of the seeded order ensures

that the composite map will not include arrangements that

are not supported by the marker data.

Some apparent discrepancies may result from ambiguously

placed markers, which can occupy several positions on the

composite map with equal likelihood. Ambiguity on the com-

posite map also affects orders within regions between mark-

ers shared by two or more data sets, where there are no data

to indicate the best merged order of markers that are unique

to each data set. Other discrepancies may be attributed to

spurious marker-clone alignments that appear only because

of the erroneous match between a marker and clone, while

some real discrepancies may be hidden by undetected links

between markers and clones. Erroneous alignments may also

contribute to errors on the composite map, if markers from

different data sets are matched by incorrect alignments to the

same GenBank bovine sequence or EST cluster (Bos taurus

gene index or NCBI UniGene). The sequence based marker

matching procedures were implemented to overcome incon-

sistent marker nomenclature, and result in identification of

many more common markers than matches based solely on

marker name. The sequence based procedures are

dependent, however, on correct assembly of the sequences

used to link markers. The two-point procedures to resolve

inconsistent chromosome assignments will correctly break

matches between markers that should be placed on different

chromosomes, but will not detect incorrect matches between

markers that should be separated on the same chromosome.

Repetitive sequence, particularly segmental duplications and

other large scale genome variants [71], may exacerbate dis-

crepancies between the marker and BAC maps. BAC clones

that encompass or overlap a large duplication may be incor-

rectly assigned to the same contig, or correctly assigned but

incorrectly ordered within a contig due to similarity of the fin-

gerprints. Markers that match non-overlapping clones may

indicate presence of repetitive sequence in the marker, clone

and/or intermediate WGS sequence. Some rearrangements

between the marker and BAC maps may be real, considering

the diversity of genetic material represented by the maps,

which include Bos taurus × Bos indicus crosses and several

Bos taurus breeds. Breed-specific rearrangements have been

shown in sheep [72], and structural variations, including

inversions and inter- and intra-chromosomal translocations,

have been detected among humans of diverse ethnic origin

[73,74].

The level of disagreement between the composite map and

assembled sequence can be reduced by rearranging the inter-

mediate scaffold sequences according to the average (mean or

median) composite map position of markers matching each

scaffold, instead of ordering scaffolds according to minimum

marker position within each scaffold, as was done for the cur-

rent draft assembly. Basing the order of scaffolds on average

rather than minimum marker position will be more accurate,

especially if the minimum position is for a marker misplaced

relative to other markers matching the scaffold. Remaining

discrepancies between the composite map and assembly may

have similar explanations as the inconsistencies between the

composite and BAC maps: laboratory errors, ordering errors

and ambiguous orders, spurious alignments, complications

arising from repetitive DNA sequence, and structural

variation among the genomes represented by the composite

map and sequence.

Rearranging scaffolds to more accurately represent the

marker map will also reduce disagreement between the

assembled sequence and BAC map. Further refinement of the

draft assembly may be achieved through greater considera-

tion of the BAC map in the assembly process. Genomes repre-

sented by the BAC map and bovine reference sequence should

be highly similar; reference DNA was obtained from a

daughter of the bull used to construct the CHORI-240 library,

which predominates the BAC map. The relationship coeffi-

cient (rxy) [75] of 0.954 between these two partially inbred

individuals indicates their genomes will not be exactly the

same, but will be much more similar than sire and progeny

genomes resulting from mating unrelated parents (rxy = 0.5).

Besides the high density of alignments between WGS and

BAC sequences, which can anchor and orient more genomic

sequence than any marker map, paired BES alignments are

especially valuable to orient and space adjacent sequence seg-

ments. Paired BES information has been used along with

sequenced mammalian genomes to construct detailed frame-

work maps [76]. In the current context, it can also be used as

an independent check of the draft assembly and map coher-

ency. Paired BES alignments [77] against the current draft

assembly revealed possible clone identification and assembly

errors. Systematic identification errors may affect BACs on 25

or more plates of the CHORI-240 library, containing approx-

imately 3% of the BAC clones (A Ratnakumar and B Dalrym-

ple, unpublished). Mis-identification may account for some

chromosome assignment discrepancies between the

composite and BAC map, and between the BAC map and draft

assembly, but will not affect within-chromosome order com-

parisons, which do not include discrepant chromosome

assignments. Considering estimated clone size, orientation

and separation between paired BES alignments may improve

the genome assembly. In a preliminary examination of a 50-

scaffold region of BTA1, links between paired BES suggested

a number of currently unassigned scaffolds should be placed

in the region, and the neighbors and/or orientation of most

scaffolds should change (B Dalrymple, W Barris and A Ratna-

kumar, unpublished). The discrepancies in order are

predominantly local, consistent with the Kendall's correlation

analysis.

Currently observed inconsistencies between the composite

map, BAC map, and assembled sequence suggest that all may
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be improved to provide more accurate representations of the

bovine genome. Some improvement of the composite map

was realized by including fingerprint-scale information to

reorder markers on the BAC-assisted map. Re-examination of

the BAC map in light of the refined marker map may suggest

further refinement of the BAC map, involving merges

between contigs, splitting of contigs and other rearrange-

ments. Similarly, examination of the draft sequence assembly

relative to the BAC map may increase consistency with the

BAC map and composite map. An iterative approach to refin-

ing the various maps is suggested. However, no rearrange-

ment should occur for the sake of increasing consistency

between the maps and sequence, unless appropriate data sup-

porting the rearrangement are available. Discrepancies

between the maps are relevant, pointing to regions where

more experimental data are needed, where caution is

required when examining contents of particular regions, and

where bovine genomes may be prone to differ due to naturally

occurring large-scale polymorphisms.

Conclusion
The composite map consolidates available bovine mapping

data, and leverages the complementary resolution of linkage

and RH maps to provide a comprehensive marker map of the

bovine genome. The BAC fingerprint map provides a resource

to define comparative synteny, order and orient bovine

genomic sequence, and estimate genome size and complexity.

Further elucidation of the bovine genome is obtained from

integration of the composite and BAC maps with annotated

human sequence, draft bovine genomic sequence, and QTL

describing genomic regions associated with phenotypic vari-

ation. QTL, described relative to the marker maps, can be

anchored to underlying bovine genomic sequence through

the BAC map. Annotation, transferred through the high-reso-

lution bovine-human BAC-based comparative map, supplies

information about genes and gene function needed to

enhance our understanding of biological mechanisms affect-

ing agriculturally important traits. The BAC map is a valuable

resource for the development of genomic tools to further our

knowledge of evolution of this species, which has undergone

natural, undocumented and documented artificial selection,

and which may contribute further insight into human

conditions.

Materials and methods
BAC library resources

Clones from three BAC libraries were fingerprinted: CHORI-

240 derived from Hereford bull L1 Domino 99375 DNA [32]

(PJ de Jong, K Osoegawa and C Shu, unpublished) and RPCI-

42 derived from Holstein bull DNA [32,33] were constructed

at BACPAC Resources Centre [32]. The TAMBT library, con-

taining clones derived from Angus bull and cow DNA, was

constructed at Texas A&M University [34] (CA Gill and SL

Davis, unpublished).

Based on recorded pedigree, the Hereford bull used for

CHORI-240 has an inbreeding coefficient (Fx) of 0.31 [75].

His daughter used for the bovine genome sequencing project

has Fx = 0.30, and the rxy between these two individuals is

0.954 (MD MacNeil, personal communication).

BAC clone fingerprinting

Fingerprints were generated using an agarose-gel based

methodology [23,78,79]. Briefly, BAC clones were cultured

overnight in 96-well format and DNA was extracted using an

alkaline lysis procedure. The BAC DNA was digested with

HindIII (New England Biolabs, Ipswich, MA, USA) and the

resulting fragment sizes were resolved by electrophoresis on

agarose (Cambrex BioWhittaker, Walkersville, MD, USA)

gels. Gels were stained after electrophoresis with SYBR Green

I (Invitrogen, Carlsbad, CA, USA) and scanned using a

Molecular Dynamics Fluorimager 595. The digitized images

were lane tracked interactively using Image software

[46,80,81] and restriction fragments were automatically

identified and sized using BandLeader [82]. Restriction

fragments within a size range of approximately 600 bp to 30

Kbp were collected. HindIII fragments predicted by their size

as being derived from sequences internal to the vector were

removed from the fragment list for each clone.

BAC end sequencing

End sequencing of BAC clones from the three libraries was

performed as part of the International Bovine BAC Mapping

Consortium effort. End sequence reads have been deposited

in GenBank [GenBank:BZ830806-BZ891831; BZ896446-

BZ956676; CC447354-CC447937; CC466118-CC470858;

CC470880-CC596504; CC761663-CC775995; CC902786-

CC927336; CG917936-CG918393; CG976420-CG992944;

CL526294-CL527670; CL603252-CL610093; CL864822-

CL865757; CR792448-CR792448; CR792463-CR812463;

CR812501-CR846076; CR846104-CR846104; CW848133-

CW848163; CZ12846-CZ27312; CZ404298-CZ429751]

(Table 6, Additional data file 1) and in the NCBI Trace

Archive.

Anchoring BAC clones to the human genome assembly

BES were aligned to repeat-masked human genome sequence

assemblies (UCSC hg17, based on NCBI Build 35; and UCSC

hg18, based on NCBI Build 36.1) [38] using BLASTN [83]

with options -z 3095016460 -m 8. Only the best achieved hits

were considered. Paired-end alignments were required to sat-

isfy the following criteria: E-value ≤ 1e-2 for both alignments,

with alignments ≤ 400 Kbp apart and in opposite orienta-

tions. Single end alignments were required to have E-values ≤
1e-8. As described below, alignments to hg17 were used in

conjunction with the bovine-human comparative map

described by [47] to merge contigs and arrange contigs on

chromosomes. Alignments to hg18 were used to define the

bovine BAC-human comparative map (Additional data file 2).

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BZ830806
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BZ891831
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BZ896446
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BZ956676
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CC447354
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CC447937
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CC466118
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CC470858
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CC470880
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CC596504
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CC761663
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CC775995
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CC902786
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CC927336
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CG917936
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CG918393
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CG976420
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CG992944
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CL526294
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CL527670
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CL603252
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CL610093
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CL864822
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CL865757
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CR792448
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CR792448
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CR792463
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CR812463
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CR812501
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CR846076
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CR846104
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CR846104
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CW848133
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CW848163
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CZ12846
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CZ27312
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CZ404298
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CZ429751
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Initial fingerprint map assembly

BAC fingerprints were assembled using FPC [43,44]. The ini-

tial assembly was performed using the default parameters

(tolerance 7; min bands 3; best = 10; no CpM) and a cutoff

value of 1 × 10-16. The fingerprinted clones were then screened

and filtered as follows to remove fingerprint patterns indica-

tive of artifactual data. First, a software application, Map-

Mop, was developed to calculate the distributions of insert

size and number of restriction fragments for the clones. Based

on these distributions, filtering parameters were determined

to identify 'outlier' clones that represented extremes for insert

size and/or number of restriction fragments, suggesting

problematic data such as that resulting from partial digestion

of the BAC DNA, or the presence of DNA from more than a

single BAC clone (cross-well contamination). Second, initial

filtering parameters were assessed by visual inspection of

representative clone fingerprints and were adjusted to

minimize the retention of poor quality data while limiting the

loss of high quality data. Filtering parameters were deter-

mined separately for individual libraries, for clones within

contigs and for clones that were not assembled into contigs

('singletons').

Following filtering, the remaining fingerprints were again

assembled at a cutoff value of 1 × 10-16. The DQer function in

FPC was used to reassemble any contigs that contained 'Q'

clones, which exhibit an unusual number of extra bands or

gaps between bands matching the Q clone to other clones,

resulting in false positive overlaps between putative contigs.

The presence of Q clones within a contig is suggestive of mis-

assembly due to false-positive fingerprint matches. The DQer

function reassembled the clones within the contig with suc-

cessively increasing stringency until no Q clones remained.

The resulting contigs were subsequently processed with an

automated clone ordering application, CORAL [45], to refine

clone order within the contigs.

Merging map contigs

Contigs were merged in multiple steps using automated

scripts to identify and execute joins between contigs. Initial

merges were performed using only the fingerprint data to

identify candidate merge points for contigs that satisfied the

criteria of Sulston scores of 9 × 10-8 for at least two contig end

clones, and that had no more than four unconfirmed frag-

ments at the merge point. An unconfirmed fragment is one

that is present in the fingerprint of the end clone of one contig

but without a match to fragments in fingerprints of end clones

in either of the contigs at the merge point. A subset of merged

contigs was manually reviewed to evaluate whether these

parameters resulted in incorrect merges.

After making the initial merges, BES alignments to the

human sequence assembly were examined to identify candi-

date contig merges based on their human genome sequence

coordinates. Merges were made in cases where the Sulston

score match between end clones was 9 × 10-7 and there were

four or fewer unconfirmed fragments. Automated scripts and

human inspection were used to identify and eliminate incor-

rect clone orders and merges at multiple points throughout

the merging process.

Table 6

Summary of CHORI-240, RPCI-42 and TAMBT BAC clones represented by sequences deposited in the genome survey sequence divi-

sion of GenBank

Source* All sequences† IBBMC sequence‡ All clones IBBMC clones

TIGR 61,023 61,023 29,286 29,286

UIUC 107,709 75,070 51,921 38,979

EMBRAPA 43,023 43,023 21,571 21,571

BCGSC 125,597 125,597 58,368 58,368

OU 26,863 25,486 14,844 14,000

BARC 26,982 25,454 10,862 10,857

USMARC 31,355 117

Total 422,552 330,167 186,969 159,061

*TIGR, The Institute for Genomic Research [GenBank:BZ830806-BZ891831]; UIUC, University of Illinois at Urbana-Champaign 
[GenBank:BZ896446-BZ956676; CC447354-CC447937; CC761663-CC775995; CW848133-CW848163]; EMBRAPA, Embrapa Genetic Resources 
and Biotechnology [GenBank:CC466118-CC470858; CG917936-CG918393; CG976420-CG992944; CL603252-CL610093; CZ012846-CZ027312]; 
BCGSC, British Columbia Cancer Agency Genome Sciences Centre [GenBank:CC470880-CC596504]; OU, University of Oklahoma Advanced 
Center for Genome Technology [GenBank:CC902786-CC927336; CL526294-CL527670; CL864822-CL865757]; BARC, USDA-ARS-Beltsville 
Agricultural Research Center [GenBank:CZ404298-CZ429751]; USMARC, USDA-ARS-US Meat Animal Research Center. †Includes CHORI-240 
and RPCI-42 plasmid sub-clone sequences and end sequences not identified with the IBBMC effort. ‡International Bovine BAC Mapping Consortium. 
In addition, 53,556 ends of 26,936 clones from the INRA BAC library were sequenced in the IBBMC effort [GenBank:CR792448-CR792448; 
CR792463-CR812463; CR812501-CR846076; CR846104-CR846104].

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BZ830806
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BZ891831
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BZ896446
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BZ956676
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CC447354
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CC447937
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CC761663
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CC775995
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CW848133
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CW848163
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CC466118
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CC470858
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CG917936
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CG918393
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CG976420
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CG992944
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CL603252
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CL610093
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CZ012846
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CZ027312
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CC470880
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CC596504
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CC902786
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CC927336
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CL526294
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CL527670
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CL864822
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CL865757
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CZ404298
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CZ429751
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CR792448
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CR792448
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CR792463
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CR812463
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CR812501
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CR846076
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CR846104
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CR846104
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Estimating map contig size

Contig sizes were estimated from fingerprint data with an

algorithm that compared the restriction fragments of over-

lapping clone pairs in the canonical clone set for each contig.

Canonical clones are the set of non-redundant overlapping

clones spanning a contig that each represent a unique com-

plement of restriction fragments in their fingerprint, such

that the remaining non-canonical clones within the contig are

subsumed by the canonical clones (that is, all the restriction

fragments in the fingerprint of a non-canonical clone are

completely represented in one of the canonical clones). The

unique fragments for each canonical clone were identified,

and their sizes were summed to estimate the overall size of the

contigs. Specifically, the algorithm performed the following

for each contig: first, sum the sizes of all the fragments in the

left-most canonical clone in the contig to create a cumulative

size estimate; second, identify the next canonical clone imme-

diately to the right and identify its unique fragments (any

fragments not shared with the previous canonical clone to the

left or the next canonical clone to the right), then add the sizes

of these unique fragments to the cumulative size estimate;

third, repeat step 2 until all unique fragments in the canonical

clones have been identified and summed to give a total size

estimate for the contig. Fragments were considered to be the

same if their calculated standard mobilities were within ten

mobility units of each other.

Composite bovine map

The composite map was built using data from two independ-

ent linkage maps, as well as markers scored for presence or

absence on three independent whole-genome RH panels

(Table 5). Genotypes and pedigrees were those used for the

SIAG-USDA linkage map [26] with EST-based SNP [27], and

the UAMU SNP linkage map [50]. The two maps anchor

7,404 markers along 30 bovine chromosomes (29 autosomes

and the X chromosome), albeit at relatively low resolution

with many markers not separated by observed recombina-

tion. Markers scored on at least one of the three independent

RH panels provided the basis to separate closely linked mark-

ers as well as place 9,850 additional markers that were not

represented in the linkage maps. Radiation hybrid data

included those used for the ILTX-2005 map scored on the

5,000 rad Illinois-Texas panel [28], the SIAG map scored on

a 7,000 rad panel [29], and the BovGen map [30] with mark-

ers scored on the 3,000 rad ComRad panel [51]. For this

work, additional markers scored on the ComRad panel are

also considered part of the BovGen data set. These include

Illumina BeadStation-scored SNP [50] identified from the

bovine genome sequencing initiative, and a number of ampli-

fied fragment length polymorphism markers. The UAMU

linkage map SNPs are a subset of the sequencing project SNPs

scored on the ComRad RH panel.

Composite map construction processes are depicted in Figure

3. Markers shared by two or more data sets were identified,

assigned to chromosomes, and each chromosome was

ordered. Markers were matched across data sets using a com-

bination of marker names, primer sequence, and primer

sequence alignments to the same bovine sequence or EST

cluster. Markers with identical primer sequences were con-

sidered to be the same, regardless of marker name. Additional

matches between data sets were obtained using e-PCR [56] to

align primer pairs with GenBank bovine and Bos taurus Gene

Index sequences (BtGI, version 11) [84]. Primer pairs that

matched the same sequence, with no more than one mis-

match or gap, were considered to represent the same marker,

as were markers matching different ESTs from the same Bos

taurus UniGene (NCBI Bos taurus UniGene, build 68) [85].

Name-based matches were made only between those markers

with identical names and no sequence or mapping evidence to

the contrary (markers without primer sequence but sharing

the same name and chromosome assignment were matched,

and markers sharing the same name but having different

primer sequences were not matched unless the different

primers hit the same sequence). Matches were checked for

consistency with original chromosome assignments from the

independent maps. When markers assigned to different chro-

mosomes in the independent maps were matched, data used

to match markers, results of two-point analyses, and compar-

ative human alignments were examined. Matches were pre-

served, and markers reassigned, when two-point linkage

supported reassignment. Sequence- and name-based

matches were ignored if two-point linkage supported the

original assignments. Comparative alignments were used to

break ties, when two-point LOD scores and distances for a

marker indicated equally likely assignment to two or more

chromosomes, and the comparative alignment supported

assignment to one of those chromosomes.

Independent two-point analyses of each RH data set were

conducted to identify markers to be included on the compos-

ite map. Markers common to each RH data set and the SIAG-

USDA linkage data were identified. Starting from this set,

markers linked with a two-point LOD > 7.0 and < 40 centiRad

(cR) separation from previously linked marker were identi-

fied in successive passes through the two-point results.

Markers assigned to each chromosome-specific linkage group

were ordered by an automated process [53], seeded with

three different orders. An initial, unassisted order started

with a pair of markers from opposite ends of the chromo-

some. The BAC-assisted order started with the BAC map

order of markers that were matched to BAC clones, and the

sequence-assisted order started with the assembly order of

markers that were anchored to the assembly. Only markers

with consistent chromosome assignments, and unambiguous

placement on the BAC map or sequence were included in the

starting orders. Log10-likelihoods of markers in the BAC- and

sequence-based starting orders were computed, iterative

polish and flips procedures were applied to determine a more

likely order of markers included in the starting order, remain-

ing markers assigned to the chromosome were sequentially

added, and the final order was determined with iterative
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polish and flips. Confidence intervals surrounding marker

placement were approximated from polish applied to the final

order. Cytogenetic band, cM and Kbp positions for each

marker were computed with a modification of the ldbf pro-

gram [55], using the native unit (cM and cR) maps in the most

likely consensus order determined from the three different

starting orders.

Marker, clone and genomic sequence alignment

Markers placed on the composite map were associated with

BAC clones in the fingerprint map via direct alignment of

marker and BAC end- or sub-clone sequences, and indirect

alignment of marker and BAC sequences to the same WGS

contig sequence. Direct marker-clone, and indirect marker-

WGS-clone alignments were identified by e-PCR and BLAT.

Alignments of primer pairs against BAC clone and WGS by e-

PCR allowed no more than one mismatch or gap. BLAT was

used to align marker sequences with BES and WGS contigs,

and to align BAC clones with WGS contigs. BLAT alignments

required exact matches and a bit score of at least 100, 99.5%

identity with a score of 250, or 99% identity and a score of

500. Direct matches were identified from markers matching

BAC clone sequences, and indirect matches from markers and

BAC clones matching the same WGS contig.

Marker sequence used for BLAT alignments was obtained

from GenBank when information to associate the marker

with a GenBank accession number was available, or from STS

sequence supplied with the marker. When only primer

sequences were available, the e-PCR results used to match

markers across data sets were also used to construct an

amplimer sequence. Sequence between primer locations was

extracted from each e-PCR match, and assembled with Phrap

(version 0.990329) [86]. This assembled sequence was used

to represent the marker only when the Phrap assembly

resulted in a single contig.

The collection of GenBank bovine sequence used for e-PCR

alignments to match markers across linkage and RH data sets

includes bovine sequences deposited in the genome survey

Data flow diagram of the composite map construction processFigure 3

Data flow diagram of the composite map construction process.
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sequence (GSS), STS, patent (PAT), mammalian (MAM), and

EST divisions of GenBank after release of the second bovine

draft assembly. Bovine sequences were identified by taxon-

omy identification numbers for Bos taurus (txid 9913), Bos

indicus × Bos taurus (txid 30522), Bos taurus × Bos indicus

(txid 30523), and Bos sp. (txid 29061, associated with some

patent [PAT] division sequences). The MAM division

sequences included WGS contig sequences from the second

bovine sequence assembly [GenBank:AAFC02000000].

Markers and BAC sequences were also aligned with WGS con-

tigs from the third bovine draft assembly [Gen-

Bank:AAFC03000000] and scaffold sequences (whole-

chromosome scaffolds [GenBank:CM000177-CM000206];

unassigned scaffolds [GenBank:CH974204-CH980624]).

Alignment of the BAC fingerprint and composite 

marker maps

Discrepancy resolution

Associations between markers and clones were used to assess

and refine chromosome assignments and the order of finger-

print contigs, where the contigs were initially assigned and

ordered along chromosomes using end-sequence alignments

to human sequence and bovine-human comparative maps

[29,47]. For each fingerprint contig containing clones

associated with markers mapped on a preliminary composite

map, marker positions unambiguously linked to a single con-

tig were identified, and uninterrupted runs of marker posi-

tions associated with a single contig were determined. Marker

positions were regressed on corresponding clone position

within a contig for the run with the greatest number of mark-

ers to predict clone position on the composite map. Predicted

positions of clones within contigs linked to the composite

map by a single marker position were set to that marker posi-

tion. Discrepancies between predicted clone positions, and

composite map positions of markers linked to those clones

were identified. Fingerprints of clones linked to the observed

discrepancies were examined, and clones were rearranged to

eliminate discrepancies only if the rearrangement was sup-

ported by fingerprint data. The preliminary composite map

used included SIAG-USDA linkage data, and RH markers and

vectors from SIAG, the second generation Illinois-Texas map

[47], and a subset of the BovGen data used for the current

map.

BAC-assisted composite map

Direct marker-clone and indirect marker-WGS-clone align-

ments were used to identify the set of markers from the cur-

rent composite map with consistent, unambiguous

alignments to the BAC map. The order of these markers on

the BAC map was used to seed the ordering process for each

chromosome. A map of the markers matching the BAC map

was computed, followed by iterative polish and flips to reor-

der markers in that set. Markers assigned to the chromosome,

but not matching BAC clones, were added with buildfw, and

a final BAC-assisted order obtained from iterative polish and

flips after all assigned markers were included.

Additional data files
The following additional data are available with the online

version of this paper. Additional data file 1 describes analyses

of BAC end sequences. Additional data file 2 contains figures

showing the bovine-human comparative map defined by the

BAC map and BES alignments. Additional data file 3 is a table

containing placement of markers on the composite map.

Additional data file 4 is a table of log10 likelihoods of markers

ordered according to the BAC map, Btau3.1 draft assembly,

and unassisted composite map. Additional data file 5 is a

table of log10 likelihoods for the unassisted, BAC-assisted and

sequence-assisted composite maps.

Additional data file 1Analyses of BAC end sequencesAnalyses of BAC end sequences.Click here for fileAdditional data file 2Figures showing the bovine-human comparative map defined by the BAC map and BES alignmentsFigures showing the bovine-human comparative map defined by the BAC map and BES alignments.Click here for fileAdditional data file 3Placement of markers on the composite mapPlacement of markers on the composite map.Click here for fileAdditional data file 4Log10 likelihoods of markers ordered according to the BAC map, Btau3.1 draft assembly, and unassisted composite mapLog10 likelihoods of markers ordered according to the BAC map, Btau3.1 draft assembly, and unassisted composite map.Click here for fileAdditional data file 5Log10 likelihoods for the unassisted, BAC-assisted and sequence-assisted composite mapsLog10 likelihoods for the unassisted, BAC-assisted and sequence-assisted composite maps.Click here for file

Abbreviations
BAC, bacterial artificial chromosome; BES, BAC end

sequence; CI, confidence interval; cM, centimorgan; cR,

centiRay; EST, expressed sequence tag; IBBMC, Interna-

tional Bovine BAC Mapping Consortium; ILTX, Illinois-

Texas; INRA, French National Institute for Agricultural

Research; QTL, quantitative trait loci; RH, radiation hybrid;

SIAG, Shirakawa Institute; SNP, single-nucleotide polymor-

phism; SRY, sex-determining region Y; STS, sequence tagged

site; UAMU, Alberta-Missouri; USDA, US Department of

Agriculture; WGS, whole genome shotgun sequence.

Authors' contributions
The first three authors contributed equally to the work. RC

and JES developed the BAC fingerprint and BAC-human

comparative maps. WMS and MH developed the composite

map and integrated marker maps with the BAC map and draft

assembly. CAA, CAG, AEvdW, DML, HAL, SSM, SMcK, BM,

MG and LS developed probes and screened BAC clones. RB,

RC, DML and WMS analyzed BES. IEB, RH, SJMJ, MAM,

CAM, NHY and GY were involved in fingerprinting, BAC end

sequencing and BAC map creation. SY, CPVT, TSS, ARC,

MMC, DML, AE, HAL, RT, LCS, LKM, AR, and SZ were

involved in BAC end sequencing, coordinated by HAL and

JES. GLB, JWK, SMK, TPLS, WMS, JFT, and RDS contrib-

uted to linkage maps. DML, AEvdW, HAL, JEW, JLW, JA,

OJ, SMcK, SSM, BM, AE, SF, MG, MB, AR and LS were

involved in RH map development. LS, AE, MB, SF, and MG

contributed to INRA BAC map and integration of IBBMC and

INRA maps. PdJ, KO, and CAG participated in BAC library

development. DLA, BPD, HS and WMS contributed to the

gbrowse web sites. AE, JLW, FWN, and JWK conceived the

composite map. TPLS, JCM, SMK, RDG, HAL and JEW were

involved in conceiving and planning the project. WMS, JES,

RC, TPLS and RB drafted portions of the manuscript. MH,

JFT, RT, JCM, DLA, ARC, AMC, BPD, AE, CAG, JWK, DML,

MAM, TSS, CPVT, and JLW edited the manuscript. All

authors read and approved the final manuscript.

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AAFC02000000
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AAFC03000000
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CM000177
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CM000206
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CH974204
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CH980624


R165.16 Genome Biology 2007,     Volume 8, Issue 8, Article R165       Snelling et al. http://genomebiology.com/2007/8/8/R165

Genome Biology 2007, 8:R165

Acknowledgements
The authors acknowledge the support of the United States Department of
Agriculture (National Research Initiative Tools and Reagents Grant
AG2004-3520-14196; National Research Initiative Grant 2003-35205-
12825; USDACooperative State Research, Education, and Extension Serv-
ice Livestock Genome Sequencing Initiative andUSDA Agricultural
Research Service Agreement 58-5438-2-313), the Alberta Science and
Research Authority, Agriculture and Agri-Foods Canada, the Biotechnol-
ogy and Biological Sciences Research Council, The European Commission,
the Commonwealth Scientific and Industrial Research Organization of Aus-
tralia, AgResearch Ltd, New Zealand Foundation for Research, Science and
Technology, EMBRAPA Brazil, National Council for Scientific and Techno-
logical Development (CNPq) Brazil, the Roslin Institute Scotland, the
French National Institute for Agricultural Research (INRA), Analysis of the
Genomes of Farmed Animals Project (AGENAE), Genoscope, and the
Texas Agricultural Experiment Station. The Alliance for Animal Genomics
and specifically Kellye Eversole's valuable efforts in coordinating industry
and institutional support is acknowledged. We also wish to acknowledge
the BAC end sequencing work done by the TIGR BAC End Team, and
members of Mapping and Sequencing groups at the GSC, especially Martin
Krzywinski, who developed essential software. Special thanks to Wes
Barris and Sean McWilliam for assistance with the Gbrowse sites, and to
Abhirami Ratnakumar and Wes Barris for sharing preliminary results from
detailed analysis of paired BES alignments. MAM, RH and SJMJ are scholars
of the Michael Smith Foundation for Health Research. The authors grate-
fully acknowledge the early pre-publication access under the Fort Lauderd-
ale conventions to the draft bovine genome sequence provided by the
Baylor College of Medicine Human Genome Sequencing Center and the
Bovine Genome Sequencing Project Consortium.

References
1. Diamond J: Guns, Germs and Steel: the Fates of Human Societies New

York, NY, USA: WW Norton & Company; 1997. 
2. Willham RL: From husbandry to science: A highly significant

facet of our livestock heritage.  J Anim Sci 1986, 62:1742-1758.
3. Wright S: Evolution in Mendelian populations.  Genetics 1931,

16:97-159.
4. Lynch M, Walsh B: Genetics and Analysis of Quantitative Traits Sunder-

land, MA, USA: Sinauer Associates, Inc; 1998. 
5. Mason IL: World Dictionary of Livestock Breeds 3rd edition. Wallingford,

UK: CAB International; 1998. 
6. Koots KR, Gibson JP, Smith C, Wilton JW: Analyses of published

genetic parameter estimates for beef production traits. 1.
Heritability.  Anim Breed Abst 1994, 62:309-338.

7. Koots KR, Gibson JP, Wilton JW: Analyses of published genetic
parameter estimates for beef production traits. 2. Pheno-
typic and genetic correlations.  Anim Breed Abstr 1994,
62:829-853.

8. Henderson CR: Applications of Linear Models in Animal Breeding Guelph,
ON, Canada: University of Guelph; 1984. 

9. Harris DL, Newman S: Breeding for profit: synergism between
genetic improvement and livestock production (a review).  J
Anim Sci 1994, 72:2178-2200.

10. de Mattos D, Bertrand JK, Misztal I: Investigation of genotype ×
environment interactions for weaning weight for Herefords
in three countries.  J Anim Sci 2000, 78:2121-2126.

11. Pollak EJ, Quaas RL: Multibreed genetic evaluations of beef
cattle.  Proc 6th World Congr Genet Appl Livest Prod 1998, 23:81-88.

12. Powell RL, VanRaden PM: International dairy bull evaluations
expressed on national, subglobal, and global scales.  J Dairy Sci
2002, 85:1863-1868.

13. Khatkar MS, Thomson PC, Tammen I, Raadsma HW: Quantitative
trait loci mapping in dairy cattle: review and meta-analysis.
Genet Sel Evol 2004, 36:163-190.

14. Polineni P, Aragonda P, Xavier SR, Furuta R, Adelson DL: The
bovine QTL viewer: a web accessible database of bovine
Quantitative Trait Loci.  BMC Bioinformatics 2006, 7:283.

15. Blott S, Kim JJ, Moisio S, Schmidt-Kuntzel A, Cornet A, Berzi P, Cam-
bisano N, Ford C, Grisart B, Johnson D, et al.: Molecular dissection
of a quantitative trait locus: a phenylalanine-to-tyrosine sub-
stitution in the transmembrane domain of the bovine
growth hormone receptor is associated with a major effect
on milk yield and composition.  Genetics 2003, 163:253-266.

16. Kambadur R, Sharma M, Smith TP, Bass JJ: Mutations in myostatin
(GDF8) in double-muscled Belgian Blue and Piedmontese

cattle.  Genome Res 1997, 7:910-916.
17. Cohen-Zinder M, Seroussi E, Larkin DM, Loor JJ, Everts-van der Wind

A, Lee JH, Drackley JK, Band MR, Hernandez AG, Shani M, et al.:
Identification of a missense mutation in the bovine ABCG2
gene with a major effect on the QTL on chromosome 6
affecting milk yield and composition in Holstein cattle.
Genome Res 2005, 15:936-944.

18. Schnabel RD, Kim JJ, Ashwell MS, Sonstegard TS, Van Tassell CP,
Connor EE, Taylor JF: Fine-mapping milk production quantita-
tive trait loci on BTA6: Analysis of the bovine osteopontin
gene.  Proc Natl Acad Sci USA 2005, 102:6896-6901.

19. Winter A, Kramer W, Werner FA, Kollers S, Kata S, Durstewitz G,
Buitkamp J, Womack JE, Thaller G, Fries R: Association of a lysine-
232/alanine polymorphism in a bovine gene encoding acyl-
CoA:diacylglycerol acyltransferase (DGAT1) with variation
at a quantitative trait locus for milk fat content.  Proc Natl Acad
Sci USA 2002, 99:9300-9305.

20. Meuwissen TH, Hayes BJ, Goddard ME: Prediction of total
genetic value using genome-wide dense marker maps.  Genet-
ics 2001, 157:1819-1829.

21. Krzywinski M, Wallis J, Gosele C, Bosdet I, Chiu R, Graves T, Hum-
mel O, Layman D, Mathewson C, Wye N, et al.: Integrated and
sequence-ordered BAC- and YAC-based physical maps for
the rat genome.  Genome Res 2004, 14:766-779.

22. Marra M, Kucaba T, Sekhon M, Hillier L, Martienssen R, Chinwalla A,
Crockett J, Fedele J, Grover H, Gund C, et al.: A map for sequence
analysis of the Arabidopsis thaliana genome.  Nat Genet 1999,
22:265-270.

23. McPherson JD, Marra M, Hillier L, Waterston RH, Chinwalla A, Wallis
J, Sekhon M, Wylie K, Mardis ER, Wilson RK, et al.: A physical map
of the human genome.  Nature 2001, 409:934-941.

24. Gregory SG, Sekhon M, Schein J, Zhao S, Osoegawa K, Scott CE,
Evans RS, Burridge PW, Cox TV, Fox CA, et al.: A physical map of
the mouse genome.  Nature 2002, 418:743-750.

25. Barendse W, Vaiman D, Kemp SJ, Sugimoto Y, Armitage SM, Williams
JL, Sun HS, Eggen A, Agaba M, Aleyasin SA, et al.: A medium-density
genetic linkage map of the bovine genome.  Mamm Genome
1997, 8:21-28.

26. Ihara N, Takasuga A, Mizoshita K, Takeda H, Sugimoto M, Mizoguchi
Y, Hirano T, Itoh T, Watanabe T, Reed KM, et al.: A comprehensive
genetic map of the cattle genome based on 3802
microsatellites.  Genome Res 2004, 14:1987-1998.

27. Snelling WM, Casas E, Stone RT, Keele JW, Harhay GP, Bennett GL,
Smith TP: Linkage mapping bovine EST-based SNP.  BMC
Genomics 2005, 6:74.

28. Everts-van der Wind A, Larkin DM, Green CA, Elliott JS, Olmstead
CA, Chiu R, Schein JE, Marra MA, Womack JE, Lewin HA: A high-
resolution whole-genome cattle-human comparative map
reveals details of mammalian chromosome evolution.  Proc
Natl Acad Sci USA 2005, 102:18526-18531.

29. Itoh T, Watanabe T, Ihara N, Mariani P, Beattie CW, Sugimoto Y,
Takasuga A: A comprehensive radiation hybrid map of the
bovine genome comprising 5593 loci.  Genomics 2005,
85:413-424.

30. Jann OC, Aerts J, Jones M, Hastings N, Law A, McKay S, Marques E,
Prasad A, Yu J, Moore SS, et al.: A second generation radiation
hybrid map to aid the assembly of the bovine genome
sequence.  BMC Genomics 2006, 7:283.

31. Schiex T, Chabrier P, Bouchez M, Milan D: Boosting EM for radia-
tion hybrid and genetic mapping.  In Proceedings of the First Inter-
national Workshop on Algorithms in Bioinformatics Volume 2149. Edited
by: Gascuel O, Moret BME. London, UK: Springer-Verlag; 2001:41-51.
[Lecture Notes In Computer Science].

32. Children's Hospital Oakland Research Institute BACPAC
Resources Center   [http://bacpac.chori.org/]

33. Warren W, Smith TP, Rexroad CE 3rd, Fahrenkrug SC, Allison T, Shu
CL, Catanese J, de Jong PJ: Construction and characterization of
a new bovine bacterial artificial chromosome library with 10
genome-equivalent coverage.  Mamm Genome 2000, 11:662-663.

34. Cai L, Taylor JF, Wing RA, Gallagher DS, Woo SS, Davis SK: Con-
struction and characterization of a bovine bacterial artificial
chromosome library.  Genomics 1995, 29:413-425.

35. Schibler L, Roig A, Mahe MF, Save JC, Gautier M, Taourt S, Boichard
D, Eggen A, Cribiu EP: A first generation bovine BAC-based
physical map.  Genet Sel Evol 2004, 36:105-122.

36. Ng SH, Artieri CG, Bosdet IE, Chiu R, Danzmann RG, Davidson WS,
Ferguson MM, Fjell CD, Hoyheim B, Jones SJ, et al.: A physical map
of the genome of Atlantic salmon, Salmo salar.  Genomics 2005,

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17246615
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7982849
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7982849
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10947098
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10947098
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10947098
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12201537
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12201537
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15040897
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15040897
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16753058
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16753058
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16753058
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12586713
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12586713
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12586713
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9314496
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9314496
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9314496
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15998908
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15998908
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15867146
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15867146
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15867146
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12077321
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12077321
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12077321
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11290733
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11290733
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15060021
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15060021
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15060021
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10391214
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11237014
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11237014
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12181558
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12181558
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9021143
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9021143
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15466297
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15466297
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15466297
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15943875
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16339895
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16339895
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16339895
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15780744
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15780744
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17087818
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17087818
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17087818
http://bacpac.chori.org/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10920236
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10920236
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10920236
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8666390
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8666390
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8666390
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14713413
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14713413
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16026963


http://genomebiology.com/2007/8/8/R165 Genome Biology 2007,     Volume 8, Issue 8, Article R165       Snelling et al. R165.17

c
o

m
m

e
n

t
re

v
ie

w
s

re
p

o
rts

re
fe

re
e
d

 re
se

a
rc

h
d

e
p

o
site

d
 re

se
a
rc

h
in

te
ra

c
tio

n
s

in
fo

rm
a
tio

n

Genome Biology 2007, 8:R165

86:396-404.
37. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J,

Devon K, Dewar K, Doyle M, Fitzhugh W, et al.: Initial sequencing
and analysis of the human genome.  Nature 2001, 409:860-921.

38. UCSC Genome Bioinformatics, Sequence and Annotation
Downloads   [http://hgdownload.cse.ucsc.edu/downloads.html]

39. Bovine BAC Map in FPC Format   [ftp://ftp.bcgsc.bc.ca/pub/
bovine_mapping/]

40. The Bovine Genome Database Home Page (contains links to
BAC and Composite map Gbrowse sites)   [http://
www.bovinegenome.org]

41. Bovine BAC Map Gbrowse (Texas A&M)   [http://
genomes.tamu.edu/cgi-bin/gbrowse/bacmap/]

42. Bovine BAC Map Gbrowse (CSIRO)   [http://www.livestockge
nomics.csiro.au/perl/gbrowse.cgi/bacmap/]

43. Soderlund C, Longden I, Mott R: FPC: a system for building con-
tigs from restriction fingerprinted clones.  Comput Appl Biosci
1997, 13:523-535.

44. Soderlund C, Humphray , Dunham A, French L: Contigs built with
fingerprints, markers, and FPC V4.7.  Genome Res 2000,
10:1772-1787.

45. Flibotte S, Chiu R, Fjell C, Krzywinski M, Schein JE, Shin H, Marra MA:
Automated ordering of fingerprinted clones.  Bioinformatics
2004, 20:1264-1271.

46. Sulston J, Mallett F, Staden R, Durbin R, Horsnell T, Coulson A: Soft-
ware for genome mapping by fingerprinting techniques.
Comput Appl Biosci 1988, 4:125-132.

47. Everts-van der Wind A, Kata SR, Band MR, Rebeiz M, Larkin DM,
Everts RE, Green CA, Liu L, Natarajan S, Goldammer T, et al.: A 1463
gene cattle-human comparative map with anchor points
defined by humangenome sequence coordinates.  Genome Res
2004, 14:1424-1437.

48. Bovine Composite Map Gbrowse (Texas A&M)   [http://
genomes.tamu.edu/cgi-bin/gbrowse/bosmap2/]

49. Bovine Composite Map Gbrowse (CSIRO)   [http://www.live
stockgenomics.csiro.au/perl/gbrowse.cgi/bosmap/]

50. McKay SD, Schnabel RD, Murdoch BM, Aerts J, Gill C, Gao C, Matu-
kumalli LK, Stothard P, Wang Z, Van Tassell CP, et al.: High-
throughput genotyping facilitates rapid construction of
whole genome radiation hybrid and linkage maps.  Anim Genet
2007, 38:120-125.

51. Williams JL, Eggen A, Ferretti L, Farr CJ, Gautier M, Amati G, Ball G,
Caramorr T, Critcher R, Costa S, et al.: A bovine whole-genome
radiation hybrid panel and outline map.  Mamm Genome 2002,
13:469-474.

52. de Givry S, Bouchez M, Chabrier P, Milan D, Schiex T: CARHTA-
GENE: multipopulation integrated genetic and radiation
hybrid mapping.  Bioinformatics 2005, 21:1703-1704.

53. Snelling WM, Gautier M, Keele JW, Smith TP, Stone RT, Harhay GP,
Bennett GL, Ihara N, Takasuga T, Takeda H, et al.: Integrating link-
age and radiation hybrid mapping data for bovine chromo-
some 15.  BMC Genomics 2004, 5:77.

54. Human Genome Sequencing Center at Baylor College of
Medicine, Bovine Genome Project   [http://
www.hgsc.bcm.tmc.edu/projects/bovine/]

55. Liao W, Collins A, Hobbs M, Khatkar MS, Luo J, Nicholas FW: A
comparative location database (CompLDB): map integra-
tion within and between species.  Mamm Genome 2007,
18:287-299.

56. Schuler GD: Sequence mapping by electronic PCR.  Genome Res
1997, 7:541-550.

57. Kent WJ: BLAT - the BLAST-like alignment tool.  Genome Res
2002, 12:656-664.

58. Havlak P, Chen R, Durbin KJ, Egan A, Ren Y, Song XZ, Weinstock
GM, Gibbs RA: The Atlas genome assembly system.  Genome
Res 2004, 14:721-732.

59. Stein LD, Mungall CJ, Shu S, Caudy M, Mangone M, Day A, Nickerson
E, Stajich J, Harris TW, Arva A, Lewis S: The generic genome
browser: a building block for a model organism system
database.  Genome Res 2002, 12:1599-1610.

60. Bovine QTL Viewer   [http://bovineqtl.tamu.edu/]
61. Gregory TR, Nicol JA, Tamm H, Kullman B, Kullman K, Leitch IJ, Mur-

ray BG, Kapraun DF, Greilhuber J, Bennett MD: Eukaryotic
genome size databases.  Nucleic Acids Res 2007, 35:D332-338.

62. Animal Genome Size Database   [http://www.genomesize.com/]
63. Laurent V, Wajnberg E, Mangin B, Schiex T, Gaspin C, Vanlerberghe-

Masutti F: A composite genetic map of the parasitoid wasp
Trichogramma brassicae based on RAPD markers.  Genet Soc

Am 1998, 150:275-282.
64. Doligez A, Adam-Blondon AF, Cipriani G, Di Gaspero G, Laucou V,

Merdinoglu D, Meredith CP, Riaz S, Roux C, This P: An integrated
SSR map of grapevine based on five mapping populations.
Theor Appl Genet 2006, 113:369-382.

65. Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, Doucet I,
Perret D, Villeger MJ, Vincourt P, Blanchard P: Construction of an
oilseed rape (Brassica napus L.) genetic map with SSR
markers.  Theor Appl Genet 2005, 111:1514-1523.

66. Pelgas B, Bousquet J, Beauseigle S, Isabel N: A composite linkage
map from two crosses for the species complex Picea mariana
× Picea rubens and analysis of synteny with other Pinaceae.
Theor Appl Genet 2005, 111:1466-1488.

67. Demeure O, Pomp D, Milan D, Rothschild MF, Tuggle CK: Mapping
of 443 porcine EST improves the comparative maps for
SSC1 and SSC7 with the human genome.  Anim Genet 2005,
36:381-389.

68. Stam P: Construction of integrated genetic linkage maps by
means of a new computer package: JoinMap.  Plant J 1993,
3:739-744.

69. Agarwala R, Applegate DL, Maglott D, Schuler GD, Schaffer AA: A
fast and scalable radiation hybrid map construction and inte-
gration strategy.  Genome Res 2000, 10:350-364.

70. Ben-Dor A, Chor B: On constructing radiation hybrid maps.  J
Comp Biol 1997, 4:517-533.

71. Freeman JL, Perry GH, Feuk L, Redon R, McCarroll SA, Altshuler DM,
Aburatani H, Jones KW, Tyler-Smith C, Hurles ME, et al.: Copy
number variation: New insights in genome diversity.  Genome
Res 2006, 16:949-961.

72. McRae AF, Beraldi D: Examination of a region showing linkage
map discrepancies across sheep breeds.  Mamm Genome 2006,
17:346-353.

73. Tuzun E, Sharp AJ, Bailey JA, Kaul R, Morrison VA, Pertz LM, Haugen
E, Hayden H, Albertson D, Pinkel D, et al.: Fine-scale structural
variation of the human genome.  Nat Genet 2005, 37:727-732.

74. Feuk L, Carson AR, Scherer SW: Structural variation in the
human genome.  Nature Rev Genet 2006, 7:85-97.

75. Wright S: Coefficients of inbreeding and relationship.  Am Nat
1922, 56:330-338.

76. Dalrymple BP, Kirkness EF, Nefedov M, McWilliam S, Ratnakumar A,
Barris W, Zhao S, Shetty J, Maddox JF, O'Grady M, et al.: Using com-
parative genomics to reorder the human genome sequence
into a virtual sheep genome.  Genome Biol 2007, 8:R152.

77. Bovine Genome Assembly Gbrowse   [http://www.livestockge
nomics.csiro.au/perl/gbrowse.cgi/bova3/]

78. Marra MA, Kucaba TA, Dietrich NL, Green ED, Brownstein B, Wilson
RK, McDonald KM, Hillier LW, McPherson JD, Waterston RH: High
throughput fingerprint analysis of large-insert clones.
Genome Res 1997, 7:1072-1084.

79. Schein J, Kucaba T, Sekhon M, Smailus D, Waterston R, Marra M:
High-throughput BAC fingerprinting.  Methods Mol Biol 2004,
255:143-156.

80. Sulston J, Mallett F, Durbin R, Horsnell T: Image analysis of
restriction enzyme fingerprint autoradiograms.  Comput Appl
Biosci 1989, 5:101-106.

81. The Fingerprint Image Analysis System   [http://
www.sanger.ac.uk/Software/Image/]

82. Fuhrmann DR, Krzywinski MI, Chiu R, Saeedi P, Schein JE, Bosdet IE,
Chinwalla A, Hillier LW, Waterston RH, McPherson JD, et al.: Soft-
ware for automated analysis of DNA fingerprinting gels.
Genome Res 2003, 13:940-953.

83. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local
alignment search tool.  J Mol Biol 1990, 215:403-410.

84. TIGR Cattle Gene Index   [ftp://occams.dfci.harvard.edu/pub/bio/
tgi/data/Bos_taurus/BTGI.release_11.zip]

85. Bos taurus UniGene Repository   [ftp://ftp.ncbi.nih.gov/repository/
UniGene/Bos_taurus/]

86. Laboratory of Phil Green, Genome Sciences Department,
University of Washington   [http://www.phrap.org]

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11237011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11237011
http://hgdownload.cse.ucsc.edu/downloads.html
ftp://ftp.bcgsc.bc.ca/pub/bovine_mapping/
ftp://ftp.bcgsc.bc.ca/pub/bovine_mapping/
http://www.bovinegenome.org
http://www.bovinegenome.org
http://genomes.tamu.edu/cgi-bin/gbrowse/bacmap/
http://genomes.tamu.edu/cgi-bin/gbrowse/bacmap/
http://www.livestockgenomics.csiro.au/perl/gbrowse.cgi/bacmap/
http://www.livestockgenomics.csiro.au/perl/gbrowse.cgi/bacmap/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9367125
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9367125
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11076862
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11076862
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14871860
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14871860
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2838135
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2838135
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15231756
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15231756
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15231756
http://genomes.tamu.edu/cgi-bin/gbrowse/bosmap2/
http://genomes.tamu.edu/cgi-bin/gbrowse/bosmap2/
http://www.livestockgenomics.csiro.au/perl/gbrowse.cgi/bosmap/
http://www.livestockgenomics.csiro.au/perl/gbrowse.cgi/bosmap/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17302794
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17302794
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17302794
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12226714
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12226714
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15598829
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15598829
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15598829
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15473903
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15473903
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15473903
http://www.hgsc.bcm.tmc.edu/projects/bovine/
http://www.hgsc.bcm.tmc.edu/projects/bovine/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17588189
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17588189
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17588189
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9149949
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11932250
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15060016
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12368253
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12368253
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12368253
http://bovineqtl.tamu.edu/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17090588
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17090588
http://www.genomesize.com/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16799809
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16799809
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16187118
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16187118
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16215729
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16167980
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16167980
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16167980
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10720576
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10720576
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10720576
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16809666
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16809666
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16596456
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16596456
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15895083
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15895083
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17663790
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17663790
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17663790
http://www.livestockgenomics.csiro.au/perl/gbrowse.cgi/bova3/
http://www.livestockgenomics.csiro.au/perl/gbrowse.cgi/bova3/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9371743
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9371743
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15020821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15020821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2720459
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2720459
http://www.sanger.ac.uk/Software/Image/
http://www.sanger.ac.uk/Software/Image/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12727910
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12727910
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2231712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2231712
ftp://occams.dfci.harvard.edu/pub/bio/tgi/data/Bos_taurus/BTGI.release_11.zip
ftp://occams.dfci.harvard.edu/pub/bio/tgi/data/Bos_taurus/BTGI.release_11.zip
ftp://ftp.ncbi.nih.gov/repository/UniGene/Bos_taurus/
ftp://ftp.ncbi.nih.gov/repository/UniGene/Bos_taurus/
http://www.phrap.org

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	BAC clone fingerprinting
	Aligning bovine BAC clones to the human genome
	BAC map assembly
	Table 1 
	Table 2 

	Assigning contigs to bovine chromosomes using comparative mapping data
	Table 5 

	A composite bovine marker map
	Marker-clone, marker-sequence and clone-sequence alignments

	Discussion
	Conclusion
	Materials and methods
	BAC library resources
	BAC clone fingerprinting
	BAC end sequencing
	Table 6 

	Anchoring BAC clones to the human genome assembly
	Initial fingerprint map assembly
	Merging map contigs
	Estimating map contig size
	Composite bovine map
	Marker, clone and genomic sequence alignment
	Alignment of the BAC fingerprint and composite marker maps
	Discrepancy resolution
	BAC-assisted composite map


	Additional data files
	Abbreviations
	Authors' contributions
	Acknowledgements
	References

